Properties

Label 2028.1.l.a.239.1
Level $2028$
Weight $1$
Character 2028.239
Analytic conductor $1.012$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -39
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2028,1,Mod(239,2028)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2028.239");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2028.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.01210384562\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.8112.1

Embedding invariants

Embedding label 239.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2028.239
Dual form 2028.1.l.a.1451.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000i q^{3} +1.00000 q^{4} +(-1.00000 - 1.00000i) q^{5} -1.00000i q^{6} -1.00000 q^{8} -1.00000 q^{9} +(1.00000 + 1.00000i) q^{10} +(1.00000 + 1.00000i) q^{11} +1.00000i q^{12} +(1.00000 - 1.00000i) q^{15} +1.00000 q^{16} +1.00000 q^{18} +(-1.00000 - 1.00000i) q^{20} +(-1.00000 - 1.00000i) q^{22} -1.00000i q^{24} +1.00000i q^{25} -1.00000i q^{27} +(-1.00000 + 1.00000i) q^{30} -1.00000 q^{32} +(-1.00000 + 1.00000i) q^{33} -1.00000 q^{36} +(1.00000 + 1.00000i) q^{40} +(1.00000 + 1.00000i) q^{41} +(1.00000 + 1.00000i) q^{44} +(1.00000 + 1.00000i) q^{45} +(1.00000 + 1.00000i) q^{47} +1.00000i q^{48} +1.00000i q^{49} -1.00000i q^{50} +1.00000i q^{54} -2.00000i q^{55} +(1.00000 + 1.00000i) q^{59} +(1.00000 - 1.00000i) q^{60} +1.00000 q^{64} +(1.00000 - 1.00000i) q^{66} +(1.00000 - 1.00000i) q^{71} +1.00000 q^{72} -1.00000 q^{75} +2.00000i q^{79} +(-1.00000 - 1.00000i) q^{80} +1.00000 q^{81} +(-1.00000 - 1.00000i) q^{82} +(-1.00000 + 1.00000i) q^{83} +(-1.00000 - 1.00000i) q^{88} +(-1.00000 + 1.00000i) q^{89} +(-1.00000 - 1.00000i) q^{90} +(-1.00000 - 1.00000i) q^{94} -1.00000i q^{96} -1.00000i q^{98} +(-1.00000 - 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{5} - 2 q^{8} - 2 q^{9} + 2 q^{10} + 2 q^{11} + 2 q^{15} + 2 q^{16} + 2 q^{18} - 2 q^{20} - 2 q^{22} - 2 q^{30} - 2 q^{32} - 2 q^{33} - 2 q^{36} + 2 q^{40} + 2 q^{41} + 2 q^{44}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −1.00000
\(3\) 1.00000i 1.00000i
\(4\) 1.00000 1.00000
\(5\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(6\) 1.00000i 1.00000i
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) −1.00000 −1.00000
\(9\) −1.00000 −1.00000
\(10\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(11\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(12\) 1.00000i 1.00000i
\(13\) 0 0
\(14\) 0 0
\(15\) 1.00000 1.00000i 1.00000 1.00000i
\(16\) 1.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 1.00000 1.00000
\(19\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(20\) −1.00000 1.00000i −1.00000 1.00000i
\(21\) 0 0
\(22\) −1.00000 1.00000i −1.00000 1.00000i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 1.00000i 1.00000i
\(25\) 1.00000i 1.00000i
\(26\) 0 0
\(27\) 1.00000i 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(31\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(32\) −1.00000 −1.00000
\(33\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(34\) 0 0
\(35\) 0 0
\(36\) −1.00000 −1.00000
\(37\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(41\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(45\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(46\) 0 0
\(47\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(48\) 1.00000i 1.00000i
\(49\) 1.00000i 1.00000i
\(50\) 1.00000i 1.00000i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 1.00000i 1.00000i
\(55\) 2.00000i 2.00000i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(60\) 1.00000 1.00000i 1.00000 1.00000i
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 1.00000 1.00000i 1.00000 1.00000i
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(72\) 1.00000 1.00000
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 0 0
\(75\) −1.00000 −1.00000
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −1.00000 1.00000i −1.00000 1.00000i
\(81\) 1.00000 1.00000
\(82\) −1.00000 1.00000i −1.00000 1.00000i
\(83\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) −1.00000 1.00000i −1.00000 1.00000i
\(89\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(90\) −1.00000 1.00000i −1.00000 1.00000i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −1.00000 1.00000i −1.00000 1.00000i
\(95\) 0 0
\(96\) 1.00000i 1.00000i
\(97\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(98\) 1.00000i 1.00000i
\(99\) −1.00000 1.00000i −1.00000 1.00000i
\(100\) 1.00000i 1.00000i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 1.00000i 1.00000i
\(109\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(110\) 2.00000i 2.00000i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.00000 1.00000i −1.00000 1.00000i
\(119\) 0 0
\(120\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(121\) 1.00000i 1.00000i
\(122\) 0 0
\(123\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(128\) −1.00000 −1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(136\) 0 0
\(137\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(142\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(143\) 0 0
\(144\) −1.00000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) −1.00000 −1.00000
\(148\) 0 0
\(149\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(150\) 1.00000 1.00000
\(151\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(158\) 2.00000i 2.00000i
\(159\) 0 0
\(160\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(161\) 0 0
\(162\) −1.00000 −1.00000
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(165\) 2.00000 2.00000
\(166\) 1.00000 1.00000i 1.00000 1.00000i
\(167\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(177\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(178\) 1.00000 1.00000i 1.00000 1.00000i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(181\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 1.00000i 1.00000i
\(193\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.00000i 1.00000i
\(197\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(198\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(199\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(200\) 1.00000i 1.00000i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.00000i 2.00000i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(214\) 0 0
\(215\) 0 0
\(216\) 1.00000i 1.00000i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 2.00000i 2.00000i
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 1.00000i 1.00000i
\(226\) 0 0
\(227\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(228\) 0 0
\(229\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 2.00000i 2.00000i
\(236\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(237\) −2.00000 −2.00000
\(238\) 0 0
\(239\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(240\) 1.00000 1.00000i 1.00000 1.00000i
\(241\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(242\) 1.00000i 1.00000i
\(243\) 1.00000i 1.00000i
\(244\) 0 0
\(245\) 1.00000 1.00000i 1.00000 1.00000i
\(246\) 1.00000 1.00000i 1.00000 1.00000i
\(247\) 0 0
\(248\) 0 0
\(249\) −1.00000 1.00000i −1.00000 1.00000i
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −2.00000 −2.00000
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 1.00000 1.00000i 1.00000 1.00000i
\(265\) 0 0
\(266\) 0 0
\(267\) −1.00000 1.00000i −1.00000 1.00000i
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 1.00000 1.00000i 1.00000 1.00000i
\(271\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(275\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(276\) 0 0
\(277\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(282\) 1.00000 1.00000i 1.00000 1.00000i
\(283\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(284\) 1.00000 1.00000i 1.00000 1.00000i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.00000 1.00000
\(289\) −1.00000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(294\) 1.00000 1.00000
\(295\) 2.00000i 2.00000i
\(296\) 0 0
\(297\) 1.00000 1.00000i 1.00000 1.00000i
\(298\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(299\) 0 0
\(300\) −1.00000 −1.00000
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 2.00000 2.00000
\(315\) 0 0
\(316\) 2.00000i 2.00000i
\(317\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.00000 1.00000i −1.00000 1.00000i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) −1.00000 1.00000i −1.00000 1.00000i
\(329\) 0 0
\(330\) −2.00000 −2.00000
\(331\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(332\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(333\) 0 0
\(334\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 1.00000i −1.00000 1.00000i
\(353\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(354\) 1.00000 1.00000i 1.00000 1.00000i
\(355\) −2.00000 −2.00000
\(356\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(357\) 0 0
\(358\) 0 0
\(359\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(360\) −1.00000 1.00000i −1.00000 1.00000i
\(361\) 1.00000i 1.00000i
\(362\) 2.00000i 2.00000i
\(363\) −1.00000 −1.00000
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) −1.00000 1.00000i −1.00000 1.00000i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −1.00000 1.00000i −1.00000 1.00000i
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(380\) 0 0
\(381\) 2.00000i 2.00000i
\(382\) 0 0
\(383\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(384\) 1.00000i 1.00000i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000i 1.00000i
\(393\) 0 0
\(394\) −1.00000 1.00000i −1.00000 1.00000i
\(395\) 2.00000 2.00000i 2.00000 2.00000i
\(396\) −1.00000 1.00000i −1.00000 1.00000i
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) −2.00000 −2.00000
\(399\) 0 0
\(400\) 1.00000i 1.00000i
\(401\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1.00000 1.00000i −1.00000 1.00000i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(410\) 2.00000i 2.00000i
\(411\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.00000 2.00000
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(422\) 2.00000i 2.00000i
\(423\) −1.00000 1.00000i −1.00000 1.00000i
\(424\) 0 0
\(425\) 0 0
\(426\) −1.00000 1.00000i −1.00000 1.00000i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(432\) 1.00000i 1.00000i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 2.00000i 2.00000i
\(441\) 1.00000i 1.00000i
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 2.00000 2.00000
\(446\) 0 0
\(447\) 1.00000 1.00000i 1.00000 1.00000i
\(448\) 0 0
\(449\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(450\) 1.00000i 1.00000i
\(451\) 2.00000i 2.00000i
\(452\) 0 0
\(453\) 0 0
\(454\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 2.00000i 2.00000i
\(471\) 2.00000i 2.00000i
\(472\) −1.00000 1.00000i −1.00000 1.00000i
\(473\) 0 0
\(474\) 2.00000 2.00000
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(479\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(480\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.00000i 1.00000i
\(485\) 0 0
\(486\) 1.00000i 1.00000i
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(493\) 0 0
\(494\) 0 0
\(495\) 2.00000i 2.00000i
\(496\) 0 0
\(497\) 0 0
\(498\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(499\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) 0 0
\(501\) 1.00000 1.00000i 1.00000 1.00000i
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 2.00000 2.00000
\(509\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2.00000i 2.00000i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) −1.00000 1.00000i −1.00000 1.00000i
\(532\) 0 0
\(533\) 0 0
\(534\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(540\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(541\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(542\) 0 0
\(543\) 2.00000 2.00000
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 1.00000 1.00000i 1.00000 1.00000i
\(549\) 0 0
\(550\) 1.00000 1.00000i 1.00000 1.00000i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 2.00000i 2.00000i
\(555\) 0 0
\(556\) 0 0
\(557\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(565\) 0 0
\(566\) 2.00000 2.00000
\(567\) 0 0
\(568\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −1.00000 −1.00000
\(577\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) 1.00000 1.00000
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 1.00000 1.00000i 1.00000 1.00000i
\(587\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(588\) −1.00000 −1.00000
\(589\) 0 0
\(590\) 2.00000i 2.00000i
\(591\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(592\) 0 0
\(593\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(594\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(595\) 0 0
\(596\) −1.00000 1.00000i −1.00000 1.00000i
\(597\) 2.00000i 2.00000i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 1.00000 1.00000
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.00000 1.00000i 1.00000 1.00000i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 0 0
\(615\) 2.00000 2.00000
\(616\) 0 0
\(617\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) −2.00000 −2.00000
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(632\) 2.00000i 2.00000i
\(633\) −2.00000 −2.00000
\(634\) −1.00000 1.00000i −1.00000 1.00000i
\(635\) −2.00000 2.00000i −2.00000 2.00000i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(640\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −1.00000 −1.00000
\(649\) 2.00000i 2.00000i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 2.00000 2.00000
\(661\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 1.00000 1.00000i 1.00000 1.00000i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −1.00000 1.00000i −1.00000 1.00000i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 1.00000 1.00000
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(682\) 0 0
\(683\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) −2.00000 −2.00000
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(705\) 2.00000 2.00000
\(706\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(707\) 0 0
\(708\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(709\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(710\) 2.00000 2.00000
\(711\) 2.00000i 2.00000i
\(712\) 1.00000 1.00000i 1.00000 1.00000i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(718\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(721\) 0 0
\(722\) 1.00000i 1.00000i
\(723\) 0 0
\(724\) 2.00000i 2.00000i
\(725\) 0 0
\(726\) 1.00000 1.00000
\(727\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(736\) 0 0
\(737\) 0 0
\(738\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(739\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 2.00000i 2.00000i
\(746\) 0 0
\(747\) 1.00000 1.00000i 1.00000 1.00000i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(762\) 2.00000i 2.00000i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 1.00000 1.00000i 1.00000 1.00000i
\(767\) 0 0
\(768\) 1.00000i 1.00000i
\(769\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 2.00000 2.00000
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000i 1.00000i
\(785\) 2.00000 + 2.00000i 2.00000 + 2.00000i
\(786\) 0 0
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(789\) 0 0
\(790\) −2.00000 + 2.00000i −2.00000 + 2.00000i
\(791\) 0 0
\(792\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 2.00000 2.00000
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000i 1.00000i
\(801\) 1.00000 1.00000i 1.00000 1.00000i
\(802\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(811\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 2.00000i 2.00000i
\(821\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(822\) −1.00000 1.00000i −1.00000 1.00000i
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) −1.00000 1.00000i −1.00000 1.00000i
\(826\) 0 0
\(827\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) −2.00000 −2.00000
\(831\) 2.00000 2.00000
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.00000i 2.00000i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(844\) 2.00000i 2.00000i
\(845\) 0 0
\(846\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(847\) 0 0
\(848\) 0 0
\(849\) 2.00000i 2.00000i
\(850\) 0 0
\(851\) 0 0
\(852\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(853\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.00000 1.00000i 1.00000 1.00000i
\(863\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(864\) 1.00000i 1.00000i
\(865\) 0 0
\(866\) 0 0
\(867\) 1.00000i 1.00000i
\(868\) 0 0
\(869\) −2.00000 + 2.00000i −2.00000 + 2.00000i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(878\) 0 0
\(879\) −1.00000 1.00000i −1.00000 1.00000i
\(880\) 2.00000i 2.00000i
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 1.00000i 1.00000i
\(883\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(884\) 0 0
\(885\) 2.00000 2.00000
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −2.00000 −2.00000
\(891\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(892\) 0 0
\(893\) 0 0
\(894\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(899\) 0 0
\(900\) 1.00000i 1.00000i
\(901\) 0 0
\(902\) 2.00000i 2.00000i
\(903\) 0 0
\(904\) 0 0
\(905\) −2.00000 + 2.00000i −2.00000 + 2.00000i
\(906\) 0 0
\(907\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(908\) 1.00000 1.00000i 1.00000 1.00000i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −2.00000 −2.00000
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 2.00000i 2.00000i
\(941\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(942\) 2.00000i 2.00000i
\(943\) 0 0
\(944\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(945\) 0 0
\(946\) 0 0
\(947\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(948\) −2.00000 −2.00000
\(949\) 0 0
\(950\) 0 0
\(951\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.00000 1.00000i 1.00000 1.00000i
\(957\) 0 0
\(958\) −1.00000 1.00000i −1.00000 1.00000i
\(959\) 0 0
\(960\) 1.00000 1.00000i 1.00000 1.00000i
\(961\) 1.00000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 1.00000i 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 1.00000i 1.00000i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) −2.00000 −2.00000
\(980\) 1.00000 1.00000i 1.00000 1.00000i
\(981\) 0 0
\(982\) 0 0
\(983\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(984\) 1.00000 1.00000i 1.00000 1.00000i
\(985\) 2.00000i 2.00000i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 2.00000i 2.00000i
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.00000 2.00000i −2.00000 2.00000i
\(996\) −1.00000 1.00000i −1.00000 1.00000i
\(997\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.1.l.a.239.1 2
3.2 odd 2 2028.1.l.d.239.1 yes 2
4.3 odd 2 2028.1.l.b.239.1 yes 2
12.11 even 2 2028.1.l.c.239.1 yes 2
13.2 odd 12 2028.1.v.b.995.1 4
13.3 even 3 2028.1.v.d.695.1 4
13.4 even 6 2028.1.v.a.587.1 4
13.5 odd 4 2028.1.l.b.1451.1 yes 2
13.6 odd 12 2028.1.v.b.1103.1 4
13.7 odd 12 2028.1.v.c.1103.1 4
13.8 odd 4 2028.1.l.c.1451.1 yes 2
13.9 even 3 2028.1.v.d.587.1 4
13.10 even 6 2028.1.v.a.695.1 4
13.11 odd 12 2028.1.v.c.995.1 4
13.12 even 2 2028.1.l.d.239.1 yes 2
39.2 even 12 2028.1.v.c.995.1 4
39.5 even 4 2028.1.l.c.1451.1 yes 2
39.8 even 4 2028.1.l.b.1451.1 yes 2
39.11 even 12 2028.1.v.b.995.1 4
39.17 odd 6 2028.1.v.d.587.1 4
39.20 even 12 2028.1.v.b.1103.1 4
39.23 odd 6 2028.1.v.d.695.1 4
39.29 odd 6 2028.1.v.a.695.1 4
39.32 even 12 2028.1.v.c.1103.1 4
39.35 odd 6 2028.1.v.a.587.1 4
39.38 odd 2 CM 2028.1.l.a.239.1 2
52.3 odd 6 2028.1.v.b.695.1 4
52.7 even 12 2028.1.v.a.1103.1 4
52.11 even 12 2028.1.v.a.995.1 4
52.15 even 12 2028.1.v.d.995.1 4
52.19 even 12 2028.1.v.d.1103.1 4
52.23 odd 6 2028.1.v.c.695.1 4
52.31 even 4 inner 2028.1.l.a.1451.1 yes 2
52.35 odd 6 2028.1.v.b.587.1 4
52.43 odd 6 2028.1.v.c.587.1 4
52.47 even 4 2028.1.l.d.1451.1 yes 2
52.51 odd 2 2028.1.l.c.239.1 yes 2
156.11 odd 12 2028.1.v.d.995.1 4
156.23 even 6 2028.1.v.b.695.1 4
156.35 even 6 2028.1.v.c.587.1 4
156.47 odd 4 inner 2028.1.l.a.1451.1 yes 2
156.59 odd 12 2028.1.v.d.1103.1 4
156.71 odd 12 2028.1.v.a.1103.1 4
156.83 odd 4 2028.1.l.d.1451.1 yes 2
156.95 even 6 2028.1.v.b.587.1 4
156.107 even 6 2028.1.v.c.695.1 4
156.119 odd 12 2028.1.v.a.995.1 4
156.155 even 2 2028.1.l.b.239.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2028.1.l.a.239.1 2 1.1 even 1 trivial
2028.1.l.a.239.1 2 39.38 odd 2 CM
2028.1.l.a.1451.1 yes 2 52.31 even 4 inner
2028.1.l.a.1451.1 yes 2 156.47 odd 4 inner
2028.1.l.b.239.1 yes 2 4.3 odd 2
2028.1.l.b.239.1 yes 2 156.155 even 2
2028.1.l.b.1451.1 yes 2 13.5 odd 4
2028.1.l.b.1451.1 yes 2 39.8 even 4
2028.1.l.c.239.1 yes 2 12.11 even 2
2028.1.l.c.239.1 yes 2 52.51 odd 2
2028.1.l.c.1451.1 yes 2 13.8 odd 4
2028.1.l.c.1451.1 yes 2 39.5 even 4
2028.1.l.d.239.1 yes 2 3.2 odd 2
2028.1.l.d.239.1 yes 2 13.12 even 2
2028.1.l.d.1451.1 yes 2 52.47 even 4
2028.1.l.d.1451.1 yes 2 156.83 odd 4
2028.1.v.a.587.1 4 13.4 even 6
2028.1.v.a.587.1 4 39.35 odd 6
2028.1.v.a.695.1 4 13.10 even 6
2028.1.v.a.695.1 4 39.29 odd 6
2028.1.v.a.995.1 4 52.11 even 12
2028.1.v.a.995.1 4 156.119 odd 12
2028.1.v.a.1103.1 4 52.7 even 12
2028.1.v.a.1103.1 4 156.71 odd 12
2028.1.v.b.587.1 4 52.35 odd 6
2028.1.v.b.587.1 4 156.95 even 6
2028.1.v.b.695.1 4 52.3 odd 6
2028.1.v.b.695.1 4 156.23 even 6
2028.1.v.b.995.1 4 13.2 odd 12
2028.1.v.b.995.1 4 39.11 even 12
2028.1.v.b.1103.1 4 13.6 odd 12
2028.1.v.b.1103.1 4 39.20 even 12
2028.1.v.c.587.1 4 52.43 odd 6
2028.1.v.c.587.1 4 156.35 even 6
2028.1.v.c.695.1 4 52.23 odd 6
2028.1.v.c.695.1 4 156.107 even 6
2028.1.v.c.995.1 4 13.11 odd 12
2028.1.v.c.995.1 4 39.2 even 12
2028.1.v.c.1103.1 4 13.7 odd 12
2028.1.v.c.1103.1 4 39.32 even 12
2028.1.v.d.587.1 4 13.9 even 3
2028.1.v.d.587.1 4 39.17 odd 6
2028.1.v.d.695.1 4 13.3 even 3
2028.1.v.d.695.1 4 39.23 odd 6
2028.1.v.d.995.1 4 52.15 even 12
2028.1.v.d.995.1 4 156.11 odd 12
2028.1.v.d.1103.1 4 52.19 even 12
2028.1.v.d.1103.1 4 156.59 odd 12