Properties

Label 2028.2.bi
Level $2028$
Weight $2$
Character orbit 2028.bi
Rep. character $\chi_{2028}(5,\cdot)$
Character field $\Q(\zeta_{52})$
Dimension $1440$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.bi (of order \(52\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 507 \)
Character field: \(\Q(\zeta_{52})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2028, [\chi])\).

Total New Old
Modular forms 8880 1440 7440
Cusp forms 8592 1440 7152
Eisenstein series 288 0 288

Trace form

\( 1440 q - 4 q^{7} - 12 q^{13} + 12 q^{15} - 4 q^{19} + 12 q^{21} - 12 q^{27} + 4 q^{31} + 12 q^{33} + 16 q^{37} - 80 q^{39} - 130 q^{45} - 88 q^{55} - 12 q^{57} + 16 q^{61} + 94 q^{63} + 156 q^{67} - 40 q^{73}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2028, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2028, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2028, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1014, [\chi])\)\(^{\oplus 2}\)