Properties

Label 2031.1.d.b.2030.2
Level $2031$
Weight $1$
Character 2031.2030
Self dual yes
Analytic conductor $1.014$
Analytic rank $0$
Dimension $9$
Projective image $D_{19}$
CM discriminant -2031
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2031,1,Mod(2030,2031)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2031, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2031.2030");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2031 = 3 \cdot 677 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2031.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.01360104066\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\Q(\zeta_{38})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 8x^{7} + 7x^{6} + 21x^{5} - 15x^{4} - 20x^{3} + 10x^{2} + 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{19}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{19} - \cdots)\)

Embedding invariants

Embedding label 2030.2
Root \(-0.490971\) of defining polynomial
Character \(\chi\) \(=\) 2031.2030

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.57828 q^{2} -1.00000 q^{3} +1.49097 q^{4} +0.165159 q^{5} +1.57828 q^{6} -0.774890 q^{8} +1.00000 q^{9} -0.260667 q^{10} +1.75895 q^{11} -1.49097 q^{12} +1.89163 q^{13} -0.165159 q^{15} -0.267977 q^{16} +1.35456 q^{17} -1.57828 q^{18} +0.246247 q^{20} -2.77611 q^{22} -1.09390 q^{23} +0.774890 q^{24} -0.972723 q^{25} -2.98553 q^{26} -1.00000 q^{27} +1.97272 q^{29} +0.260667 q^{30} +1.19783 q^{32} -1.75895 q^{33} -2.13788 q^{34} +1.49097 q^{36} -0.803391 q^{37} -1.89163 q^{39} -0.127980 q^{40} +2.62254 q^{44} +0.165159 q^{45} +1.72648 q^{46} -0.490971 q^{47} +0.267977 q^{48} +1.00000 q^{49} +1.53523 q^{50} -1.35456 q^{51} +2.82037 q^{52} -1.89163 q^{53} +1.57828 q^{54} +0.290505 q^{55} -3.11351 q^{58} -0.246247 q^{60} -1.62254 q^{64} +0.312420 q^{65} +2.77611 q^{66} +2.01961 q^{68} +1.09390 q^{69} -0.774890 q^{72} +1.26798 q^{74} +0.972723 q^{75} +2.98553 q^{78} -1.75895 q^{79} -0.0442587 q^{80} +1.00000 q^{81} +0.803391 q^{83} +0.223718 q^{85} -1.97272 q^{87} -1.36299 q^{88} -1.09390 q^{89} -0.260667 q^{90} -1.63097 q^{92} +0.774890 q^{94} -1.19783 q^{96} -1.35456 q^{97} -1.57828 q^{98} +1.75895 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + q^{2} - 9 q^{3} + 8 q^{4} + q^{5} - q^{6} + 2 q^{8} + 9 q^{9} - 2 q^{10} + q^{11} - 8 q^{12} - q^{13} - q^{15} + 7 q^{16} + q^{17} + q^{18} + 3 q^{20} - 2 q^{22} + q^{23} - 2 q^{24} + 8 q^{25}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2031\mathbb{Z}\right)^\times\).

\(n\) \(679\) \(1355\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.57828 −1.57828 −0.789141 0.614213i \(-0.789474\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(3\) −1.00000 −1.00000
\(4\) 1.49097 1.49097
\(5\) 0.165159 0.165159 0.0825793 0.996584i \(-0.473684\pi\)
0.0825793 + 0.996584i \(0.473684\pi\)
\(6\) 1.57828 1.57828
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) −0.774890 −0.774890
\(9\) 1.00000 1.00000
\(10\) −0.260667 −0.260667
\(11\) 1.75895 1.75895 0.879474 0.475947i \(-0.157895\pi\)
0.879474 + 0.475947i \(0.157895\pi\)
\(12\) −1.49097 −1.49097
\(13\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(14\) 0 0
\(15\) −0.165159 −0.165159
\(16\) −0.267977 −0.267977
\(17\) 1.35456 1.35456 0.677282 0.735724i \(-0.263158\pi\)
0.677282 + 0.735724i \(0.263158\pi\)
\(18\) −1.57828 −1.57828
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0.246247 0.246247
\(21\) 0 0
\(22\) −2.77611 −2.77611
\(23\) −1.09390 −1.09390 −0.546948 0.837166i \(-0.684211\pi\)
−0.546948 + 0.837166i \(0.684211\pi\)
\(24\) 0.774890 0.774890
\(25\) −0.972723 −0.972723
\(26\) −2.98553 −2.98553
\(27\) −1.00000 −1.00000
\(28\) 0 0
\(29\) 1.97272 1.97272 0.986361 0.164595i \(-0.0526316\pi\)
0.986361 + 0.164595i \(0.0526316\pi\)
\(30\) 0.260667 0.260667
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 1.19783 1.19783
\(33\) −1.75895 −1.75895
\(34\) −2.13788 −2.13788
\(35\) 0 0
\(36\) 1.49097 1.49097
\(37\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(38\) 0 0
\(39\) −1.89163 −1.89163
\(40\) −0.127980 −0.127980
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 2.62254 2.62254
\(45\) 0.165159 0.165159
\(46\) 1.72648 1.72648
\(47\) −0.490971 −0.490971 −0.245485 0.969400i \(-0.578947\pi\)
−0.245485 + 0.969400i \(0.578947\pi\)
\(48\) 0.267977 0.267977
\(49\) 1.00000 1.00000
\(50\) 1.53523 1.53523
\(51\) −1.35456 −1.35456
\(52\) 2.82037 2.82037
\(53\) −1.89163 −1.89163 −0.945817 0.324699i \(-0.894737\pi\)
−0.945817 + 0.324699i \(0.894737\pi\)
\(54\) 1.57828 1.57828
\(55\) 0.290505 0.290505
\(56\) 0 0
\(57\) 0 0
\(58\) −3.11351 −3.11351
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −0.246247 −0.246247
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.62254 −1.62254
\(65\) 0.312420 0.312420
\(66\) 2.77611 2.77611
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 2.01961 2.01961
\(69\) 1.09390 1.09390
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −0.774890 −0.774890
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 1.26798 1.26798
\(75\) 0.972723 0.972723
\(76\) 0 0
\(77\) 0 0
\(78\) 2.98553 2.98553
\(79\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(80\) −0.0442587 −0.0442587
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0.803391 0.803391 0.401695 0.915773i \(-0.368421\pi\)
0.401695 + 0.915773i \(0.368421\pi\)
\(84\) 0 0
\(85\) 0.223718 0.223718
\(86\) 0 0
\(87\) −1.97272 −1.97272
\(88\) −1.36299 −1.36299
\(89\) −1.09390 −1.09390 −0.546948 0.837166i \(-0.684211\pi\)
−0.546948 + 0.837166i \(0.684211\pi\)
\(90\) −0.260667 −0.260667
\(91\) 0 0
\(92\) −1.63097 −1.63097
\(93\) 0 0
\(94\) 0.774890 0.774890
\(95\) 0 0
\(96\) −1.19783 −1.19783
\(97\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(98\) −1.57828 −1.57828
\(99\) 1.75895 1.75895
\(100\) −1.45030 −1.45030
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 2.13788 2.13788
\(103\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(104\) −1.46581 −1.46581
\(105\) 0 0
\(106\) 2.98553 2.98553
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) −1.49097 −1.49097
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) −0.458499 −0.458499
\(111\) 0.803391 0.803391
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) −0.180666 −0.180666
\(116\) 2.94127 2.94127
\(117\) 1.89163 1.89163
\(118\) 0 0
\(119\) 0 0
\(120\) 0.127980 0.127980
\(121\) 2.09390 2.09390
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.325812 −0.325812
\(126\) 0 0
\(127\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(128\) 1.36299 1.36299
\(129\) 0 0
\(130\) −0.493086 −0.493086
\(131\) 1.35456 1.35456 0.677282 0.735724i \(-0.263158\pi\)
0.677282 + 0.735724i \(0.263158\pi\)
\(132\) −2.62254 −2.62254
\(133\) 0 0
\(134\) 0 0
\(135\) −0.165159 −0.165159
\(136\) −1.04964 −1.04964
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) −1.72648 −1.72648
\(139\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(140\) 0 0
\(141\) 0.490971 0.490971
\(142\) 0 0
\(143\) 3.32729 3.32729
\(144\) −0.267977 −0.267977
\(145\) 0.325812 0.325812
\(146\) 0 0
\(147\) −1.00000 −1.00000
\(148\) −1.19783 −1.19783
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) −1.53523 −1.53523
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 1.35456 1.35456
\(154\) 0 0
\(155\) 0 0
\(156\) −2.82037 −2.82037
\(157\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(158\) 2.77611 2.77611
\(159\) 1.89163 1.89163
\(160\) 0.197832 0.197832
\(161\) 0 0
\(162\) −1.57828 −1.57828
\(163\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(164\) 0 0
\(165\) −0.290505 −0.290505
\(166\) −1.26798 −1.26798
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 2.57828 2.57828
\(170\) −0.353090 −0.353090
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 3.11351 3.11351
\(175\) 0 0
\(176\) −0.471357 −0.471357
\(177\) 0 0
\(178\) 1.72648 1.72648
\(179\) −0.490971 −0.490971 −0.245485 0.969400i \(-0.578947\pi\)
−0.245485 + 0.969400i \(0.578947\pi\)
\(180\) 0.246247 0.246247
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.847650 0.847650
\(185\) −0.132687 −0.132687
\(186\) 0 0
\(187\) 2.38261 2.38261
\(188\) −0.732023 −0.732023
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 1.62254 1.62254
\(193\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(194\) 2.13788 2.13788
\(195\) −0.312420 −0.312420
\(196\) 1.49097 1.49097
\(197\) −1.09390 −1.09390 −0.546948 0.837166i \(-0.684211\pi\)
−0.546948 + 0.837166i \(0.684211\pi\)
\(198\) −2.77611 −2.77611
\(199\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(200\) 0.753753 0.753753
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −2.01961 −2.01961
\(205\) 0 0
\(206\) −2.49097 −2.49097
\(207\) −1.09390 −1.09390
\(208\) −0.506914 −0.506914
\(209\) 0 0
\(210\) 0 0
\(211\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(212\) −2.82037 −2.82037
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0.774890 0.774890
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0.433135 0.433135
\(221\) 2.56234 2.56234
\(222\) −1.26798 −1.26798
\(223\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(224\) 0 0
\(225\) −0.972723 −0.972723
\(226\) 0 0
\(227\) −1.89163 −1.89163 −0.945817 0.324699i \(-0.894737\pi\)
−0.945817 + 0.324699i \(0.894737\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0.285142 0.285142
\(231\) 0 0
\(232\) −1.52864 −1.52864
\(233\) −1.89163 −1.89163 −0.945817 0.324699i \(-0.894737\pi\)
−0.945817 + 0.324699i \(0.894737\pi\)
\(234\) −2.98553 −2.98553
\(235\) −0.0810881 −0.0810881
\(236\) 0 0
\(237\) 1.75895 1.75895
\(238\) 0 0
\(239\) 1.97272 1.97272 0.986361 0.164595i \(-0.0526316\pi\)
0.986361 + 0.164595i \(0.0526316\pi\)
\(240\) 0.0442587 0.0442587
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −3.30476 −3.30476
\(243\) −1.00000 −1.00000
\(244\) 0 0
\(245\) 0.165159 0.165159
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −0.803391 −0.803391
\(250\) 0.514223 0.514223
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) −1.92411 −1.92411
\(254\) −0.774890 −0.774890
\(255\) −0.223718 −0.223718
\(256\) −0.528643 −0.528643
\(257\) −1.57828 −1.57828 −0.789141 0.614213i \(-0.789474\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.465809 0.465809
\(261\) 1.97272 1.97272
\(262\) −2.13788 −2.13788
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 1.36299 1.36299
\(265\) −0.312420 −0.312420
\(266\) 0 0
\(267\) 1.09390 1.09390
\(268\) 0 0
\(269\) −1.57828 −1.57828 −0.789141 0.614213i \(-0.789474\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(270\) 0.260667 0.260667
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −0.362991 −0.362991
\(273\) 0 0
\(274\) 0 0
\(275\) −1.71097 −1.71097
\(276\) 1.63097 1.63097
\(277\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(278\) 3.11351 3.11351
\(279\) 0 0
\(280\) 0 0
\(281\) 1.97272 1.97272 0.986361 0.164595i \(-0.0526316\pi\)
0.986361 + 0.164595i \(0.0526316\pi\)
\(282\) −0.774890 −0.774890
\(283\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −5.25139 −5.25139
\(287\) 0 0
\(288\) 1.19783 1.19783
\(289\) 0.834841 0.834841
\(290\) −0.514223 −0.514223
\(291\) 1.35456 1.35456
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 1.57828 1.57828
\(295\) 0 0
\(296\) 0.622540 0.622540
\(297\) −1.75895 −1.75895
\(298\) 0 0
\(299\) −2.06925 −2.06925
\(300\) 1.45030 1.45030
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −2.13788 −2.13788
\(307\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(308\) 0 0
\(309\) −1.57828 −1.57828
\(310\) 0 0
\(311\) 0.803391 0.803391 0.401695 0.915773i \(-0.368421\pi\)
0.401695 + 0.915773i \(0.368421\pi\)
\(312\) 1.46581 1.46581
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0.260667 0.260667
\(315\) 0 0
\(316\) −2.62254 −2.62254
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) −2.98553 −2.98553
\(319\) 3.46992 3.46992
\(320\) −0.267977 −0.267977
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.49097 1.49097
\(325\) −1.84004 −1.84004
\(326\) −1.72648 −1.72648
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0.458499 0.458499
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 1.19783 1.19783
\(333\) −0.803391 −0.803391
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(338\) −4.06925 −4.06925
\(339\) 0 0
\(340\) 0.333557 0.333557
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0.180666 0.180666
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) −2.94127 −2.94127
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) −1.89163 −1.89163
\(352\) 2.10692 2.10692
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.63097 −1.63097
\(357\) 0 0
\(358\) 0.774890 0.774890
\(359\) −1.57828 −1.57828 −0.789141 0.614213i \(-0.789474\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(360\) −0.127980 −0.127980
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) −2.09390 −2.09390
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0.293139 0.293139
\(369\) 0 0
\(370\) 0.209417 0.209417
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) −3.76042 −3.76042
\(375\) 0.325812 0.325812
\(376\) 0.380449 0.380449
\(377\) 3.73167 3.73167
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) −0.490971 −0.490971
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −1.36299 −1.36299
\(385\) 0 0
\(386\) −2.49097 −2.49097
\(387\) 0 0
\(388\) −2.01961 −2.01961
\(389\) −0.490971 −0.490971 −0.245485 0.969400i \(-0.578947\pi\)
−0.245485 + 0.969400i \(0.578947\pi\)
\(390\) 0.493086 0.493086
\(391\) −1.48175 −1.48175
\(392\) −0.774890 −0.774890
\(393\) −1.35456 −1.35456
\(394\) 1.72648 1.72648
\(395\) −0.290505 −0.290505
\(396\) 2.62254 2.62254
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 2.13788 2.13788
\(399\) 0 0
\(400\) 0.260667 0.260667
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.165159 0.165159
\(406\) 0 0
\(407\) −1.41312 −1.41312
\(408\) 1.04964 1.04964
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.35317 2.35317
\(413\) 0 0
\(414\) 1.72648 1.72648
\(415\) 0.132687 0.132687
\(416\) 2.26586 2.26586
\(417\) 1.97272 1.97272
\(418\) 0 0
\(419\) 0.165159 0.165159 0.0825793 0.996584i \(-0.473684\pi\)
0.0825793 + 0.996584i \(0.473684\pi\)
\(420\) 0 0
\(421\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(422\) 1.26798 1.26798
\(423\) −0.490971 −0.490971
\(424\) 1.46581 1.46581
\(425\) −1.31761 −1.31761
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.32729 −3.32729
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0.267977 0.267977
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) −0.325812 −0.325812
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) −0.225110 −0.225110
\(441\) 1.00000 1.00000
\(442\) −4.04409 −4.04409
\(443\) 1.97272 1.97272 0.986361 0.164595i \(-0.0526316\pi\)
0.986361 + 0.164595i \(0.0526316\pi\)
\(444\) 1.19783 1.19783
\(445\) −0.180666 −0.180666
\(446\) 2.13788 2.13788
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 1.53523 1.53523
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 2.98553 2.98553
\(455\) 0 0
\(456\) 0 0
\(457\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(458\) 0 0
\(459\) −1.35456 −1.35456
\(460\) −0.269368 −0.269368
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) −0.528643 −0.528643
\(465\) 0 0
\(466\) 2.98553 2.98553
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 2.82037 2.82037
\(469\) 0 0
\(470\) 0.127980 0.127980
\(471\) 0.165159 0.165159
\(472\) 0 0
\(473\) 0 0
\(474\) −2.77611 −2.77611
\(475\) 0 0
\(476\) 0 0
\(477\) −1.89163 −1.89163
\(478\) −3.11351 −3.11351
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) −0.197832 −0.197832
\(481\) −1.51972 −1.51972
\(482\) 0 0
\(483\) 0 0
\(484\) 3.12194 3.12194
\(485\) −0.223718 −0.223718
\(486\) 1.57828 1.57828
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) −1.09390 −1.09390
\(490\) −0.260667 −0.260667
\(491\) −1.89163 −1.89163 −0.945817 0.324699i \(-0.894737\pi\)
−0.945817 + 0.324699i \(0.894737\pi\)
\(492\) 0 0
\(493\) 2.67218 2.67218
\(494\) 0 0
\(495\) 0.290505 0.290505
\(496\) 0 0
\(497\) 0 0
\(498\) 1.26798 1.26798
\(499\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(500\) −0.485777 −0.485777
\(501\) 0 0
\(502\) 0 0
\(503\) 0.165159 0.165159 0.0825793 0.996584i \(-0.473684\pi\)
0.0825793 + 0.996584i \(0.473684\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 3.03678 3.03678
\(507\) −2.57828 −2.57828
\(508\) 0.732023 0.732023
\(509\) 1.35456 1.35456 0.677282 0.735724i \(-0.263158\pi\)
0.677282 + 0.735724i \(0.263158\pi\)
\(510\) 0.353090 0.353090
\(511\) 0 0
\(512\) −0.528643 −0.528643
\(513\) 0 0
\(514\) 2.49097 2.49097
\(515\) 0.260667 0.260667
\(516\) 0 0
\(517\) −0.863592 −0.863592
\(518\) 0 0
\(519\) 0 0
\(520\) −0.242091 −0.242091
\(521\) 0.803391 0.803391 0.401695 0.915773i \(-0.368421\pi\)
0.401695 + 0.915773i \(0.368421\pi\)
\(522\) −3.11351 −3.11351
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 2.01961 2.01961
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0.471357 0.471357
\(529\) 0.196609 0.196609
\(530\) 0.493086 0.493086
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) −1.72648 −1.72648
\(535\) 0 0
\(536\) 0 0
\(537\) 0.490971 0.490971
\(538\) 2.49097 2.49097
\(539\) 1.75895 1.75895
\(540\) −0.246247 −0.246247
\(541\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 1.62254 1.62254
\(545\) 0 0
\(546\) 0 0
\(547\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 2.70039 2.70039
\(551\) 0 0
\(552\) −0.847650 −0.847650
\(553\) 0 0
\(554\) −0.774890 −0.774890
\(555\) 0.132687 0.132687
\(556\) −2.94127 −2.94127
\(557\) 1.75895 1.75895 0.879474 0.475947i \(-0.157895\pi\)
0.879474 + 0.475947i \(0.157895\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −2.38261 −2.38261
\(562\) −3.11351 −3.11351
\(563\) 0.165159 0.165159 0.0825793 0.996584i \(-0.473684\pi\)
0.0825793 + 0.996584i \(0.473684\pi\)
\(564\) 0.732023 0.732023
\(565\) 0 0
\(566\) −2.49097 −2.49097
\(567\) 0 0
\(568\) 0 0
\(569\) −0.490971 −0.490971 −0.245485 0.969400i \(-0.578947\pi\)
−0.245485 + 0.969400i \(0.578947\pi\)
\(570\) 0 0
\(571\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(572\) 4.96089 4.96089
\(573\) 0 0
\(574\) 0 0
\(575\) 1.06406 1.06406
\(576\) −1.62254 −1.62254
\(577\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(578\) −1.31761 −1.31761
\(579\) −1.57828 −1.57828
\(580\) 0.485777 0.485777
\(581\) 0 0
\(582\) −2.13788 −2.13788
\(583\) −3.32729 −3.32729
\(584\) 0 0
\(585\) 0.312420 0.312420
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −1.49097 −1.49097
\(589\) 0 0
\(590\) 0 0
\(591\) 1.09390 1.09390
\(592\) 0.215290 0.215290
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 2.77611 2.77611
\(595\) 0 0
\(596\) 0 0
\(597\) 1.35456 1.35456
\(598\) 3.26586 3.26586
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −0.753753 −0.753753
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.345825 0.345825
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.928738 −0.928738
\(612\) 2.01961 2.01961
\(613\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(614\) 2.77611 2.77611
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 2.49097 2.49097
\(619\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(620\) 0 0
\(621\) 1.09390 1.09390
\(622\) −1.26798 −1.26798
\(623\) 0 0
\(624\) 0.506914 0.506914
\(625\) 0.918912 0.918912
\(626\) 0 0
\(627\) 0 0
\(628\) −0.246247 −0.246247
\(629\) −1.08824 −1.08824
\(630\) 0 0
\(631\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(632\) 1.36299 1.36299
\(633\) 0.803391 0.803391
\(634\) 0 0
\(635\) 0.0810881 0.0810881
\(636\) 2.82037 2.82037
\(637\) 1.89163 1.89163
\(638\) −5.47650 −5.47650
\(639\) 0 0
\(640\) 0.225110 0.225110
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.97272 1.97272 0.986361 0.164595i \(-0.0526316\pi\)
0.986361 + 0.164595i \(0.0526316\pi\)
\(648\) −0.774890 −0.774890
\(649\) 0 0
\(650\) 2.90409 2.90409
\(651\) 0 0
\(652\) 1.63097 1.63097
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0.223718 0.223718
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.803391 0.803391 0.401695 0.915773i \(-0.368421\pi\)
0.401695 + 0.915773i \(0.368421\pi\)
\(660\) −0.433135 −0.433135
\(661\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(662\) 0 0
\(663\) −2.56234 −2.56234
\(664\) −0.622540 −0.622540
\(665\) 0 0
\(666\) 1.26798 1.26798
\(667\) −2.15795 −2.15795
\(668\) 0 0
\(669\) 1.35456 1.35456
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(674\) −1.72648 −1.72648
\(675\) 0.972723 0.972723
\(676\) 3.84414 3.84414
\(677\) −1.00000 −1.00000
\(678\) 0 0
\(679\) 0 0
\(680\) −0.173357 −0.173357
\(681\) 1.89163 1.89163
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.57828 −3.57828
\(690\) −0.285142 −0.285142
\(691\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.325812 −0.325812
\(696\) 1.52864 1.52864
\(697\) 0 0
\(698\) 0 0
\(699\) 1.89163 1.89163
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 2.98553 2.98553
\(703\) 0 0
\(704\) −2.85396 −2.85396
\(705\) 0.0810881 0.0810881
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) −1.75895 −1.75895
\(712\) 0.847650 0.847650
\(713\) 0 0
\(714\) 0 0
\(715\) 0.549530 0.549530
\(716\) −0.732023 −0.732023
\(717\) −1.97272 −1.97272
\(718\) 2.49097 2.49097
\(719\) −1.57828 −1.57828 −0.789141 0.614213i \(-0.789474\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(720\) −0.0442587 −0.0442587
\(721\) 0 0
\(722\) −1.57828 −1.57828
\(723\) 0 0
\(724\) 0 0
\(725\) −1.91891 −1.91891
\(726\) 3.30476 3.30476
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(734\) 0 0
\(735\) −0.165159 −0.165159
\(736\) −1.31030 −1.31030
\(737\) 0 0
\(738\) 0 0
\(739\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(740\) −0.197832 −0.197832
\(741\) 0 0
\(742\) 0 0
\(743\) 1.75895 1.75895 0.879474 0.475947i \(-0.157895\pi\)
0.879474 + 0.475947i \(0.157895\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.803391 0.803391
\(748\) 3.55240 3.55240
\(749\) 0 0
\(750\) −0.514223 −0.514223
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0.131569 0.131569
\(753\) 0 0
\(754\) −5.88962 −5.88962
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 1.92411 1.92411
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0.774890 0.774890
\(763\) 0 0
\(764\) 0 0
\(765\) 0.223718 0.223718
\(766\) 0 0
\(767\) 0 0
\(768\) 0.528643 0.528643
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 1.57828 1.57828
\(772\) 2.35317 2.35317
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.04964 1.04964
\(777\) 0 0
\(778\) 0.774890 0.774890
\(779\) 0 0
\(780\) −0.465809 −0.465809
\(781\) 0 0
\(782\) 2.33862 2.33862
\(783\) −1.97272 −1.97272
\(784\) −0.267977 −0.267977
\(785\) −0.0272774 −0.0272774
\(786\) 2.13788 2.13788
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) −1.63097 −1.63097
\(789\) 0 0
\(790\) 0.458499 0.458499
\(791\) 0 0
\(792\) −1.36299 −1.36299
\(793\) 0 0
\(794\) 0 0
\(795\) 0.312420 0.312420
\(796\) −2.01961 −2.01961
\(797\) 0.803391 0.803391 0.401695 0.915773i \(-0.368421\pi\)
0.401695 + 0.915773i \(0.368421\pi\)
\(798\) 0 0
\(799\) −0.665051 −0.665051
\(800\) −1.16516 −1.16516
\(801\) −1.09390 −1.09390
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.57828 1.57828
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −0.260667 −0.260667
\(811\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 2.23030 2.23030
\(815\) 0.180666 0.180666
\(816\) 0.362991 0.362991
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(824\) −1.22299 −1.22299
\(825\) 1.71097 1.71097
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) −1.63097 −1.63097
\(829\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(830\) −0.209417 −0.209417
\(831\) −0.490971 −0.490971
\(832\) −3.06925 −3.06925
\(833\) 1.35456 1.35456
\(834\) −3.11351 −3.11351
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −0.260667 −0.260667
\(839\) −1.89163 −1.89163 −0.945817 0.324699i \(-0.894737\pi\)
−0.945817 + 0.324699i \(0.894737\pi\)
\(840\) 0 0
\(841\) 2.89163 2.89163
\(842\) 3.11351 3.11351
\(843\) −1.97272 −1.97272
\(844\) −1.19783 −1.19783
\(845\) 0.425826 0.425826
\(846\) 0.774890 0.774890
\(847\) 0 0
\(848\) 0.506914 0.506914
\(849\) −1.57828 −1.57828
\(850\) 2.07957 2.07957
\(851\) 0.878826 0.878826
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.75895 1.75895 0.879474 0.475947i \(-0.157895\pi\)
0.879474 + 0.475947i \(0.157895\pi\)
\(858\) 5.25139 5.25139
\(859\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.75895 1.75895 0.879474 0.475947i \(-0.157895\pi\)
0.879474 + 0.475947i \(0.157895\pi\)
\(864\) −1.19783 −1.19783
\(865\) 0 0
\(866\) 0 0
\(867\) −0.834841 −0.834841
\(868\) 0 0
\(869\) −3.09390 −3.09390
\(870\) 0.514223 0.514223
\(871\) 0 0
\(872\) 0 0
\(873\) −1.35456 −1.35456
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −0.0778486 −0.0778486
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −1.57828 −1.57828
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 3.82037 3.82037
\(885\) 0 0
\(886\) −3.11351 −3.11351
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) −0.622540 −0.622540
\(889\) 0 0
\(890\) 0.285142 0.285142
\(891\) 1.75895 1.75895
\(892\) −2.01961 −2.01961
\(893\) 0 0
\(894\) 0 0
\(895\) −0.0810881 −0.0810881
\(896\) 0 0
\(897\) 2.06925 2.06925
\(898\) 0 0
\(899\) 0 0
\(900\) −1.45030 −1.45030
\(901\) −2.56234 −2.56234
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) −2.82037 −2.82037
\(909\) 0 0
\(910\) 0 0
\(911\) 1.35456 1.35456 0.677282 0.735724i \(-0.263158\pi\)
0.677282 + 0.735724i \(0.263158\pi\)
\(912\) 0 0
\(913\) 1.41312 1.41312
\(914\) −1.72648 −1.72648
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 2.13788 2.13788
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0.139997 0.139997
\(921\) 1.75895 1.75895
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.781476 0.781476
\(926\) 0 0
\(927\) 1.57828 1.57828
\(928\) 2.36299 2.36299
\(929\) 0.803391 0.803391 0.401695 0.915773i \(-0.368421\pi\)
0.401695 + 0.915773i \(0.368421\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −2.82037 −2.82037
\(933\) −0.803391 −0.803391
\(934\) 0 0
\(935\) 0.393508 0.393508
\(936\) −1.46581 −1.46581
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −0.120900 −0.120900
\(941\) −1.09390 −1.09390 −0.546948 0.837166i \(-0.684211\pi\)
−0.546948 + 0.837166i \(0.684211\pi\)
\(942\) −0.260667 −0.260667
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.165159 0.165159 0.0825793 0.996584i \(-0.473684\pi\)
0.0825793 + 0.996584i \(0.473684\pi\)
\(948\) 2.62254 2.62254
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 2.98553 2.98553
\(955\) 0 0
\(956\) 2.94127 2.94127
\(957\) −3.46992 −3.46992
\(958\) 0 0
\(959\) 0 0
\(960\) 0.267977 0.267977
\(961\) 1.00000 1.00000
\(962\) 2.39855 2.39855
\(963\) 0 0
\(964\) 0 0
\(965\) 0.260667 0.260667
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −1.62254 −1.62254
\(969\) 0 0
\(970\) 0.353090 0.353090
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −1.49097 −1.49097
\(973\) 0 0
\(974\) 0 0
\(975\) 1.84004 1.84004
\(976\) 0 0
\(977\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(978\) 1.72648 1.72648
\(979\) −1.92411 −1.92411
\(980\) 0.246247 0.246247
\(981\) 0 0
\(982\) 2.98553 2.98553
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −0.180666 −0.180666
\(986\) −4.21745 −4.21745
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.458499 −0.458499
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.223718 −0.223718
\(996\) −1.19783 −1.19783
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) −1.72648 −1.72648
\(999\) 0.803391 0.803391
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2031.1.d.b.2030.2 yes 9
3.2 odd 2 2031.1.d.a.2030.8 9
677.676 even 2 2031.1.d.a.2030.8 9
2031.2030 odd 2 CM 2031.1.d.b.2030.2 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2031.1.d.a.2030.8 9 3.2 odd 2
2031.1.d.a.2030.8 9 677.676 even 2
2031.1.d.b.2030.2 yes 9 1.1 even 1 trivial
2031.1.d.b.2030.2 yes 9 2031.2030 odd 2 CM