Properties

Label 2031.2.a.i.1.15
Level $2031$
Weight $2$
Character 2031.1
Self dual yes
Analytic conductor $16.218$
Analytic rank $0$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2031,2,Mod(1,2031)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2031, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2031.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2031 = 3 \cdot 677 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2031.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2176166505\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 2031.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00518 q^{2} -1.00000 q^{3} -0.989621 q^{4} -2.22514 q^{5} +1.00518 q^{6} +1.19593 q^{7} +3.00510 q^{8} +1.00000 q^{9} +2.23666 q^{10} +0.183081 q^{11} +0.989621 q^{12} -0.922175 q^{13} -1.20213 q^{14} +2.22514 q^{15} -1.04141 q^{16} -3.54231 q^{17} -1.00518 q^{18} -1.94600 q^{19} +2.20204 q^{20} -1.19593 q^{21} -0.184029 q^{22} +1.99867 q^{23} -3.00510 q^{24} -0.0487581 q^{25} +0.926948 q^{26} -1.00000 q^{27} -1.18352 q^{28} -0.968676 q^{29} -2.23666 q^{30} +7.58204 q^{31} -4.96339 q^{32} -0.183081 q^{33} +3.56064 q^{34} -2.66112 q^{35} -0.989621 q^{36} -6.75267 q^{37} +1.95607 q^{38} +0.922175 q^{39} -6.68675 q^{40} -5.79638 q^{41} +1.20213 q^{42} +8.50133 q^{43} -0.181181 q^{44} -2.22514 q^{45} -2.00902 q^{46} +2.05890 q^{47} +1.04141 q^{48} -5.56974 q^{49} +0.0490105 q^{50} +3.54231 q^{51} +0.912604 q^{52} -10.6422 q^{53} +1.00518 q^{54} -0.407381 q^{55} +3.59390 q^{56} +1.94600 q^{57} +0.973690 q^{58} -11.4822 q^{59} -2.20204 q^{60} +8.14270 q^{61} -7.62128 q^{62} +1.19593 q^{63} +7.07190 q^{64} +2.05197 q^{65} +0.184029 q^{66} -11.6167 q^{67} +3.50554 q^{68} -1.99867 q^{69} +2.67490 q^{70} -0.764133 q^{71} +3.00510 q^{72} +0.600213 q^{73} +6.78762 q^{74} +0.0487581 q^{75} +1.92580 q^{76} +0.218953 q^{77} -0.926948 q^{78} +4.72022 q^{79} +2.31728 q^{80} +1.00000 q^{81} +5.82638 q^{82} +4.37640 q^{83} +1.18352 q^{84} +7.88213 q^{85} -8.54533 q^{86} +0.968676 q^{87} +0.550176 q^{88} +6.54432 q^{89} +2.23666 q^{90} -1.10286 q^{91} -1.97793 q^{92} -7.58204 q^{93} -2.06956 q^{94} +4.33012 q^{95} +4.96339 q^{96} +10.5115 q^{97} +5.59857 q^{98} +0.183081 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 3 q^{2} - 38 q^{3} + 49 q^{4} + 3 q^{5} + 3 q^{6} + 7 q^{7} - 12 q^{8} + 38 q^{9} + 14 q^{10} - 12 q^{11} - 49 q^{12} + 24 q^{13} + q^{14} - 3 q^{15} + 71 q^{16} + 12 q^{17} - 3 q^{18} + 16 q^{19}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00518 −0.710767 −0.355383 0.934721i \(-0.615650\pi\)
−0.355383 + 0.934721i \(0.615650\pi\)
\(3\) −1.00000 −0.577350
\(4\) −0.989621 −0.494811
\(5\) −2.22514 −0.995112 −0.497556 0.867432i \(-0.665769\pi\)
−0.497556 + 0.867432i \(0.665769\pi\)
\(6\) 1.00518 0.410361
\(7\) 1.19593 0.452021 0.226010 0.974125i \(-0.427432\pi\)
0.226010 + 0.974125i \(0.427432\pi\)
\(8\) 3.00510 1.06246
\(9\) 1.00000 0.333333
\(10\) 2.23666 0.707293
\(11\) 0.183081 0.0552010 0.0276005 0.999619i \(-0.491213\pi\)
0.0276005 + 0.999619i \(0.491213\pi\)
\(12\) 0.989621 0.285679
\(13\) −0.922175 −0.255765 −0.127883 0.991789i \(-0.540818\pi\)
−0.127883 + 0.991789i \(0.540818\pi\)
\(14\) −1.20213 −0.321281
\(15\) 2.22514 0.574528
\(16\) −1.04141 −0.260352
\(17\) −3.54231 −0.859136 −0.429568 0.903034i \(-0.641334\pi\)
−0.429568 + 0.903034i \(0.641334\pi\)
\(18\) −1.00518 −0.236922
\(19\) −1.94600 −0.446443 −0.223221 0.974768i \(-0.571657\pi\)
−0.223221 + 0.974768i \(0.571657\pi\)
\(20\) 2.20204 0.492392
\(21\) −1.19593 −0.260974
\(22\) −0.184029 −0.0392351
\(23\) 1.99867 0.416752 0.208376 0.978049i \(-0.433182\pi\)
0.208376 + 0.978049i \(0.433182\pi\)
\(24\) −3.00510 −0.613413
\(25\) −0.0487581 −0.00975163
\(26\) 0.926948 0.181789
\(27\) −1.00000 −0.192450
\(28\) −1.18352 −0.223665
\(29\) −0.968676 −0.179879 −0.0899393 0.995947i \(-0.528667\pi\)
−0.0899393 + 0.995947i \(0.528667\pi\)
\(30\) −2.23666 −0.408356
\(31\) 7.58204 1.36177 0.680887 0.732388i \(-0.261594\pi\)
0.680887 + 0.732388i \(0.261594\pi\)
\(32\) −4.96339 −0.877412
\(33\) −0.183081 −0.0318703
\(34\) 3.56064 0.610645
\(35\) −2.66112 −0.449812
\(36\) −0.989621 −0.164937
\(37\) −6.75267 −1.11013 −0.555066 0.831806i \(-0.687307\pi\)
−0.555066 + 0.831806i \(0.687307\pi\)
\(38\) 1.95607 0.317317
\(39\) 0.922175 0.147666
\(40\) −6.68675 −1.05727
\(41\) −5.79638 −0.905243 −0.452621 0.891703i \(-0.649511\pi\)
−0.452621 + 0.891703i \(0.649511\pi\)
\(42\) 1.20213 0.185492
\(43\) 8.50133 1.29644 0.648220 0.761453i \(-0.275514\pi\)
0.648220 + 0.761453i \(0.275514\pi\)
\(44\) −0.181181 −0.0273141
\(45\) −2.22514 −0.331704
\(46\) −2.00902 −0.296213
\(47\) 2.05890 0.300322 0.150161 0.988662i \(-0.452021\pi\)
0.150161 + 0.988662i \(0.452021\pi\)
\(48\) 1.04141 0.150314
\(49\) −5.56974 −0.795677
\(50\) 0.0490105 0.00693113
\(51\) 3.54231 0.496022
\(52\) 0.912604 0.126555
\(53\) −10.6422 −1.46182 −0.730910 0.682473i \(-0.760904\pi\)
−0.730910 + 0.682473i \(0.760904\pi\)
\(54\) 1.00518 0.136787
\(55\) −0.407381 −0.0549312
\(56\) 3.59390 0.480255
\(57\) 1.94600 0.257754
\(58\) 0.973690 0.127852
\(59\) −11.4822 −1.49485 −0.747426 0.664345i \(-0.768711\pi\)
−0.747426 + 0.664345i \(0.768711\pi\)
\(60\) −2.20204 −0.284283
\(61\) 8.14270 1.04257 0.521283 0.853384i \(-0.325454\pi\)
0.521283 + 0.853384i \(0.325454\pi\)
\(62\) −7.62128 −0.967904
\(63\) 1.19593 0.150674
\(64\) 7.07190 0.883987
\(65\) 2.05197 0.254515
\(66\) 0.184029 0.0226524
\(67\) −11.6167 −1.41920 −0.709602 0.704603i \(-0.751125\pi\)
−0.709602 + 0.704603i \(0.751125\pi\)
\(68\) 3.50554 0.425110
\(69\) −1.99867 −0.240612
\(70\) 2.67490 0.319711
\(71\) −0.764133 −0.0906859 −0.0453429 0.998971i \(-0.514438\pi\)
−0.0453429 + 0.998971i \(0.514438\pi\)
\(72\) 3.00510 0.354154
\(73\) 0.600213 0.0702496 0.0351248 0.999383i \(-0.488817\pi\)
0.0351248 + 0.999383i \(0.488817\pi\)
\(74\) 6.78762 0.789045
\(75\) 0.0487581 0.00563010
\(76\) 1.92580 0.220905
\(77\) 0.218953 0.0249520
\(78\) −0.926948 −0.104956
\(79\) 4.72022 0.531066 0.265533 0.964102i \(-0.414452\pi\)
0.265533 + 0.964102i \(0.414452\pi\)
\(80\) 2.31728 0.259079
\(81\) 1.00000 0.111111
\(82\) 5.82638 0.643417
\(83\) 4.37640 0.480372 0.240186 0.970727i \(-0.422791\pi\)
0.240186 + 0.970727i \(0.422791\pi\)
\(84\) 1.18352 0.129133
\(85\) 7.88213 0.854937
\(86\) −8.54533 −0.921467
\(87\) 0.968676 0.103853
\(88\) 0.550176 0.0586490
\(89\) 6.54432 0.693697 0.346848 0.937921i \(-0.387252\pi\)
0.346848 + 0.937921i \(0.387252\pi\)
\(90\) 2.23666 0.235764
\(91\) −1.10286 −0.115611
\(92\) −1.97793 −0.206213
\(93\) −7.58204 −0.786221
\(94\) −2.06956 −0.213459
\(95\) 4.33012 0.444261
\(96\) 4.96339 0.506574
\(97\) 10.5115 1.06728 0.533641 0.845711i \(-0.320823\pi\)
0.533641 + 0.845711i \(0.320823\pi\)
\(98\) 5.59857 0.565541
\(99\) 0.183081 0.0184003
\(100\) 0.0482521 0.00482521
\(101\) −6.87142 −0.683732 −0.341866 0.939749i \(-0.611059\pi\)
−0.341866 + 0.939749i \(0.611059\pi\)
\(102\) −3.56064 −0.352556
\(103\) 16.7629 1.65170 0.825849 0.563891i \(-0.190696\pi\)
0.825849 + 0.563891i \(0.190696\pi\)
\(104\) −2.77122 −0.271741
\(105\) 2.66112 0.259699
\(106\) 10.6973 1.03901
\(107\) 2.02402 0.195669 0.0978345 0.995203i \(-0.468808\pi\)
0.0978345 + 0.995203i \(0.468808\pi\)
\(108\) 0.989621 0.0952263
\(109\) 17.9319 1.71757 0.858784 0.512338i \(-0.171220\pi\)
0.858784 + 0.512338i \(0.171220\pi\)
\(110\) 0.409489 0.0390433
\(111\) 6.75267 0.640935
\(112\) −1.24546 −0.117684
\(113\) 15.0236 1.41330 0.706652 0.707562i \(-0.250205\pi\)
0.706652 + 0.707562i \(0.250205\pi\)
\(114\) −1.95607 −0.183203
\(115\) −4.44732 −0.414715
\(116\) 0.958623 0.0890059
\(117\) −0.922175 −0.0852551
\(118\) 11.5416 1.06249
\(119\) −4.23637 −0.388348
\(120\) 6.68675 0.610414
\(121\) −10.9665 −0.996953
\(122\) −8.18485 −0.741021
\(123\) 5.79638 0.522642
\(124\) −7.50335 −0.673821
\(125\) 11.2342 1.00482
\(126\) −1.20213 −0.107094
\(127\) 15.5680 1.38144 0.690718 0.723124i \(-0.257295\pi\)
0.690718 + 0.723124i \(0.257295\pi\)
\(128\) 2.81828 0.249103
\(129\) −8.50133 −0.748500
\(130\) −2.06259 −0.180901
\(131\) 19.0765 1.66672 0.833361 0.552730i \(-0.186414\pi\)
0.833361 + 0.552730i \(0.186414\pi\)
\(132\) 0.181181 0.0157698
\(133\) −2.32729 −0.201802
\(134\) 11.6768 1.00872
\(135\) 2.22514 0.191509
\(136\) −10.6450 −0.912799
\(137\) −0.898816 −0.0767910 −0.0383955 0.999263i \(-0.512225\pi\)
−0.0383955 + 0.999263i \(0.512225\pi\)
\(138\) 2.00902 0.171019
\(139\) 19.9534 1.69243 0.846213 0.532845i \(-0.178877\pi\)
0.846213 + 0.532845i \(0.178877\pi\)
\(140\) 2.63350 0.222572
\(141\) −2.05890 −0.173391
\(142\) 0.768088 0.0644565
\(143\) −0.168833 −0.0141185
\(144\) −1.04141 −0.0867840
\(145\) 2.15544 0.178999
\(146\) −0.603319 −0.0499311
\(147\) 5.56974 0.459384
\(148\) 6.68259 0.549305
\(149\) 0.254994 0.0208899 0.0104449 0.999945i \(-0.496675\pi\)
0.0104449 + 0.999945i \(0.496675\pi\)
\(150\) −0.0490105 −0.00400169
\(151\) 15.5680 1.26690 0.633452 0.773782i \(-0.281637\pi\)
0.633452 + 0.773782i \(0.281637\pi\)
\(152\) −5.84791 −0.474329
\(153\) −3.54231 −0.286379
\(154\) −0.220086 −0.0177351
\(155\) −16.8711 −1.35512
\(156\) −0.912604 −0.0730668
\(157\) 15.7071 1.25356 0.626782 0.779195i \(-0.284372\pi\)
0.626782 + 0.779195i \(0.284372\pi\)
\(158\) −4.74465 −0.377464
\(159\) 10.6422 0.843983
\(160\) 11.0442 0.873124
\(161\) 2.39028 0.188380
\(162\) −1.00518 −0.0789741
\(163\) −21.4186 −1.67763 −0.838816 0.544415i \(-0.816752\pi\)
−0.838816 + 0.544415i \(0.816752\pi\)
\(164\) 5.73622 0.447924
\(165\) 0.407381 0.0317146
\(166\) −4.39905 −0.341433
\(167\) −23.6367 −1.82906 −0.914530 0.404517i \(-0.867440\pi\)
−0.914530 + 0.404517i \(0.867440\pi\)
\(168\) −3.59390 −0.277275
\(169\) −12.1496 −0.934584
\(170\) −7.92293 −0.607661
\(171\) −1.94600 −0.148814
\(172\) −8.41309 −0.641492
\(173\) −3.89164 −0.295876 −0.147938 0.988997i \(-0.547264\pi\)
−0.147938 + 0.988997i \(0.547264\pi\)
\(174\) −0.973690 −0.0738153
\(175\) −0.0583116 −0.00440794
\(176\) −0.190662 −0.0143717
\(177\) 11.4822 0.863054
\(178\) −6.57820 −0.493057
\(179\) 11.6125 0.867957 0.433978 0.900923i \(-0.357109\pi\)
0.433978 + 0.900923i \(0.357109\pi\)
\(180\) 2.20204 0.164131
\(181\) −3.76916 −0.280160 −0.140080 0.990140i \(-0.544736\pi\)
−0.140080 + 0.990140i \(0.544736\pi\)
\(182\) 1.10857 0.0821726
\(183\) −8.14270 −0.601926
\(184\) 6.00620 0.442783
\(185\) 15.0256 1.10471
\(186\) 7.62128 0.558820
\(187\) −0.648530 −0.0474252
\(188\) −2.03753 −0.148602
\(189\) −1.19593 −0.0869915
\(190\) −4.35253 −0.315766
\(191\) 15.5790 1.12726 0.563630 0.826027i \(-0.309404\pi\)
0.563630 + 0.826027i \(0.309404\pi\)
\(192\) −7.07190 −0.510370
\(193\) 25.5855 1.84168 0.920842 0.389937i \(-0.127503\pi\)
0.920842 + 0.389937i \(0.127503\pi\)
\(194\) −10.5659 −0.758589
\(195\) −2.05197 −0.146944
\(196\) 5.51193 0.393709
\(197\) −11.1257 −0.792671 −0.396336 0.918106i \(-0.629718\pi\)
−0.396336 + 0.918106i \(0.629718\pi\)
\(198\) −0.184029 −0.0130784
\(199\) −7.16923 −0.508213 −0.254107 0.967176i \(-0.581781\pi\)
−0.254107 + 0.967176i \(0.581781\pi\)
\(200\) −0.146523 −0.0103607
\(201\) 11.6167 0.819378
\(202\) 6.90699 0.485974
\(203\) −1.15847 −0.0813089
\(204\) −3.50554 −0.245437
\(205\) 12.8978 0.900818
\(206\) −16.8497 −1.17397
\(207\) 1.99867 0.138917
\(208\) 0.960360 0.0665890
\(209\) −0.356276 −0.0246441
\(210\) −2.67490 −0.184585
\(211\) −21.3863 −1.47230 −0.736148 0.676821i \(-0.763357\pi\)
−0.736148 + 0.676821i \(0.763357\pi\)
\(212\) 10.5318 0.723324
\(213\) 0.764133 0.0523575
\(214\) −2.03449 −0.139075
\(215\) −18.9166 −1.29010
\(216\) −3.00510 −0.204471
\(217\) 9.06763 0.615551
\(218\) −18.0248 −1.22079
\(219\) −0.600213 −0.0405586
\(220\) 0.403153 0.0271805
\(221\) 3.26663 0.219737
\(222\) −6.78762 −0.455556
\(223\) −5.21201 −0.349022 −0.174511 0.984655i \(-0.555834\pi\)
−0.174511 + 0.984655i \(0.555834\pi\)
\(224\) −5.93590 −0.396609
\(225\) −0.0487581 −0.00325054
\(226\) −15.1014 −1.00453
\(227\) −11.8389 −0.785773 −0.392886 0.919587i \(-0.628523\pi\)
−0.392886 + 0.919587i \(0.628523\pi\)
\(228\) −1.92580 −0.127539
\(229\) 12.1901 0.805543 0.402771 0.915301i \(-0.368047\pi\)
0.402771 + 0.915301i \(0.368047\pi\)
\(230\) 4.47034 0.294765
\(231\) −0.218953 −0.0144061
\(232\) −2.91096 −0.191114
\(233\) 9.22288 0.604211 0.302105 0.953275i \(-0.402311\pi\)
0.302105 + 0.953275i \(0.402311\pi\)
\(234\) 0.926948 0.0605965
\(235\) −4.58134 −0.298854
\(236\) 11.3630 0.739669
\(237\) −4.72022 −0.306611
\(238\) 4.25830 0.276024
\(239\) 0.925473 0.0598639 0.0299319 0.999552i \(-0.490471\pi\)
0.0299319 + 0.999552i \(0.490471\pi\)
\(240\) −2.31728 −0.149580
\(241\) −4.24397 −0.273378 −0.136689 0.990614i \(-0.543646\pi\)
−0.136689 + 0.990614i \(0.543646\pi\)
\(242\) 11.0232 0.708601
\(243\) −1.00000 −0.0641500
\(244\) −8.05819 −0.515873
\(245\) 12.3934 0.791788
\(246\) −5.82638 −0.371477
\(247\) 1.79455 0.114185
\(248\) 22.7848 1.44683
\(249\) −4.37640 −0.277343
\(250\) −11.2923 −0.714190
\(251\) −18.3525 −1.15840 −0.579199 0.815186i \(-0.696635\pi\)
−0.579199 + 0.815186i \(0.696635\pi\)
\(252\) −1.18352 −0.0745549
\(253\) 0.365919 0.0230051
\(254\) −15.6486 −0.981878
\(255\) −7.88213 −0.493598
\(256\) −16.9767 −1.06104
\(257\) 16.7036 1.04194 0.520971 0.853574i \(-0.325570\pi\)
0.520971 + 0.853574i \(0.325570\pi\)
\(258\) 8.54533 0.532009
\(259\) −8.07576 −0.501803
\(260\) −2.03067 −0.125937
\(261\) −0.968676 −0.0599596
\(262\) −19.1752 −1.18465
\(263\) −23.8638 −1.47150 −0.735752 0.677251i \(-0.763171\pi\)
−0.735752 + 0.677251i \(0.763171\pi\)
\(264\) −0.550176 −0.0338610
\(265\) 23.6804 1.45468
\(266\) 2.33934 0.143434
\(267\) −6.54432 −0.400506
\(268\) 11.4961 0.702237
\(269\) −4.91838 −0.299879 −0.149939 0.988695i \(-0.547908\pi\)
−0.149939 + 0.988695i \(0.547908\pi\)
\(270\) −2.23666 −0.136119
\(271\) 28.5715 1.73560 0.867798 0.496917i \(-0.165535\pi\)
0.867798 + 0.496917i \(0.165535\pi\)
\(272\) 3.68899 0.223678
\(273\) 1.10286 0.0667482
\(274\) 0.903468 0.0545805
\(275\) −0.00892669 −0.000538300 0
\(276\) 1.97793 0.119057
\(277\) −1.72049 −0.103374 −0.0516870 0.998663i \(-0.516460\pi\)
−0.0516870 + 0.998663i \(0.516460\pi\)
\(278\) −20.0567 −1.20292
\(279\) 7.58204 0.453925
\(280\) −7.99692 −0.477908
\(281\) −21.5399 −1.28496 −0.642482 0.766301i \(-0.722095\pi\)
−0.642482 + 0.766301i \(0.722095\pi\)
\(282\) 2.06956 0.123240
\(283\) 29.5818 1.75846 0.879228 0.476401i \(-0.158059\pi\)
0.879228 + 0.476401i \(0.158059\pi\)
\(284\) 0.756202 0.0448723
\(285\) −4.33012 −0.256494
\(286\) 0.169707 0.0100350
\(287\) −6.93210 −0.409189
\(288\) −4.96339 −0.292471
\(289\) −4.45205 −0.261885
\(290\) −2.16660 −0.127227
\(291\) −10.5115 −0.616196
\(292\) −0.593983 −0.0347602
\(293\) 0.784142 0.0458101 0.0229050 0.999738i \(-0.492708\pi\)
0.0229050 + 0.999738i \(0.492708\pi\)
\(294\) −5.59857 −0.326515
\(295\) 25.5494 1.48755
\(296\) −20.2924 −1.17947
\(297\) −0.183081 −0.0106234
\(298\) −0.256314 −0.0148478
\(299\) −1.84312 −0.106591
\(300\) −0.0482521 −0.00278584
\(301\) 10.1670 0.586018
\(302\) −15.6486 −0.900473
\(303\) 6.87142 0.394753
\(304\) 2.02658 0.116232
\(305\) −18.1186 −1.03747
\(306\) 3.56064 0.203548
\(307\) 12.2895 0.701396 0.350698 0.936489i \(-0.385944\pi\)
0.350698 + 0.936489i \(0.385944\pi\)
\(308\) −0.216681 −0.0123465
\(309\) −16.7629 −0.953608
\(310\) 16.9584 0.963173
\(311\) 17.0854 0.968824 0.484412 0.874840i \(-0.339034\pi\)
0.484412 + 0.874840i \(0.339034\pi\)
\(312\) 2.77122 0.156890
\(313\) −0.845851 −0.0478103 −0.0239052 0.999714i \(-0.507610\pi\)
−0.0239052 + 0.999714i \(0.507610\pi\)
\(314\) −15.7884 −0.890991
\(315\) −2.66112 −0.149937
\(316\) −4.67123 −0.262777
\(317\) 2.22653 0.125054 0.0625272 0.998043i \(-0.480084\pi\)
0.0625272 + 0.998043i \(0.480084\pi\)
\(318\) −10.6973 −0.599875
\(319\) −0.177346 −0.00992949
\(320\) −15.7360 −0.879667
\(321\) −2.02402 −0.112970
\(322\) −2.40265 −0.133895
\(323\) 6.89333 0.383555
\(324\) −0.989621 −0.0549790
\(325\) 0.0449635 0.00249413
\(326\) 21.5294 1.19241
\(327\) −17.9319 −0.991638
\(328\) −17.4187 −0.961786
\(329\) 2.46231 0.135752
\(330\) −0.409489 −0.0225417
\(331\) −2.11349 −0.116168 −0.0580841 0.998312i \(-0.518499\pi\)
−0.0580841 + 0.998312i \(0.518499\pi\)
\(332\) −4.33098 −0.237693
\(333\) −6.75267 −0.370044
\(334\) 23.7590 1.30004
\(335\) 25.8487 1.41227
\(336\) 1.24546 0.0679452
\(337\) 21.8277 1.18903 0.594515 0.804085i \(-0.297344\pi\)
0.594515 + 0.804085i \(0.297344\pi\)
\(338\) 12.2125 0.664271
\(339\) −15.0236 −0.815971
\(340\) −7.80032 −0.423032
\(341\) 1.38813 0.0751714
\(342\) 1.95607 0.105772
\(343\) −15.0326 −0.811684
\(344\) 25.5473 1.37742
\(345\) 4.44732 0.239436
\(346\) 3.91179 0.210299
\(347\) −0.256758 −0.0137835 −0.00689174 0.999976i \(-0.502194\pi\)
−0.00689174 + 0.999976i \(0.502194\pi\)
\(348\) −0.958623 −0.0513876
\(349\) −14.2588 −0.763254 −0.381627 0.924316i \(-0.624636\pi\)
−0.381627 + 0.924316i \(0.624636\pi\)
\(350\) 0.0586134 0.00313302
\(351\) 0.922175 0.0492221
\(352\) −0.908703 −0.0484341
\(353\) 15.1733 0.807592 0.403796 0.914849i \(-0.367690\pi\)
0.403796 + 0.914849i \(0.367690\pi\)
\(354\) −11.5416 −0.613430
\(355\) 1.70030 0.0902426
\(356\) −6.47640 −0.343249
\(357\) 4.23637 0.224213
\(358\) −11.6726 −0.616915
\(359\) 8.42784 0.444804 0.222402 0.974955i \(-0.428610\pi\)
0.222402 + 0.974955i \(0.428610\pi\)
\(360\) −6.68675 −0.352423
\(361\) −15.2131 −0.800689
\(362\) 3.78867 0.199128
\(363\) 10.9665 0.575591
\(364\) 1.09141 0.0572057
\(365\) −1.33556 −0.0699062
\(366\) 8.18485 0.427829
\(367\) −8.87584 −0.463315 −0.231657 0.972797i \(-0.574415\pi\)
−0.231657 + 0.972797i \(0.574415\pi\)
\(368\) −2.08143 −0.108502
\(369\) −5.79638 −0.301748
\(370\) −15.1034 −0.785189
\(371\) −12.7274 −0.660774
\(372\) 7.50335 0.389030
\(373\) −19.1125 −0.989609 −0.494805 0.869004i \(-0.664760\pi\)
−0.494805 + 0.869004i \(0.664760\pi\)
\(374\) 0.651887 0.0337083
\(375\) −11.2342 −0.580131
\(376\) 6.18719 0.319080
\(377\) 0.893289 0.0460067
\(378\) 1.20213 0.0618306
\(379\) 35.5569 1.82643 0.913217 0.407474i \(-0.133590\pi\)
0.913217 + 0.407474i \(0.133590\pi\)
\(380\) −4.28518 −0.219825
\(381\) −15.5680 −0.797572
\(382\) −15.6597 −0.801219
\(383\) 15.0541 0.769231 0.384615 0.923077i \(-0.374334\pi\)
0.384615 + 0.923077i \(0.374334\pi\)
\(384\) −2.81828 −0.143820
\(385\) −0.487201 −0.0248301
\(386\) −25.7179 −1.30901
\(387\) 8.50133 0.432147
\(388\) −10.4024 −0.528103
\(389\) 18.5223 0.939118 0.469559 0.882901i \(-0.344413\pi\)
0.469559 + 0.882901i \(0.344413\pi\)
\(390\) 2.06259 0.104443
\(391\) −7.07991 −0.358046
\(392\) −16.7376 −0.845376
\(393\) −19.0765 −0.962282
\(394\) 11.1833 0.563405
\(395\) −10.5031 −0.528470
\(396\) −0.181181 −0.00910468
\(397\) 0.823661 0.0413384 0.0206692 0.999786i \(-0.493420\pi\)
0.0206692 + 0.999786i \(0.493420\pi\)
\(398\) 7.20634 0.361221
\(399\) 2.32729 0.116510
\(400\) 0.0507771 0.00253885
\(401\) −1.28410 −0.0641249 −0.0320625 0.999486i \(-0.510208\pi\)
−0.0320625 + 0.999486i \(0.510208\pi\)
\(402\) −11.6768 −0.582386
\(403\) −6.99197 −0.348295
\(404\) 6.80011 0.338318
\(405\) −2.22514 −0.110568
\(406\) 1.16447 0.0577917
\(407\) −1.23629 −0.0612805
\(408\) 10.6450 0.527005
\(409\) 15.5447 0.768636 0.384318 0.923201i \(-0.374437\pi\)
0.384318 + 0.923201i \(0.374437\pi\)
\(410\) −12.9645 −0.640272
\(411\) 0.898816 0.0443353
\(412\) −16.5889 −0.817278
\(413\) −13.7319 −0.675705
\(414\) −2.00902 −0.0987377
\(415\) −9.73810 −0.478025
\(416\) 4.57712 0.224412
\(417\) −19.9534 −0.977122
\(418\) 0.358120 0.0175162
\(419\) 17.6572 0.862609 0.431305 0.902206i \(-0.358053\pi\)
0.431305 + 0.902206i \(0.358053\pi\)
\(420\) −2.63350 −0.128502
\(421\) 38.0435 1.85413 0.927063 0.374906i \(-0.122325\pi\)
0.927063 + 0.374906i \(0.122325\pi\)
\(422\) 21.4970 1.04646
\(423\) 2.05890 0.100107
\(424\) −31.9809 −1.55313
\(425\) 0.172716 0.00837797
\(426\) −0.768088 −0.0372140
\(427\) 9.73814 0.471262
\(428\) −2.00301 −0.0968191
\(429\) 0.168833 0.00815132
\(430\) 19.0145 0.916963
\(431\) 1.34886 0.0649722 0.0324861 0.999472i \(-0.489658\pi\)
0.0324861 + 0.999472i \(0.489658\pi\)
\(432\) 1.04141 0.0501047
\(433\) −10.0279 −0.481910 −0.240955 0.970536i \(-0.577461\pi\)
−0.240955 + 0.970536i \(0.577461\pi\)
\(434\) −9.11456 −0.437513
\(435\) −2.15544 −0.103345
\(436\) −17.7458 −0.849871
\(437\) −3.88941 −0.186056
\(438\) 0.603319 0.0288277
\(439\) 34.2333 1.63387 0.816933 0.576732i \(-0.195672\pi\)
0.816933 + 0.576732i \(0.195672\pi\)
\(440\) −1.22422 −0.0583623
\(441\) −5.56974 −0.265226
\(442\) −3.28354 −0.156182
\(443\) 14.9489 0.710246 0.355123 0.934820i \(-0.384439\pi\)
0.355123 + 0.934820i \(0.384439\pi\)
\(444\) −6.68259 −0.317142
\(445\) −14.5620 −0.690306
\(446\) 5.23898 0.248073
\(447\) −0.254994 −0.0120608
\(448\) 8.45753 0.399581
\(449\) 24.7561 1.16831 0.584155 0.811642i \(-0.301426\pi\)
0.584155 + 0.811642i \(0.301426\pi\)
\(450\) 0.0490105 0.00231038
\(451\) −1.06121 −0.0499703
\(452\) −14.8677 −0.699317
\(453\) −15.5680 −0.731448
\(454\) 11.9001 0.558501
\(455\) 2.45402 0.115046
\(456\) 5.84791 0.273854
\(457\) 7.70270 0.360317 0.180159 0.983638i \(-0.442339\pi\)
0.180159 + 0.983638i \(0.442339\pi\)
\(458\) −12.2532 −0.572553
\(459\) 3.54231 0.165341
\(460\) 4.40116 0.205205
\(461\) 36.7743 1.71275 0.856376 0.516353i \(-0.172711\pi\)
0.856376 + 0.516353i \(0.172711\pi\)
\(462\) 0.220086 0.0102393
\(463\) −28.7933 −1.33814 −0.669070 0.743200i \(-0.733307\pi\)
−0.669070 + 0.743200i \(0.733307\pi\)
\(464\) 1.00879 0.0468317
\(465\) 16.8711 0.782378
\(466\) −9.27061 −0.429453
\(467\) −22.9695 −1.06290 −0.531450 0.847090i \(-0.678353\pi\)
−0.531450 + 0.847090i \(0.678353\pi\)
\(468\) 0.912604 0.0421851
\(469\) −13.8928 −0.641510
\(470\) 4.60505 0.212415
\(471\) −15.7071 −0.723745
\(472\) −34.5051 −1.58822
\(473\) 1.55643 0.0715648
\(474\) 4.74465 0.217929
\(475\) 0.0948833 0.00435354
\(476\) 4.19240 0.192158
\(477\) −10.6422 −0.487274
\(478\) −0.930264 −0.0425493
\(479\) −15.9554 −0.729021 −0.364511 0.931199i \(-0.618764\pi\)
−0.364511 + 0.931199i \(0.618764\pi\)
\(480\) −11.0442 −0.504098
\(481\) 6.22715 0.283933
\(482\) 4.26594 0.194308
\(483\) −2.39028 −0.108762
\(484\) 10.8527 0.493303
\(485\) −23.3896 −1.06207
\(486\) 1.00518 0.0455957
\(487\) 9.13415 0.413908 0.206954 0.978351i \(-0.433645\pi\)
0.206954 + 0.978351i \(0.433645\pi\)
\(488\) 24.4696 1.10769
\(489\) 21.4186 0.968582
\(490\) −12.4576 −0.562777
\(491\) −19.0617 −0.860241 −0.430121 0.902771i \(-0.641529\pi\)
−0.430121 + 0.902771i \(0.641529\pi\)
\(492\) −5.73622 −0.258609
\(493\) 3.43135 0.154540
\(494\) −1.80384 −0.0811586
\(495\) −0.407381 −0.0183104
\(496\) −7.89599 −0.354541
\(497\) −0.913853 −0.0409919
\(498\) 4.39905 0.197126
\(499\) −16.3552 −0.732159 −0.366080 0.930583i \(-0.619300\pi\)
−0.366080 + 0.930583i \(0.619300\pi\)
\(500\) −11.1176 −0.497194
\(501\) 23.6367 1.05601
\(502\) 18.4475 0.823351
\(503\) 23.2252 1.03556 0.517780 0.855514i \(-0.326758\pi\)
0.517780 + 0.855514i \(0.326758\pi\)
\(504\) 3.59390 0.160085
\(505\) 15.2899 0.680390
\(506\) −0.367813 −0.0163513
\(507\) 12.1496 0.539582
\(508\) −15.4064 −0.683549
\(509\) 23.4098 1.03762 0.518811 0.854889i \(-0.326375\pi\)
0.518811 + 0.854889i \(0.326375\pi\)
\(510\) 7.92293 0.350833
\(511\) 0.717815 0.0317543
\(512\) 11.4280 0.505050
\(513\) 1.94600 0.0859180
\(514\) −16.7901 −0.740578
\(515\) −37.2998 −1.64363
\(516\) 8.41309 0.370366
\(517\) 0.376946 0.0165781
\(518\) 8.11756 0.356665
\(519\) 3.89164 0.170824
\(520\) 6.16636 0.270413
\(521\) −33.6346 −1.47356 −0.736780 0.676133i \(-0.763655\pi\)
−0.736780 + 0.676133i \(0.763655\pi\)
\(522\) 0.973690 0.0426173
\(523\) 2.54007 0.111070 0.0555348 0.998457i \(-0.482314\pi\)
0.0555348 + 0.998457i \(0.482314\pi\)
\(524\) −18.8785 −0.824711
\(525\) 0.0583116 0.00254492
\(526\) 23.9873 1.04590
\(527\) −26.8579 −1.16995
\(528\) 0.190662 0.00829750
\(529\) −19.0053 −0.826318
\(530\) −23.8030 −1.03394
\(531\) −11.4822 −0.498284
\(532\) 2.30313 0.0998535
\(533\) 5.34528 0.231530
\(534\) 6.57820 0.284666
\(535\) −4.50372 −0.194713
\(536\) −34.9092 −1.50785
\(537\) −11.6125 −0.501115
\(538\) 4.94384 0.213144
\(539\) −1.01971 −0.0439222
\(540\) −2.20204 −0.0947609
\(541\) −0.644430 −0.0277062 −0.0138531 0.999904i \(-0.504410\pi\)
−0.0138531 + 0.999904i \(0.504410\pi\)
\(542\) −28.7194 −1.23360
\(543\) 3.76916 0.161750
\(544\) 17.5819 0.753817
\(545\) −39.9010 −1.70917
\(546\) −1.10857 −0.0474424
\(547\) −31.4714 −1.34562 −0.672809 0.739816i \(-0.734913\pi\)
−0.672809 + 0.739816i \(0.734913\pi\)
\(548\) 0.889488 0.0379970
\(549\) 8.14270 0.347522
\(550\) 0.00897290 0.000382606 0
\(551\) 1.88504 0.0803056
\(552\) −6.00620 −0.255641
\(553\) 5.64507 0.240053
\(554\) 1.72939 0.0734748
\(555\) −15.0256 −0.637803
\(556\) −19.7463 −0.837430
\(557\) −15.7215 −0.666140 −0.333070 0.942902i \(-0.608084\pi\)
−0.333070 + 0.942902i \(0.608084\pi\)
\(558\) −7.62128 −0.322635
\(559\) −7.83971 −0.331584
\(560\) 2.77131 0.117109
\(561\) 0.648530 0.0273809
\(562\) 21.6514 0.913310
\(563\) 38.9763 1.64266 0.821328 0.570456i \(-0.193233\pi\)
0.821328 + 0.570456i \(0.193233\pi\)
\(564\) 2.03753 0.0857956
\(565\) −33.4296 −1.40640
\(566\) −29.7349 −1.24985
\(567\) 1.19593 0.0502245
\(568\) −2.29629 −0.0963503
\(569\) 31.9292 1.33854 0.669271 0.743019i \(-0.266607\pi\)
0.669271 + 0.743019i \(0.266607\pi\)
\(570\) 4.35253 0.182307
\(571\) 40.6078 1.69938 0.849692 0.527279i \(-0.176788\pi\)
0.849692 + 0.527279i \(0.176788\pi\)
\(572\) 0.167081 0.00698599
\(573\) −15.5790 −0.650824
\(574\) 6.96798 0.290838
\(575\) −0.0974514 −0.00406401
\(576\) 7.07190 0.294662
\(577\) −2.21788 −0.0923314 −0.0461657 0.998934i \(-0.514700\pi\)
−0.0461657 + 0.998934i \(0.514700\pi\)
\(578\) 4.47509 0.186139
\(579\) −25.5855 −1.06330
\(580\) −2.13307 −0.0885708
\(581\) 5.23389 0.217138
\(582\) 10.5659 0.437972
\(583\) −1.94839 −0.0806940
\(584\) 1.80370 0.0746375
\(585\) 2.05197 0.0848384
\(586\) −0.788201 −0.0325603
\(587\) −11.1965 −0.462131 −0.231065 0.972938i \(-0.574221\pi\)
−0.231065 + 0.972938i \(0.574221\pi\)
\(588\) −5.51193 −0.227308
\(589\) −14.7546 −0.607955
\(590\) −25.6817 −1.05730
\(591\) 11.1257 0.457649
\(592\) 7.03228 0.289025
\(593\) −22.5170 −0.924663 −0.462331 0.886707i \(-0.652987\pi\)
−0.462331 + 0.886707i \(0.652987\pi\)
\(594\) 0.184029 0.00755079
\(595\) 9.42651 0.386449
\(596\) −0.252347 −0.0103365
\(597\) 7.16923 0.293417
\(598\) 1.85266 0.0757611
\(599\) −21.9993 −0.898868 −0.449434 0.893314i \(-0.648374\pi\)
−0.449434 + 0.893314i \(0.648374\pi\)
\(600\) 0.146523 0.00598177
\(601\) 31.0130 1.26505 0.632523 0.774542i \(-0.282019\pi\)
0.632523 + 0.774542i \(0.282019\pi\)
\(602\) −10.2197 −0.416522
\(603\) −11.6167 −0.473068
\(604\) −15.4064 −0.626878
\(605\) 24.4019 0.992080
\(606\) −6.90699 −0.280577
\(607\) 20.4663 0.830700 0.415350 0.909662i \(-0.363659\pi\)
0.415350 + 0.909662i \(0.363659\pi\)
\(608\) 9.65876 0.391714
\(609\) 1.15847 0.0469437
\(610\) 18.2124 0.737399
\(611\) −1.89867 −0.0768118
\(612\) 3.50554 0.141703
\(613\) −32.9463 −1.33069 −0.665343 0.746538i \(-0.731715\pi\)
−0.665343 + 0.746538i \(0.731715\pi\)
\(614\) −12.3531 −0.498529
\(615\) −12.8978 −0.520088
\(616\) 0.657975 0.0265106
\(617\) 3.34521 0.134673 0.0673365 0.997730i \(-0.478550\pi\)
0.0673365 + 0.997730i \(0.478550\pi\)
\(618\) 16.8497 0.677793
\(619\) −21.1538 −0.850244 −0.425122 0.905136i \(-0.639769\pi\)
−0.425122 + 0.905136i \(0.639769\pi\)
\(620\) 16.6960 0.670527
\(621\) −1.99867 −0.0802039
\(622\) −17.1738 −0.688608
\(623\) 7.82658 0.313565
\(624\) −0.960360 −0.0384452
\(625\) −24.7538 −0.990153
\(626\) 0.850229 0.0339820
\(627\) 0.356276 0.0142283
\(628\) −15.5441 −0.620276
\(629\) 23.9201 0.953755
\(630\) 2.67490 0.106570
\(631\) 0.527461 0.0209979 0.0104989 0.999945i \(-0.496658\pi\)
0.0104989 + 0.999945i \(0.496658\pi\)
\(632\) 14.1847 0.564237
\(633\) 21.3863 0.850030
\(634\) −2.23805 −0.0888845
\(635\) −34.6409 −1.37468
\(636\) −10.5318 −0.417612
\(637\) 5.13627 0.203507
\(638\) 0.178264 0.00705755
\(639\) −0.764133 −0.0302286
\(640\) −6.27107 −0.247886
\(641\) 35.6179 1.40682 0.703411 0.710784i \(-0.251659\pi\)
0.703411 + 0.710784i \(0.251659\pi\)
\(642\) 2.03449 0.0802950
\(643\) 27.5620 1.08694 0.543470 0.839428i \(-0.317110\pi\)
0.543470 + 0.839428i \(0.317110\pi\)
\(644\) −2.36547 −0.0932126
\(645\) 18.9166 0.744842
\(646\) −6.92901 −0.272618
\(647\) −40.3509 −1.58636 −0.793179 0.608989i \(-0.791575\pi\)
−0.793179 + 0.608989i \(0.791575\pi\)
\(648\) 3.00510 0.118051
\(649\) −2.10217 −0.0825174
\(650\) −0.0451963 −0.00177274
\(651\) −9.06763 −0.355388
\(652\) 21.1963 0.830110
\(653\) 16.4009 0.641815 0.320908 0.947111i \(-0.396012\pi\)
0.320908 + 0.947111i \(0.396012\pi\)
\(654\) 18.0248 0.704824
\(655\) −42.4479 −1.65857
\(656\) 6.03640 0.235682
\(657\) 0.600213 0.0234165
\(658\) −2.47506 −0.0964878
\(659\) 0.592201 0.0230689 0.0115344 0.999933i \(-0.496328\pi\)
0.0115344 + 0.999933i \(0.496328\pi\)
\(660\) −0.403153 −0.0156927
\(661\) −10.5172 −0.409071 −0.204536 0.978859i \(-0.565568\pi\)
−0.204536 + 0.978859i \(0.565568\pi\)
\(662\) 2.12443 0.0825684
\(663\) −3.26663 −0.126865
\(664\) 13.1515 0.510377
\(665\) 5.17854 0.200815
\(666\) 6.78762 0.263015
\(667\) −1.93606 −0.0749647
\(668\) 23.3914 0.905039
\(669\) 5.21201 0.201508
\(670\) −25.9825 −1.00379
\(671\) 1.49077 0.0575507
\(672\) 5.93590 0.228982
\(673\) −21.6045 −0.832791 −0.416396 0.909184i \(-0.636707\pi\)
−0.416396 + 0.909184i \(0.636707\pi\)
\(674\) −21.9407 −0.845122
\(675\) 0.0487581 0.00187670
\(676\) 12.0235 0.462442
\(677\) 1.00000 0.0384331
\(678\) 15.1014 0.579965
\(679\) 12.5711 0.482434
\(680\) 23.6865 0.908338
\(681\) 11.8389 0.453666
\(682\) −1.39531 −0.0534293
\(683\) −3.08657 −0.118104 −0.0590521 0.998255i \(-0.518808\pi\)
−0.0590521 + 0.998255i \(0.518808\pi\)
\(684\) 1.92580 0.0736349
\(685\) 1.99999 0.0764157
\(686\) 15.1104 0.576918
\(687\) −12.1901 −0.465080
\(688\) −8.85335 −0.337531
\(689\) 9.81398 0.373883
\(690\) −4.47034 −0.170183
\(691\) 10.0767 0.383334 0.191667 0.981460i \(-0.438611\pi\)
0.191667 + 0.981460i \(0.438611\pi\)
\(692\) 3.85125 0.146403
\(693\) 0.218953 0.00831734
\(694\) 0.258087 0.00979683
\(695\) −44.3991 −1.68415
\(696\) 2.91096 0.110340
\(697\) 20.5326 0.777727
\(698\) 14.3326 0.542495
\(699\) −9.22288 −0.348841
\(700\) 0.0577064 0.00218110
\(701\) 12.1646 0.459451 0.229725 0.973255i \(-0.426217\pi\)
0.229725 + 0.973255i \(0.426217\pi\)
\(702\) −0.926948 −0.0349854
\(703\) 13.1407 0.495611
\(704\) 1.29473 0.0487970
\(705\) 4.58134 0.172543
\(706\) −15.2518 −0.574010
\(707\) −8.21778 −0.309061
\(708\) −11.3630 −0.427048
\(709\) −13.7509 −0.516426 −0.258213 0.966088i \(-0.583134\pi\)
−0.258213 + 0.966088i \(0.583134\pi\)
\(710\) −1.70910 −0.0641415
\(711\) 4.72022 0.177022
\(712\) 19.6663 0.737026
\(713\) 15.1540 0.567522
\(714\) −4.25830 −0.159363
\(715\) 0.375676 0.0140495
\(716\) −11.4919 −0.429474
\(717\) −0.925473 −0.0345624
\(718\) −8.47146 −0.316152
\(719\) 10.1193 0.377385 0.188693 0.982036i \(-0.439575\pi\)
0.188693 + 0.982036i \(0.439575\pi\)
\(720\) 2.31728 0.0863598
\(721\) 20.0473 0.746602
\(722\) 15.2918 0.569103
\(723\) 4.24397 0.157835
\(724\) 3.73004 0.138626
\(725\) 0.0472308 0.00175411
\(726\) −11.0232 −0.409111
\(727\) 8.71246 0.323127 0.161564 0.986862i \(-0.448346\pi\)
0.161564 + 0.986862i \(0.448346\pi\)
\(728\) −3.31420 −0.122833
\(729\) 1.00000 0.0370370
\(730\) 1.34247 0.0496870
\(731\) −30.1143 −1.11382
\(732\) 8.05819 0.297839
\(733\) 12.4062 0.458234 0.229117 0.973399i \(-0.426416\pi\)
0.229117 + 0.973399i \(0.426416\pi\)
\(734\) 8.92178 0.329309
\(735\) −12.3934 −0.457139
\(736\) −9.92019 −0.365663
\(737\) −2.12679 −0.0783415
\(738\) 5.82638 0.214472
\(739\) −47.1488 −1.73440 −0.867198 0.497964i \(-0.834081\pi\)
−0.867198 + 0.497964i \(0.834081\pi\)
\(740\) −14.8697 −0.546621
\(741\) −1.79455 −0.0659245
\(742\) 12.7933 0.469656
\(743\) 50.1036 1.83812 0.919062 0.394113i \(-0.128948\pi\)
0.919062 + 0.394113i \(0.128948\pi\)
\(744\) −22.7848 −0.835330
\(745\) −0.567396 −0.0207878
\(746\) 19.2115 0.703381
\(747\) 4.37640 0.160124
\(748\) 0.641799 0.0234665
\(749\) 2.42059 0.0884465
\(750\) 11.2923 0.412338
\(751\) 7.48513 0.273136 0.136568 0.990631i \(-0.456393\pi\)
0.136568 + 0.990631i \(0.456393\pi\)
\(752\) −2.14416 −0.0781893
\(753\) 18.3525 0.668801
\(754\) −0.897913 −0.0327000
\(755\) −34.6409 −1.26071
\(756\) 1.18352 0.0430443
\(757\) −35.2872 −1.28254 −0.641268 0.767317i \(-0.721591\pi\)
−0.641268 + 0.767317i \(0.721591\pi\)
\(758\) −35.7409 −1.29817
\(759\) −0.365919 −0.0132820
\(760\) 13.0124 0.472010
\(761\) 2.88904 0.104728 0.0523639 0.998628i \(-0.483324\pi\)
0.0523639 + 0.998628i \(0.483324\pi\)
\(762\) 15.6486 0.566888
\(763\) 21.4454 0.776377
\(764\) −15.4174 −0.557780
\(765\) 7.88213 0.284979
\(766\) −15.1321 −0.546744
\(767\) 10.5886 0.382331
\(768\) 16.9767 0.612593
\(769\) 48.5105 1.74933 0.874666 0.484726i \(-0.161081\pi\)
0.874666 + 0.484726i \(0.161081\pi\)
\(770\) 0.489723 0.0176484
\(771\) −16.7036 −0.601566
\(772\) −25.3199 −0.911285
\(773\) 17.0289 0.612488 0.306244 0.951953i \(-0.400928\pi\)
0.306244 + 0.951953i \(0.400928\pi\)
\(774\) −8.54533 −0.307156
\(775\) −0.369686 −0.0132795
\(776\) 31.5881 1.13395
\(777\) 8.07576 0.289716
\(778\) −18.6182 −0.667494
\(779\) 11.2798 0.404139
\(780\) 2.03067 0.0727096
\(781\) −0.139898 −0.00500595
\(782\) 7.11655 0.254487
\(783\) 0.968676 0.0346177
\(784\) 5.80037 0.207156
\(785\) −34.9505 −1.24744
\(786\) 19.1752 0.683958
\(787\) −4.03480 −0.143825 −0.0719125 0.997411i \(-0.522910\pi\)
−0.0719125 + 0.997411i \(0.522910\pi\)
\(788\) 11.0102 0.392222
\(789\) 23.8638 0.849573
\(790\) 10.5575 0.375619
\(791\) 17.9673 0.638843
\(792\) 0.550176 0.0195497
\(793\) −7.50899 −0.266652
\(794\) −0.827924 −0.0293819
\(795\) −23.6804 −0.839858
\(796\) 7.09482 0.251469
\(797\) −42.5457 −1.50705 −0.753523 0.657422i \(-0.771647\pi\)
−0.753523 + 0.657422i \(0.771647\pi\)
\(798\) −2.33934 −0.0828116
\(799\) −7.29326 −0.258017
\(800\) 0.242006 0.00855620
\(801\) 6.54432 0.231232
\(802\) 1.29075 0.0455779
\(803\) 0.109888 0.00387785
\(804\) −11.4961 −0.405437
\(805\) −5.31870 −0.187460
\(806\) 7.02816 0.247556
\(807\) 4.91838 0.173135
\(808\) −20.6493 −0.726439
\(809\) 42.9029 1.50839 0.754193 0.656653i \(-0.228029\pi\)
0.754193 + 0.656653i \(0.228029\pi\)
\(810\) 2.23666 0.0785881
\(811\) −6.96347 −0.244521 −0.122260 0.992498i \(-0.539014\pi\)
−0.122260 + 0.992498i \(0.539014\pi\)
\(812\) 1.14645 0.0402325
\(813\) −28.5715 −1.00205
\(814\) 1.24269 0.0435561
\(815\) 47.6593 1.66943
\(816\) −3.68899 −0.129140
\(817\) −16.5436 −0.578787
\(818\) −15.6252 −0.546321
\(819\) −1.10286 −0.0385371
\(820\) −12.7639 −0.445734
\(821\) 37.4378 1.30659 0.653295 0.757104i \(-0.273386\pi\)
0.653295 + 0.757104i \(0.273386\pi\)
\(822\) −0.903468 −0.0315121
\(823\) 10.5157 0.366555 0.183277 0.983061i \(-0.441329\pi\)
0.183277 + 0.983061i \(0.441329\pi\)
\(824\) 50.3741 1.75487
\(825\) 0.00892669 0.000310788 0
\(826\) 13.8030 0.480269
\(827\) −52.9664 −1.84182 −0.920911 0.389773i \(-0.872553\pi\)
−0.920911 + 0.389773i \(0.872553\pi\)
\(828\) −1.97793 −0.0687377
\(829\) 16.1308 0.560246 0.280123 0.959964i \(-0.409625\pi\)
0.280123 + 0.959964i \(0.409625\pi\)
\(830\) 9.78850 0.339764
\(831\) 1.72049 0.0596830
\(832\) −6.52153 −0.226093
\(833\) 19.7297 0.683595
\(834\) 20.0567 0.694506
\(835\) 52.5949 1.82012
\(836\) 0.352578 0.0121942
\(837\) −7.58204 −0.262074
\(838\) −17.7486 −0.613114
\(839\) 30.5221 1.05374 0.526870 0.849946i \(-0.323366\pi\)
0.526870 + 0.849946i \(0.323366\pi\)
\(840\) 7.99692 0.275920
\(841\) −28.0617 −0.967644
\(842\) −38.2404 −1.31785
\(843\) 21.5399 0.741874
\(844\) 21.1644 0.728507
\(845\) 27.0345 0.930016
\(846\) −2.06956 −0.0711529
\(847\) −13.1152 −0.450644
\(848\) 11.0829 0.380588
\(849\) −29.5818 −1.01524
\(850\) −0.173610 −0.00595479
\(851\) −13.4964 −0.462650
\(852\) −0.756202 −0.0259071
\(853\) 1.14130 0.0390774 0.0195387 0.999809i \(-0.493780\pi\)
0.0195387 + 0.999809i \(0.493780\pi\)
\(854\) −9.78854 −0.334957
\(855\) 4.33012 0.148087
\(856\) 6.08236 0.207891
\(857\) 11.2386 0.383904 0.191952 0.981404i \(-0.438518\pi\)
0.191952 + 0.981404i \(0.438518\pi\)
\(858\) −0.169707 −0.00579369
\(859\) 14.3081 0.488184 0.244092 0.969752i \(-0.421510\pi\)
0.244092 + 0.969752i \(0.421510\pi\)
\(860\) 18.7203 0.638357
\(861\) 6.93210 0.236245
\(862\) −1.35584 −0.0461801
\(863\) −29.4523 −1.00257 −0.501283 0.865283i \(-0.667139\pi\)
−0.501283 + 0.865283i \(0.667139\pi\)
\(864\) 4.96339 0.168858
\(865\) 8.65945 0.294430
\(866\) 10.0798 0.342526
\(867\) 4.45205 0.151199
\(868\) −8.97352 −0.304581
\(869\) 0.864182 0.0293154
\(870\) 2.16660 0.0734545
\(871\) 10.7126 0.362983
\(872\) 53.8872 1.82485
\(873\) 10.5115 0.355761
\(874\) 3.90954 0.132242
\(875\) 13.4354 0.454198
\(876\) 0.593983 0.0200688
\(877\) −24.4575 −0.825870 −0.412935 0.910760i \(-0.635496\pi\)
−0.412935 + 0.910760i \(0.635496\pi\)
\(878\) −34.4105 −1.16130
\(879\) −0.784142 −0.0264485
\(880\) 0.424249 0.0143014
\(881\) 27.3931 0.922898 0.461449 0.887167i \(-0.347330\pi\)
0.461449 + 0.887167i \(0.347330\pi\)
\(882\) 5.59857 0.188514
\(883\) −16.6452 −0.560156 −0.280078 0.959977i \(-0.590360\pi\)
−0.280078 + 0.959977i \(0.590360\pi\)
\(884\) −3.23272 −0.108728
\(885\) −25.5494 −0.858835
\(886\) −15.0263 −0.504819
\(887\) −24.5904 −0.825664 −0.412832 0.910807i \(-0.635460\pi\)
−0.412832 + 0.910807i \(0.635460\pi\)
\(888\) 20.2924 0.680969
\(889\) 18.6183 0.624438
\(890\) 14.6374 0.490647
\(891\) 0.183081 0.00613345
\(892\) 5.15791 0.172700
\(893\) −4.00662 −0.134076
\(894\) 0.256314 0.00857241
\(895\) −25.8394 −0.863715
\(896\) 3.37048 0.112600
\(897\) 1.84312 0.0615401
\(898\) −24.8842 −0.830396
\(899\) −7.34454 −0.244954
\(900\) 0.0482521 0.00160840
\(901\) 37.6980 1.25590
\(902\) 1.06670 0.0355173
\(903\) −10.1670 −0.338338
\(904\) 45.1474 1.50158
\(905\) 8.38691 0.278790
\(906\) 15.6486 0.519889
\(907\) −13.1734 −0.437416 −0.218708 0.975790i \(-0.570184\pi\)
−0.218708 + 0.975790i \(0.570184\pi\)
\(908\) 11.7160 0.388809
\(909\) −6.87142 −0.227911
\(910\) −2.46672 −0.0817710
\(911\) −5.56149 −0.184260 −0.0921302 0.995747i \(-0.529368\pi\)
−0.0921302 + 0.995747i \(0.529368\pi\)
\(912\) −2.02658 −0.0671067
\(913\) 0.801236 0.0265171
\(914\) −7.74257 −0.256101
\(915\) 18.1186 0.598984
\(916\) −12.0636 −0.398591
\(917\) 22.8143 0.753393
\(918\) −3.56064 −0.117519
\(919\) −59.1243 −1.95033 −0.975165 0.221481i \(-0.928911\pi\)
−0.975165 + 0.221481i \(0.928911\pi\)
\(920\) −13.3646 −0.440618
\(921\) −12.2895 −0.404951
\(922\) −36.9647 −1.21737
\(923\) 0.704664 0.0231943
\(924\) 0.216681 0.00712827
\(925\) 0.329248 0.0108256
\(926\) 28.9424 0.951105
\(927\) 16.7629 0.550566
\(928\) 4.80792 0.157828
\(929\) 51.6774 1.69548 0.847740 0.530412i \(-0.177963\pi\)
0.847740 + 0.530412i \(0.177963\pi\)
\(930\) −16.9584 −0.556088
\(931\) 10.8387 0.355224
\(932\) −9.12715 −0.298970
\(933\) −17.0854 −0.559351
\(934\) 23.0884 0.755474
\(935\) 1.44307 0.0471934
\(936\) −2.77122 −0.0905803
\(937\) 17.8913 0.584482 0.292241 0.956345i \(-0.405599\pi\)
0.292241 + 0.956345i \(0.405599\pi\)
\(938\) 13.9647 0.455964
\(939\) 0.845851 0.0276033
\(940\) 4.53379 0.147876
\(941\) 14.0459 0.457885 0.228942 0.973440i \(-0.426473\pi\)
0.228942 + 0.973440i \(0.426473\pi\)
\(942\) 15.7884 0.514414
\(943\) −11.5851 −0.377261
\(944\) 11.9576 0.389188
\(945\) 2.66112 0.0865663
\(946\) −1.56449 −0.0508659
\(947\) 4.06864 0.132213 0.0661065 0.997813i \(-0.478942\pi\)
0.0661065 + 0.997813i \(0.478942\pi\)
\(948\) 4.67123 0.151714
\(949\) −0.553501 −0.0179674
\(950\) −0.0953744 −0.00309435
\(951\) −2.22653 −0.0722002
\(952\) −12.7307 −0.412604
\(953\) 60.8936 1.97254 0.986269 0.165145i \(-0.0528093\pi\)
0.986269 + 0.165145i \(0.0528093\pi\)
\(954\) 10.6973 0.346338
\(955\) −34.6655 −1.12175
\(956\) −0.915868 −0.0296213
\(957\) 0.177346 0.00573279
\(958\) 16.0380 0.518164
\(959\) −1.07493 −0.0347112
\(960\) 15.7360 0.507876
\(961\) 26.4873 0.854430
\(962\) −6.25938 −0.201810
\(963\) 2.02402 0.0652230
\(964\) 4.19993 0.135271
\(965\) −56.9312 −1.83268
\(966\) 2.40265 0.0773041
\(967\) 23.5431 0.757096 0.378548 0.925582i \(-0.376424\pi\)
0.378548 + 0.925582i \(0.376424\pi\)
\(968\) −32.9553 −1.05922
\(969\) −6.89333 −0.221446
\(970\) 23.5106 0.754881
\(971\) 31.6680 1.01627 0.508136 0.861277i \(-0.330335\pi\)
0.508136 + 0.861277i \(0.330335\pi\)
\(972\) 0.989621 0.0317421
\(973\) 23.8630 0.765012
\(974\) −9.18143 −0.294192
\(975\) −0.0449635 −0.00143999
\(976\) −8.47987 −0.271434
\(977\) 53.9529 1.72611 0.863053 0.505113i \(-0.168549\pi\)
0.863053 + 0.505113i \(0.168549\pi\)
\(978\) −21.5294 −0.688436
\(979\) 1.19814 0.0382928
\(980\) −12.2648 −0.391785
\(981\) 17.9319 0.572523
\(982\) 19.1603 0.611431
\(983\) 3.19894 0.102030 0.0510151 0.998698i \(-0.483754\pi\)
0.0510151 + 0.998698i \(0.483754\pi\)
\(984\) 17.4187 0.555287
\(985\) 24.7562 0.788797
\(986\) −3.44911 −0.109842
\(987\) −2.46231 −0.0783763
\(988\) −1.77593 −0.0564998
\(989\) 16.9914 0.540294
\(990\) 0.409489 0.0130144
\(991\) −37.9397 −1.20519 −0.602597 0.798045i \(-0.705867\pi\)
−0.602597 + 0.798045i \(0.705867\pi\)
\(992\) −37.6326 −1.19484
\(993\) 2.11349 0.0670697
\(994\) 0.918583 0.0291357
\(995\) 15.9525 0.505729
\(996\) 4.33098 0.137232
\(997\) −42.6680 −1.35131 −0.675654 0.737219i \(-0.736139\pi\)
−0.675654 + 0.737219i \(0.736139\pi\)
\(998\) 16.4399 0.520395
\(999\) 6.75267 0.213645
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2031.2.a.i.1.15 38
3.2 odd 2 6093.2.a.o.1.24 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2031.2.a.i.1.15 38 1.1 even 1 trivial
6093.2.a.o.1.24 38 3.2 odd 2