Properties

Label 2031.1.d.b.2030.4
Level $2031$
Weight $1$
Character 2031.2030
Self dual yes
Analytic conductor $1.014$
Analytic rank $0$
Dimension $9$
Projective image $D_{19}$
CM discriminant -2031
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2031,1,Mod(2030,2031)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2031, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2031.2030");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2031 = 3 \cdot 677 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2031.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.01360104066\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\Q(\zeta_{38})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 8x^{7} + 7x^{6} + 21x^{5} - 15x^{4} - 20x^{3} + 10x^{2} + 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{19}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{19} - \cdots)\)

Embedding invariants

Embedding label 2030.4
Root \(1.75895\) of defining polynomial
Character \(\chi\) \(=\) 2031.2030

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.490971 q^{2} -1.00000 q^{3} -0.758948 q^{4} +1.97272 q^{5} +0.490971 q^{6} +0.863592 q^{8} +1.00000 q^{9} -0.968550 q^{10} -1.09390 q^{11} +0.758948 q^{12} +1.57828 q^{13} -1.97272 q^{15} +0.334949 q^{16} +0.165159 q^{17} -0.490971 q^{18} -1.49719 q^{20} +0.537071 q^{22} +0.803391 q^{23} -0.863592 q^{24} +2.89163 q^{25} -0.774890 q^{26} -1.00000 q^{27} -1.89163 q^{29} +0.968550 q^{30} -1.02804 q^{32} +1.09390 q^{33} -0.0810881 q^{34} -0.758948 q^{36} -1.35456 q^{37} -1.57828 q^{39} +1.70363 q^{40} +0.830210 q^{44} +1.97272 q^{45} -0.394442 q^{46} +1.75895 q^{47} -0.334949 q^{48} +1.00000 q^{49} -1.41971 q^{50} -0.165159 q^{51} -1.19783 q^{52} -1.57828 q^{53} +0.490971 q^{54} -2.15795 q^{55} +0.928738 q^{58} +1.49719 q^{60} +0.169790 q^{64} +3.11351 q^{65} -0.537071 q^{66} -0.125347 q^{68} -0.803391 q^{69} +0.863592 q^{72} +0.665051 q^{74} -2.89163 q^{75} +0.774890 q^{78} +1.09390 q^{79} +0.660761 q^{80} +1.00000 q^{81} +1.35456 q^{83} +0.325812 q^{85} +1.89163 q^{87} -0.944680 q^{88} +0.803391 q^{89} -0.968550 q^{90} -0.609731 q^{92} -0.863592 q^{94} +1.02804 q^{96} -0.165159 q^{97} -0.490971 q^{98} -1.09390 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + q^{2} - 9 q^{3} + 8 q^{4} + q^{5} - q^{6} + 2 q^{8} + 9 q^{9} - 2 q^{10} + q^{11} - 8 q^{12} - q^{13} - q^{15} + 7 q^{16} + q^{17} + q^{18} + 3 q^{20} - 2 q^{22} + q^{23} - 2 q^{24} + 8 q^{25}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2031\mathbb{Z}\right)^\times\).

\(n\) \(679\) \(1355\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.490971 −0.490971 −0.245485 0.969400i \(-0.578947\pi\)
−0.245485 + 0.969400i \(0.578947\pi\)
\(3\) −1.00000 −1.00000
\(4\) −0.758948 −0.758948
\(5\) 1.97272 1.97272 0.986361 0.164595i \(-0.0526316\pi\)
0.986361 + 0.164595i \(0.0526316\pi\)
\(6\) 0.490971 0.490971
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0.863592 0.863592
\(9\) 1.00000 1.00000
\(10\) −0.968550 −0.968550
\(11\) −1.09390 −1.09390 −0.546948 0.837166i \(-0.684211\pi\)
−0.546948 + 0.837166i \(0.684211\pi\)
\(12\) 0.758948 0.758948
\(13\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(14\) 0 0
\(15\) −1.97272 −1.97272
\(16\) 0.334949 0.334949
\(17\) 0.165159 0.165159 0.0825793 0.996584i \(-0.473684\pi\)
0.0825793 + 0.996584i \(0.473684\pi\)
\(18\) −0.490971 −0.490971
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −1.49719 −1.49719
\(21\) 0 0
\(22\) 0.537071 0.537071
\(23\) 0.803391 0.803391 0.401695 0.915773i \(-0.368421\pi\)
0.401695 + 0.915773i \(0.368421\pi\)
\(24\) −0.863592 −0.863592
\(25\) 2.89163 2.89163
\(26\) −0.774890 −0.774890
\(27\) −1.00000 −1.00000
\(28\) 0 0
\(29\) −1.89163 −1.89163 −0.945817 0.324699i \(-0.894737\pi\)
−0.945817 + 0.324699i \(0.894737\pi\)
\(30\) 0.968550 0.968550
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −1.02804 −1.02804
\(33\) 1.09390 1.09390
\(34\) −0.0810881 −0.0810881
\(35\) 0 0
\(36\) −0.758948 −0.758948
\(37\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(38\) 0 0
\(39\) −1.57828 −1.57828
\(40\) 1.70363 1.70363
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0.830210 0.830210
\(45\) 1.97272 1.97272
\(46\) −0.394442 −0.394442
\(47\) 1.75895 1.75895 0.879474 0.475947i \(-0.157895\pi\)
0.879474 + 0.475947i \(0.157895\pi\)
\(48\) −0.334949 −0.334949
\(49\) 1.00000 1.00000
\(50\) −1.41971 −1.41971
\(51\) −0.165159 −0.165159
\(52\) −1.19783 −1.19783
\(53\) −1.57828 −1.57828 −0.789141 0.614213i \(-0.789474\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(54\) 0.490971 0.490971
\(55\) −2.15795 −2.15795
\(56\) 0 0
\(57\) 0 0
\(58\) 0.928738 0.928738
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 1.49719 1.49719
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.169790 0.169790
\(65\) 3.11351 3.11351
\(66\) −0.537071 −0.537071
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −0.125347 −0.125347
\(69\) −0.803391 −0.803391
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0.863592 0.863592
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0.665051 0.665051
\(75\) −2.89163 −2.89163
\(76\) 0 0
\(77\) 0 0
\(78\) 0.774890 0.774890
\(79\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(80\) 0.660761 0.660761
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 1.35456 1.35456 0.677282 0.735724i \(-0.263158\pi\)
0.677282 + 0.735724i \(0.263158\pi\)
\(84\) 0 0
\(85\) 0.325812 0.325812
\(86\) 0 0
\(87\) 1.89163 1.89163
\(88\) −0.944680 −0.944680
\(89\) 0.803391 0.803391 0.401695 0.915773i \(-0.368421\pi\)
0.401695 + 0.915773i \(0.368421\pi\)
\(90\) −0.968550 −0.968550
\(91\) 0 0
\(92\) −0.609731 −0.609731
\(93\) 0 0
\(94\) −0.863592 −0.863592
\(95\) 0 0
\(96\) 1.02804 1.02804
\(97\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(98\) −0.490971 −0.490971
\(99\) −1.09390 −1.09390
\(100\) −2.19460 −2.19460
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0.0810881 0.0810881
\(103\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(104\) 1.36299 1.36299
\(105\) 0 0
\(106\) 0.774890 0.774890
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0.758948 0.758948
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 1.05949 1.05949
\(111\) 1.35456 1.35456
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 1.58487 1.58487
\(116\) 1.43565 1.43565
\(117\) 1.57828 1.57828
\(118\) 0 0
\(119\) 0 0
\(120\) −1.70363 −1.70363
\(121\) 0.196609 0.196609
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.73167 3.73167
\(126\) 0 0
\(127\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(128\) 0.944680 0.944680
\(129\) 0 0
\(130\) −1.52864 −1.52864
\(131\) 0.165159 0.165159 0.0825793 0.996584i \(-0.473684\pi\)
0.0825793 + 0.996584i \(0.473684\pi\)
\(132\) −0.830210 −0.830210
\(133\) 0 0
\(134\) 0 0
\(135\) −1.97272 −1.97272
\(136\) 0.142630 0.142630
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0.394442 0.394442
\(139\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(140\) 0 0
\(141\) −1.75895 −1.75895
\(142\) 0 0
\(143\) −1.72648 −1.72648
\(144\) 0.334949 0.334949
\(145\) −3.73167 −3.73167
\(146\) 0 0
\(147\) −1.00000 −1.00000
\(148\) 1.02804 1.02804
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 1.41971 1.41971
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0.165159 0.165159
\(154\) 0 0
\(155\) 0 0
\(156\) 1.19783 1.19783
\(157\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(158\) −0.537071 −0.537071
\(159\) 1.57828 1.57828
\(160\) −2.02804 −2.02804
\(161\) 0 0
\(162\) −0.490971 −0.490971
\(163\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(164\) 0 0
\(165\) 2.15795 2.15795
\(166\) −0.665051 −0.665051
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.49097 1.49097
\(170\) −0.159964 −0.159964
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) −0.928738 −0.928738
\(175\) 0 0
\(176\) −0.366399 −0.366399
\(177\) 0 0
\(178\) −0.394442 −0.394442
\(179\) 1.75895 1.75895 0.879474 0.475947i \(-0.157895\pi\)
0.879474 + 0.475947i \(0.157895\pi\)
\(180\) −1.49719 −1.49719
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.693802 0.693802
\(185\) −2.67218 −2.67218
\(186\) 0 0
\(187\) −0.180666 −0.180666
\(188\) −1.33495 −1.33495
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −0.169790 −0.169790
\(193\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(194\) 0.0810881 0.0810881
\(195\) −3.11351 −3.11351
\(196\) −0.758948 −0.758948
\(197\) 0.803391 0.803391 0.401695 0.915773i \(-0.368421\pi\)
0.401695 + 0.915773i \(0.368421\pi\)
\(198\) 0.537071 0.537071
\(199\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(200\) 2.49719 2.49719
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0.125347 0.125347
\(205\) 0 0
\(206\) −0.241052 −0.241052
\(207\) 0.803391 0.803391
\(208\) 0.528643 0.528643
\(209\) 0 0
\(210\) 0 0
\(211\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(212\) 1.19783 1.19783
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) −0.863592 −0.863592
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 1.63777 1.63777
\(221\) 0.260667 0.260667
\(222\) −0.665051 −0.665051
\(223\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(224\) 0 0
\(225\) 2.89163 2.89163
\(226\) 0 0
\(227\) −1.57828 −1.57828 −0.789141 0.614213i \(-0.789474\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) −0.778124 −0.778124
\(231\) 0 0
\(232\) −1.63360 −1.63360
\(233\) −1.57828 −1.57828 −0.789141 0.614213i \(-0.789474\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(234\) −0.774890 −0.774890
\(235\) 3.46992 3.46992
\(236\) 0 0
\(237\) −1.09390 −1.09390
\(238\) 0 0
\(239\) −1.89163 −1.89163 −0.945817 0.324699i \(-0.894737\pi\)
−0.945817 + 0.324699i \(0.894737\pi\)
\(240\) −0.660761 −0.660761
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −0.0965294 −0.0965294
\(243\) −1.00000 −1.00000
\(244\) 0 0
\(245\) 1.97272 1.97272
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −1.35456 −1.35456
\(250\) −1.83214 −1.83214
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) −0.878826 −0.878826
\(254\) 0.863592 0.863592
\(255\) −0.325812 −0.325812
\(256\) −0.633601 −0.633601
\(257\) −0.490971 −0.490971 −0.245485 0.969400i \(-0.578947\pi\)
−0.245485 + 0.969400i \(0.578947\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2.36299 −2.36299
\(261\) −1.89163 −1.89163
\(262\) −0.0810881 −0.0810881
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0.944680 0.944680
\(265\) −3.11351 −3.11351
\(266\) 0 0
\(267\) −0.803391 −0.803391
\(268\) 0 0
\(269\) −0.490971 −0.490971 −0.245485 0.969400i \(-0.578947\pi\)
−0.245485 + 0.969400i \(0.578947\pi\)
\(270\) 0.968550 0.968550
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0.0553197 0.0553197
\(273\) 0 0
\(274\) 0 0
\(275\) −3.16315 −3.16315
\(276\) 0.609731 0.609731
\(277\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(278\) −0.928738 −0.928738
\(279\) 0 0
\(280\) 0 0
\(281\) −1.89163 −1.89163 −0.945817 0.324699i \(-0.894737\pi\)
−0.945817 + 0.324699i \(0.894737\pi\)
\(282\) 0.863592 0.863592
\(283\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0.847650 0.847650
\(287\) 0 0
\(288\) −1.02804 −1.02804
\(289\) −0.972723 −0.972723
\(290\) 1.83214 1.83214
\(291\) 0.165159 0.165159
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0.490971 0.490971
\(295\) 0 0
\(296\) −1.16979 −1.16979
\(297\) 1.09390 1.09390
\(298\) 0 0
\(299\) 1.26798 1.26798
\(300\) 2.19460 2.19460
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −0.0810881 −0.0810881
\(307\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(308\) 0 0
\(309\) −0.490971 −0.490971
\(310\) 0 0
\(311\) 1.35456 1.35456 0.677282 0.735724i \(-0.263158\pi\)
0.677282 + 0.735724i \(0.263158\pi\)
\(312\) −1.36299 −1.36299
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0.968550 0.968550
\(315\) 0 0
\(316\) −0.830210 −0.830210
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) −0.774890 −0.774890
\(319\) 2.06925 2.06925
\(320\) 0.334949 0.334949
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.758948 −0.758948
\(325\) 4.56381 4.56381
\(326\) 0.394442 0.394442
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −1.05949 −1.05949
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) −1.02804 −1.02804
\(333\) −1.35456 −1.35456
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(338\) −0.732023 −0.732023
\(339\) 0 0
\(340\) −0.247274 −0.247274
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.58487 −1.58487
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) −1.43565 −1.43565
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) −1.57828 −1.57828
\(352\) 1.12457 1.12457
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.609731 −0.609731
\(357\) 0 0
\(358\) −0.863592 −0.863592
\(359\) −0.490971 −0.490971 −0.245485 0.969400i \(-0.578947\pi\)
−0.245485 + 0.969400i \(0.578947\pi\)
\(360\) 1.70363 1.70363
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) −0.196609 −0.196609
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0.269095 0.269095
\(369\) 0 0
\(370\) 1.31196 1.31196
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0.0887020 0.0887020
\(375\) −3.73167 −3.73167
\(376\) 1.51901 1.51901
\(377\) −2.98553 −2.98553
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 1.75895 1.75895
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −0.944680 −0.944680
\(385\) 0 0
\(386\) −0.241052 −0.241052
\(387\) 0 0
\(388\) 0.125347 0.125347
\(389\) 1.75895 1.75895 0.879474 0.475947i \(-0.157895\pi\)
0.879474 + 0.475947i \(0.157895\pi\)
\(390\) 1.52864 1.52864
\(391\) 0.132687 0.132687
\(392\) 0.863592 0.863592
\(393\) −0.165159 −0.165159
\(394\) −0.394442 −0.394442
\(395\) 2.15795 2.15795
\(396\) 0.830210 0.830210
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0.0810881 0.0810881
\(399\) 0 0
\(400\) 0.968550 0.968550
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.97272 1.97272
\(406\) 0 0
\(407\) 1.48175 1.48175
\(408\) −0.142630 −0.142630
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.372621 −0.372621
\(413\) 0 0
\(414\) −0.394442 −0.394442
\(415\) 2.67218 2.67218
\(416\) −1.62254 −1.62254
\(417\) −1.89163 −1.89163
\(418\) 0 0
\(419\) 1.97272 1.97272 0.986361 0.164595i \(-0.0526316\pi\)
0.986361 + 0.164595i \(0.0526316\pi\)
\(420\) 0 0
\(421\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(422\) 0.665051 0.665051
\(423\) 1.75895 1.75895
\(424\) −1.36299 −1.36299
\(425\) 0.477579 0.477579
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.72648 1.72648
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −0.334949 −0.334949
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 3.73167 3.73167
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) −1.86359 −1.86359
\(441\) 1.00000 1.00000
\(442\) −0.127980 −0.127980
\(443\) −1.89163 −1.89163 −0.945817 0.324699i \(-0.894737\pi\)
−0.945817 + 0.324699i \(0.894737\pi\)
\(444\) −1.02804 −1.02804
\(445\) 1.58487 1.58487
\(446\) 0.0810881 0.0810881
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −1.41971 −1.41971
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.774890 0.774890
\(455\) 0 0
\(456\) 0 0
\(457\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(458\) 0 0
\(459\) −0.165159 −0.165159
\(460\) −1.20283 −1.20283
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) −0.633601 −0.633601
\(465\) 0 0
\(466\) 0.774890 0.774890
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) −1.19783 −1.19783
\(469\) 0 0
\(470\) −1.70363 −1.70363
\(471\) 1.97272 1.97272
\(472\) 0 0
\(473\) 0 0
\(474\) 0.537071 0.537071
\(475\) 0 0
\(476\) 0 0
\(477\) −1.57828 −1.57828
\(478\) 0.928738 0.928738
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 2.02804 2.02804
\(481\) −2.13788 −2.13788
\(482\) 0 0
\(483\) 0 0
\(484\) −0.149216 −0.149216
\(485\) −0.325812 −0.325812
\(486\) 0.490971 0.490971
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0.803391 0.803391
\(490\) −0.968550 −0.968550
\(491\) −1.57828 −1.57828 −0.789141 0.614213i \(-0.789474\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(492\) 0 0
\(493\) −0.312420 −0.312420
\(494\) 0 0
\(495\) −2.15795 −2.15795
\(496\) 0 0
\(497\) 0 0
\(498\) 0.665051 0.665051
\(499\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(500\) −2.83214 −2.83214
\(501\) 0 0
\(502\) 0 0
\(503\) 1.97272 1.97272 0.986361 0.164595i \(-0.0526316\pi\)
0.986361 + 0.164595i \(0.0526316\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0.431478 0.431478
\(507\) −1.49097 −1.49097
\(508\) 1.33495 1.33495
\(509\) 0.165159 0.165159 0.0825793 0.996584i \(-0.473684\pi\)
0.0825793 + 0.996584i \(0.473684\pi\)
\(510\) 0.159964 0.159964
\(511\) 0 0
\(512\) −0.633601 −0.633601
\(513\) 0 0
\(514\) 0.241052 0.241052
\(515\) 0.968550 0.968550
\(516\) 0 0
\(517\) −1.92411 −1.92411
\(518\) 0 0
\(519\) 0 0
\(520\) 2.68880 2.68880
\(521\) 1.35456 1.35456 0.677282 0.735724i \(-0.263158\pi\)
0.677282 + 0.735724i \(0.263158\pi\)
\(522\) 0.928738 0.928738
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) −0.125347 −0.125347
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0.366399 0.366399
\(529\) −0.354563 −0.354563
\(530\) 1.52864 1.52864
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0.394442 0.394442
\(535\) 0 0
\(536\) 0 0
\(537\) −1.75895 −1.75895
\(538\) 0.241052 0.241052
\(539\) −1.09390 −1.09390
\(540\) 1.49719 1.49719
\(541\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.169790 −0.169790
\(545\) 0 0
\(546\) 0 0
\(547\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.55301 1.55301
\(551\) 0 0
\(552\) −0.693802 −0.693802
\(553\) 0 0
\(554\) 0.863592 0.863592
\(555\) 2.67218 2.67218
\(556\) −1.43565 −1.43565
\(557\) −1.09390 −1.09390 −0.546948 0.837166i \(-0.684211\pi\)
−0.546948 + 0.837166i \(0.684211\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.180666 0.180666
\(562\) 0.928738 0.928738
\(563\) 1.97272 1.97272 0.986361 0.164595i \(-0.0526316\pi\)
0.986361 + 0.164595i \(0.0526316\pi\)
\(564\) 1.33495 1.33495
\(565\) 0 0
\(566\) −0.241052 −0.241052
\(567\) 0 0
\(568\) 0 0
\(569\) 1.75895 1.75895 0.879474 0.475947i \(-0.157895\pi\)
0.879474 + 0.475947i \(0.157895\pi\)
\(570\) 0 0
\(571\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(572\) 1.31030 1.31030
\(573\) 0 0
\(574\) 0 0
\(575\) 2.32311 2.32311
\(576\) 0.169790 0.169790
\(577\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(578\) 0.477579 0.477579
\(579\) −0.490971 −0.490971
\(580\) 2.83214 2.83214
\(581\) 0 0
\(582\) −0.0810881 −0.0810881
\(583\) 1.72648 1.72648
\(584\) 0 0
\(585\) 3.11351 3.11351
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0.758948 0.758948
\(589\) 0 0
\(590\) 0 0
\(591\) −0.803391 −0.803391
\(592\) −0.453709 −0.453709
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) −0.537071 −0.537071
\(595\) 0 0
\(596\) 0 0
\(597\) 0.165159 0.165159
\(598\) −0.622540 −0.622540
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −2.49719 −2.49719
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.387855 0.387855
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.77611 2.77611
\(612\) −0.125347 −0.125347
\(613\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(614\) −0.537071 −0.537071
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0.241052 0.241052
\(619\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(620\) 0 0
\(621\) −0.803391 −0.803391
\(622\) −0.665051 −0.665051
\(623\) 0 0
\(624\) −0.528643 −0.528643
\(625\) 4.46992 4.46992
\(626\) 0 0
\(627\) 0 0
\(628\) 1.49719 1.49719
\(629\) −0.223718 −0.223718
\(630\) 0 0
\(631\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(632\) 0.944680 0.944680
\(633\) 1.35456 1.35456
\(634\) 0 0
\(635\) −3.46992 −3.46992
\(636\) −1.19783 −1.19783
\(637\) 1.57828 1.57828
\(638\) −1.01594 −1.01594
\(639\) 0 0
\(640\) 1.86359 1.86359
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.89163 −1.89163 −0.945817 0.324699i \(-0.894737\pi\)
−0.945817 + 0.324699i \(0.894737\pi\)
\(648\) 0.863592 0.863592
\(649\) 0 0
\(650\) −2.24070 −2.24070
\(651\) 0 0
\(652\) 0.609731 0.609731
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0.325812 0.325812
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.35456 1.35456 0.677282 0.735724i \(-0.263158\pi\)
0.677282 + 0.735724i \(0.263158\pi\)
\(660\) −1.63777 −1.63777
\(661\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(662\) 0 0
\(663\) −0.260667 −0.260667
\(664\) 1.16979 1.16979
\(665\) 0 0
\(666\) 0.665051 0.665051
\(667\) −1.51972 −1.51972
\(668\) 0 0
\(669\) 0.165159 0.165159
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(674\) 0.394442 0.394442
\(675\) −2.89163 −2.89163
\(676\) −1.13157 −1.13157
\(677\) −1.00000 −1.00000
\(678\) 0 0
\(679\) 0 0
\(680\) 0.281369 0.281369
\(681\) 1.57828 1.57828
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.49097 −2.49097
\(690\) 0.778124 0.778124
\(691\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.73167 3.73167
\(696\) 1.63360 1.63360
\(697\) 0 0
\(698\) 0 0
\(699\) 1.57828 1.57828
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0.774890 0.774890
\(703\) 0 0
\(704\) −0.185733 −0.185733
\(705\) −3.46992 −3.46992
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 1.09390 1.09390
\(712\) 0.693802 0.693802
\(713\) 0 0
\(714\) 0 0
\(715\) −3.40586 −3.40586
\(716\) −1.33495 −1.33495
\(717\) 1.89163 1.89163
\(718\) 0.241052 0.241052
\(719\) −0.490971 −0.490971 −0.245485 0.969400i \(-0.578947\pi\)
−0.245485 + 0.969400i \(0.578947\pi\)
\(720\) 0.660761 0.660761
\(721\) 0 0
\(722\) −0.490971 −0.490971
\(723\) 0 0
\(724\) 0 0
\(725\) −5.46992 −5.46992
\(726\) 0.0965294 0.0965294
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(734\) 0 0
\(735\) −1.97272 −1.97272
\(736\) −0.825920 −0.825920
\(737\) 0 0
\(738\) 0 0
\(739\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(740\) 2.02804 2.02804
\(741\) 0 0
\(742\) 0 0
\(743\) −1.09390 −1.09390 −0.546948 0.837166i \(-0.684211\pi\)
−0.546948 + 0.837166i \(0.684211\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.35456 1.35456
\(748\) 0.137116 0.137116
\(749\) 0 0
\(750\) 1.83214 1.83214
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0.589157 0.589157
\(753\) 0 0
\(754\) 1.46581 1.46581
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0.878826 0.878826
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) −0.863592 −0.863592
\(763\) 0 0
\(764\) 0 0
\(765\) 0.325812 0.325812
\(766\) 0 0
\(767\) 0 0
\(768\) 0.633601 0.633601
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0.490971 0.490971
\(772\) −0.372621 −0.372621
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.142630 −0.142630
\(777\) 0 0
\(778\) −0.863592 −0.863592
\(779\) 0 0
\(780\) 2.36299 2.36299
\(781\) 0 0
\(782\) −0.0651455 −0.0651455
\(783\) 1.89163 1.89163
\(784\) 0.334949 0.334949
\(785\) −3.89163 −3.89163
\(786\) 0.0810881 0.0810881
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) −0.609731 −0.609731
\(789\) 0 0
\(790\) −1.05949 −1.05949
\(791\) 0 0
\(792\) −0.944680 −0.944680
\(793\) 0 0
\(794\) 0 0
\(795\) 3.11351 3.11351
\(796\) 0.125347 0.125347
\(797\) 1.35456 1.35456 0.677282 0.735724i \(-0.263158\pi\)
0.677282 + 0.735724i \(0.263158\pi\)
\(798\) 0 0
\(799\) 0.290505 0.290505
\(800\) −2.97272 −2.97272
\(801\) 0.803391 0.803391
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0.490971 0.490971
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −0.968550 −0.968550
\(811\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −0.727497 −0.727497
\(815\) −1.58487 −1.58487
\(816\) −0.0553197 −0.0553197
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(824\) 0.423999 0.423999
\(825\) 3.16315 3.16315
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) −0.609731 −0.609731
\(829\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(830\) −1.31196 −1.31196
\(831\) 1.75895 1.75895
\(832\) 0.267977 0.267977
\(833\) 0.165159 0.165159
\(834\) 0.928738 0.928738
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −0.968550 −0.968550
\(839\) −1.57828 −1.57828 −0.789141 0.614213i \(-0.789474\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(840\) 0 0
\(841\) 2.57828 2.57828
\(842\) −0.928738 −0.928738
\(843\) 1.89163 1.89163
\(844\) 1.02804 1.02804
\(845\) 2.94127 2.94127
\(846\) −0.863592 −0.863592
\(847\) 0 0
\(848\) −0.528643 −0.528643
\(849\) −0.490971 −0.490971
\(850\) −0.234477 −0.234477
\(851\) −1.08824 −1.08824
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.09390 −1.09390 −0.546948 0.837166i \(-0.684211\pi\)
−0.546948 + 0.837166i \(0.684211\pi\)
\(858\) −0.847650 −0.847650
\(859\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.09390 −1.09390 −0.546948 0.837166i \(-0.684211\pi\)
−0.546948 + 0.837166i \(0.684211\pi\)
\(864\) 1.02804 1.02804
\(865\) 0 0
\(866\) 0 0
\(867\) 0.972723 0.972723
\(868\) 0 0
\(869\) −1.19661 −1.19661
\(870\) −1.83214 −1.83214
\(871\) 0 0
\(872\) 0 0
\(873\) −0.165159 −0.165159
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −0.722804 −0.722804
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −0.490971 −0.490971
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −0.197832 −0.197832
\(885\) 0 0
\(886\) 0.928738 0.928738
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 1.16979 1.16979
\(889\) 0 0
\(890\) −0.778124 −0.778124
\(891\) −1.09390 −1.09390
\(892\) 0.125347 0.125347
\(893\) 0 0
\(894\) 0 0
\(895\) 3.46992 3.46992
\(896\) 0 0
\(897\) −1.26798 −1.26798
\(898\) 0 0
\(899\) 0 0
\(900\) −2.19460 −2.19460
\(901\) −0.260667 −0.260667
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 1.19783 1.19783
\(909\) 0 0
\(910\) 0 0
\(911\) 0.165159 0.165159 0.0825793 0.996584i \(-0.473684\pi\)
0.0825793 + 0.996584i \(0.473684\pi\)
\(912\) 0 0
\(913\) −1.48175 −1.48175
\(914\) 0.394442 0.394442
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0.0810881 0.0810881
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 1.36868 1.36868
\(921\) −1.09390 −1.09390
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −3.91690 −3.91690
\(926\) 0 0
\(927\) 0.490971 0.490971
\(928\) 1.94468 1.94468
\(929\) 1.35456 1.35456 0.677282 0.735724i \(-0.263158\pi\)
0.677282 + 0.735724i \(0.263158\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.19783 1.19783
\(933\) −1.35456 −1.35456
\(934\) 0 0
\(935\) −0.356405 −0.356405
\(936\) 1.36299 1.36299
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −2.63348 −2.63348
\(941\) 0.803391 0.803391 0.401695 0.915773i \(-0.368421\pi\)
0.401695 + 0.915773i \(0.368421\pi\)
\(942\) −0.968550 −0.968550
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.97272 1.97272 0.986361 0.164595i \(-0.0526316\pi\)
0.986361 + 0.164595i \(0.0526316\pi\)
\(948\) 0.830210 0.830210
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0.774890 0.774890
\(955\) 0 0
\(956\) 1.43565 1.43565
\(957\) −2.06925 −2.06925
\(958\) 0 0
\(959\) 0 0
\(960\) −0.334949 −0.334949
\(961\) 1.00000 1.00000
\(962\) 1.04964 1.04964
\(963\) 0 0
\(964\) 0 0
\(965\) 0.968550 0.968550
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0.169790 0.169790
\(969\) 0 0
\(970\) 0.159964 0.159964
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0.758948 0.758948
\(973\) 0 0
\(974\) 0 0
\(975\) −4.56381 −4.56381
\(976\) 0 0
\(977\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(978\) −0.394442 −0.394442
\(979\) −0.878826 −0.878826
\(980\) −1.49719 −1.49719
\(981\) 0 0
\(982\) 0.774890 0.774890
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 1.58487 1.58487
\(986\) 0.153389 0.153389
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 1.05949 1.05949
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.325812 −0.325812
\(996\) 1.02804 1.02804
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0.394442 0.394442
\(999\) 1.35456 1.35456
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2031.1.d.b.2030.4 yes 9
3.2 odd 2 2031.1.d.a.2030.6 9
677.676 even 2 2031.1.d.a.2030.6 9
2031.2030 odd 2 CM 2031.1.d.b.2030.4 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2031.1.d.a.2030.6 9 3.2 odd 2
2031.1.d.a.2030.6 9 677.676 even 2
2031.1.d.b.2030.4 yes 9 1.1 even 1 trivial
2031.1.d.b.2030.4 yes 9 2031.2030 odd 2 CM