Properties

Label 2028.4.a.d
Level 20282028
Weight 44
Character orbit 2028.a
Self dual yes
Analytic conductor 119.656119.656
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2028,4,Mod(1,2028)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2028.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2028=223132 2028 = 2^{2} \cdot 3 \cdot 13^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2028.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 119.655873492119.655873492
Analytic rank: 11
Dimension: 22
Coefficient field: Q(22)\Q(\sqrt{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x222 x^{2} - 22 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 156)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=222\beta = 2\sqrt{22}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q3q3+βq5+(3β4)q7+9q9+(2β+30)q113βq15+(6β54)q17+(3β+108)q19+(9β+12)q21+(8β108)q23++(18β+270)q99+O(q100) q - 3 q^{3} + \beta q^{5} + ( - 3 \beta - 4) q^{7} + 9 q^{9} + (2 \beta + 30) q^{11} - 3 \beta q^{15} + ( - 6 \beta - 54) q^{17} + (3 \beta + 108) q^{19} + (9 \beta + 12) q^{21} + (8 \beta - 108) q^{23} + \cdots + (18 \beta + 270) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q6q38q7+18q9+60q11108q17+216q19+24q21216q2374q2554q27108q2980q31180q33528q35108q37+48q41+8q43++540q99+O(q100) 2 q - 6 q^{3} - 8 q^{7} + 18 q^{9} + 60 q^{11} - 108 q^{17} + 216 q^{19} + 24 q^{21} - 216 q^{23} - 74 q^{25} - 54 q^{27} - 108 q^{29} - 80 q^{31} - 180 q^{33} - 528 q^{35} - 108 q^{37} + 48 q^{41} + 8 q^{43}+ \cdots + 540 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−4.69042
4.69042
0 −3.00000 0 −9.38083 0 24.1425 0 9.00000 0
1.2 0 −3.00000 0 9.38083 0 −32.1425 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2028.4.a.d 2
13.b even 2 1 156.4.a.c 2
13.d odd 4 2 2028.4.b.e 4
39.d odd 2 1 468.4.a.g 2
52.b odd 2 1 624.4.a.p 2
104.e even 2 1 2496.4.a.bf 2
104.h odd 2 1 2496.4.a.w 2
156.h even 2 1 1872.4.a.y 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.4.a.c 2 13.b even 2 1
468.4.a.g 2 39.d odd 2 1
624.4.a.p 2 52.b odd 2 1
1872.4.a.y 2 156.h even 2 1
2028.4.a.d 2 1.a even 1 1 trivial
2028.4.b.e 4 13.d odd 4 2
2496.4.a.w 2 104.h odd 2 1
2496.4.a.bf 2 104.e even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5288 T_{5}^{2} - 88 acting on S4new(Γ0(2028))S_{4}^{\mathrm{new}}(\Gamma_0(2028)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
55 T288 T^{2} - 88 Copy content Toggle raw display
77 T2+8T776 T^{2} + 8T - 776 Copy content Toggle raw display
1111 T260T+548 T^{2} - 60T + 548 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2+108T252 T^{2} + 108T - 252 Copy content Toggle raw display
1919 T2216T+10872 T^{2} - 216T + 10872 Copy content Toggle raw display
2323 T2+216T+6032 T^{2} + 216T + 6032 Copy content Toggle raw display
2929 T2+108T32284 T^{2} + 108T - 32284 Copy content Toggle raw display
3131 T2+80T18200 T^{2} + 80T - 18200 Copy content Toggle raw display
3737 T2+108T25596 T^{2} + 108T - 25596 Copy content Toggle raw display
4141 T248T19224 T^{2} - 48T - 19224 Copy content Toggle raw display
4343 T28T256592 T^{2} - 8T - 256592 Copy content Toggle raw display
4747 T2228T157372 T^{2} - 228T - 157372 Copy content Toggle raw display
5353 T2540T+60228 T^{2} - 540T + 60228 Copy content Toggle raw display
5959 T2852T+40676 T^{2} - 852T + 40676 Copy content Toggle raw display
6161 T2308T+11044 T^{2} - 308T + 11044 Copy content Toggle raw display
6767 T2304T110744 T^{2} - 304T - 110744 Copy content Toggle raw display
7171 T2228T578716 T^{2} - 228T - 578716 Copy content Toggle raw display
7373 T2+1420T+500932 T^{2} + 1420 T + 500932 Copy content Toggle raw display
7979 T2496T255296 T^{2} - 496T - 255296 Copy content Toggle raw display
8383 T2+1236T+369252 T^{2} + 1236 T + 369252 Copy content Toggle raw display
8989 T21416T+151992 T^{2} - 1416 T + 151992 Copy content Toggle raw display
9797 T2+604T+12004 T^{2} + 604T + 12004 Copy content Toggle raw display
show more
show less