Defining parameters
Level: | \( N \) | \(=\) | \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2028.w (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 52 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Sturm bound: | \(728\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2028, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1568 | 616 | 952 |
Cusp forms | 1344 | 616 | 728 |
Eisenstein series | 224 | 0 | 224 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2028, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2028, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2028, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(676, [\chi])\)\(^{\oplus 2}\)