Defining parameters
Level: | \( N \) | \(=\) | \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2028.r (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 156 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(728\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2028, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 784 | 656 | 128 |
Cusp forms | 672 | 576 | 96 |
Eisenstein series | 112 | 80 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2028, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2028, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2028, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)