Properties

Label 2028.2.r
Level $2028$
Weight $2$
Character orbit 2028.r
Rep. character $\chi_{2028}(23,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $576$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.r (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 156 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2028, [\chi])\).

Total New Old
Modular forms 784 656 128
Cusp forms 672 576 96
Eisenstein series 112 80 32

Trace form

\( 576 q + 2 q^{4} + 12 q^{6} + 2 q^{9} + 14 q^{10} + 4 q^{12} - 6 q^{16} + 12 q^{22} + 18 q^{24} + 432 q^{25} - 12 q^{28} + 6 q^{33} + 24 q^{36} + 36 q^{37} + 4 q^{40} - 26 q^{42} + 36 q^{45} - 24 q^{46}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2028, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2028, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2028, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)