Properties

Label 2028.4.a.g
Level $2028$
Weight $4$
Character orbit 2028.a
Self dual yes
Analytic conductor $119.656$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2028,4,Mod(1,2028)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2028.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2028.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.655873492\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 156)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + 2 \beta q^{5} - 3 \beta q^{7} + 9 q^{9} - 5 \beta q^{11} + 6 \beta q^{15} - 18 q^{17} + 13 \beta q^{19} - 9 \beta q^{21} - 24 q^{23} - 77 q^{25} + 27 q^{27} + 6 q^{29} + 31 \beta q^{31} - 15 \beta q^{33} + \cdots - 45 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 18 q^{9} - 36 q^{17} - 48 q^{23} - 154 q^{25} + 54 q^{27} + 12 q^{29} - 144 q^{35} - 40 q^{43} - 470 q^{49} - 108 q^{51} - 612 q^{53} - 240 q^{55} + 140 q^{61} - 144 q^{69} - 462 q^{75}+ \cdots + 624 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 3.00000 0 −6.92820 0 10.3923 0 9.00000 0
1.2 0 3.00000 0 6.92820 0 −10.3923 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2028.4.a.g 2
13.b even 2 1 inner 2028.4.a.g 2
13.d odd 4 2 156.4.b.a 2
39.f even 4 2 468.4.b.b 2
52.f even 4 2 624.4.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.4.b.a 2 13.d odd 4 2
468.4.b.b 2 39.f even 4 2
624.4.c.a 2 52.f even 4 2
2028.4.a.g 2 1.a even 1 1 trivial
2028.4.a.g 2 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 48 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2028))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 48 \) Copy content Toggle raw display
$7$ \( T^{2} - 108 \) Copy content Toggle raw display
$11$ \( T^{2} - 300 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 18)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 2028 \) Copy content Toggle raw display
$23$ \( (T + 24)^{2} \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 11532 \) Copy content Toggle raw display
$37$ \( T^{2} - 34992 \) Copy content Toggle raw display
$41$ \( T^{2} - 12288 \) Copy content Toggle raw display
$43$ \( (T + 20)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 86700 \) Copy content Toggle raw display
$53$ \( (T + 306)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 494508 \) Copy content Toggle raw display
$61$ \( (T - 70)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 205932 \) Copy content Toggle raw display
$71$ \( T^{2} - 1058508 \) Copy content Toggle raw display
$73$ \( T^{2} - 192 \) Copy content Toggle raw display
$79$ \( (T + 416)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 1160652 \) Copy content Toggle raw display
$89$ \( T^{2} - 768 \) Copy content Toggle raw display
$97$ \( T^{2} - 277248 \) Copy content Toggle raw display
show more
show less