Properties

Label 2028.2.w
Level $2028$
Weight $2$
Character orbit 2028.w
Rep. character $\chi_{2028}(19,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $616$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.w (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2028, [\chi])\).

Total New Old
Modular forms 1568 616 952
Cusp forms 1344 616 728
Eisenstein series 224 0 224

Trace form

\( 616 q + 4 q^{5} + 308 q^{9} + 32 q^{14} + 16 q^{16} + 52 q^{20} - 8 q^{21} + 4 q^{22} - 12 q^{24} + 28 q^{28} + 80 q^{32} + 24 q^{34} + 12 q^{37} - 72 q^{40} + 56 q^{41} - 12 q^{42} - 56 q^{44} + 8 q^{45}+ \cdots - 148 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2028, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2028, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2028, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(676, [\chi])\)\(^{\oplus 2}\)