Properties

Label 2028.4.a.g
Level 20282028
Weight 44
Character orbit 2028.a
Self dual yes
Analytic conductor 119.656119.656
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2028,4,Mod(1,2028)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2028.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2028=223132 2028 = 2^{2} \cdot 3 \cdot 13^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2028.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 119.655873492119.655873492
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x23 x^{2} - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 156)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=23\beta = 2\sqrt{3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3q3+2βq53βq7+9q95βq11+6βq1518q17+13βq199βq2124q2377q25+27q27+6q29+31βq3115βq33+45βq99+O(q100) q + 3 q^{3} + 2 \beta q^{5} - 3 \beta q^{7} + 9 q^{9} - 5 \beta q^{11} + 6 \beta q^{15} - 18 q^{17} + 13 \beta q^{19} - 9 \beta q^{21} - 24 q^{23} - 77 q^{25} + 27 q^{27} + 6 q^{29} + 31 \beta q^{31} - 15 \beta q^{33} + \cdots - 45 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+6q3+18q936q1748q23154q25+54q27+12q29144q3540q43470q49108q51612q53240q55+140q61144q69462q75++624q95+O(q100) 2 q + 6 q^{3} + 18 q^{9} - 36 q^{17} - 48 q^{23} - 154 q^{25} + 54 q^{27} + 12 q^{29} - 144 q^{35} - 40 q^{43} - 470 q^{49} - 108 q^{51} - 612 q^{53} - 240 q^{55} + 140 q^{61} - 144 q^{69} - 462 q^{75}+ \cdots + 624 q^{95}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.73205
1.73205
0 3.00000 0 −6.92820 0 10.3923 0 9.00000 0
1.2 0 3.00000 0 6.92820 0 −10.3923 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
1313 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2028.4.a.g 2
13.b even 2 1 inner 2028.4.a.g 2
13.d odd 4 2 156.4.b.a 2
39.f even 4 2 468.4.b.b 2
52.f even 4 2 624.4.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.4.b.a 2 13.d odd 4 2
468.4.b.b 2 39.f even 4 2
624.4.c.a 2 52.f even 4 2
2028.4.a.g 2 1.a even 1 1 trivial
2028.4.a.g 2 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5248 T_{5}^{2} - 48 acting on S4new(Γ0(2028))S_{4}^{\mathrm{new}}(\Gamma_0(2028)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T3)2 (T - 3)^{2} Copy content Toggle raw display
55 T248 T^{2} - 48 Copy content Toggle raw display
77 T2108 T^{2} - 108 Copy content Toggle raw display
1111 T2300 T^{2} - 300 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 (T+18)2 (T + 18)^{2} Copy content Toggle raw display
1919 T22028 T^{2} - 2028 Copy content Toggle raw display
2323 (T+24)2 (T + 24)^{2} Copy content Toggle raw display
2929 (T6)2 (T - 6)^{2} Copy content Toggle raw display
3131 T211532 T^{2} - 11532 Copy content Toggle raw display
3737 T234992 T^{2} - 34992 Copy content Toggle raw display
4141 T212288 T^{2} - 12288 Copy content Toggle raw display
4343 (T+20)2 (T + 20)^{2} Copy content Toggle raw display
4747 T286700 T^{2} - 86700 Copy content Toggle raw display
5353 (T+306)2 (T + 306)^{2} Copy content Toggle raw display
5959 T2494508 T^{2} - 494508 Copy content Toggle raw display
6161 (T70)2 (T - 70)^{2} Copy content Toggle raw display
6767 T2205932 T^{2} - 205932 Copy content Toggle raw display
7171 T21058508 T^{2} - 1058508 Copy content Toggle raw display
7373 T2192 T^{2} - 192 Copy content Toggle raw display
7979 (T+416)2 (T + 416)^{2} Copy content Toggle raw display
8383 T21160652 T^{2} - 1160652 Copy content Toggle raw display
8989 T2768 T^{2} - 768 Copy content Toggle raw display
9797 T2277248 T^{2} - 277248 Copy content Toggle raw display
show more
show less