Properties

Label 2028.2.bi
Level 20282028
Weight 22
Character orbit 2028.bi
Rep. character χ2028(5,)\chi_{2028}(5,\cdot)
Character field Q(ζ52)\Q(\zeta_{52})
Dimension 14401440
Sturm bound 728728

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2028=223132 2028 = 2^{2} \cdot 3 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2028.bi (of order 5252 and degree 2424)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 507 507
Character field: Q(ζ52)\Q(\zeta_{52})
Sturm bound: 728728

Dimensions

The following table gives the dimensions of various subspaces of M2(2028,[χ])M_{2}(2028, [\chi]).

Total New Old
Modular forms 8880 1440 7440
Cusp forms 8592 1440 7152
Eisenstein series 288 0 288

Trace form

1440q4q712q13+12q154q19+12q2112q27+4q31+12q33+16q3780q39130q4588q5512q57+16q61+94q63+156q6740q73++16q97+O(q100) 1440 q - 4 q^{7} - 12 q^{13} + 12 q^{15} - 4 q^{19} + 12 q^{21} - 12 q^{27} + 4 q^{31} + 12 q^{33} + 16 q^{37} - 80 q^{39} - 130 q^{45} - 88 q^{55} - 12 q^{57} + 16 q^{61} + 94 q^{63} + 156 q^{67} - 40 q^{73}+ \cdots + 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(2028,[χ])S_{2}^{\mathrm{new}}(2028, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(2028,[χ])S_{2}^{\mathrm{old}}(2028, [\chi]) into lower level spaces

S2old(2028,[χ]) S_{2}^{\mathrm{old}}(2028, [\chi]) \simeq S2new(507,[χ])S_{2}^{\mathrm{new}}(507, [\chi])3^{\oplus 3}\oplusS2new(1014,[χ])S_{2}^{\mathrm{new}}(1014, [\chi])2^{\oplus 2}