Properties

Label 2031.2.a.i.1.9
Level $2031$
Weight $2$
Character 2031.1
Self dual yes
Analytic conductor $16.218$
Analytic rank $0$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2031,2,Mod(1,2031)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2031, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2031.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2031 = 3 \cdot 677 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2031.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2176166505\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Character \(\chi\) \(=\) 2031.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.82570 q^{2} -1.00000 q^{3} +1.33320 q^{4} +0.0890738 q^{5} +1.82570 q^{6} -3.61025 q^{7} +1.21739 q^{8} +1.00000 q^{9} -0.162622 q^{10} -5.09197 q^{11} -1.33320 q^{12} -3.12793 q^{13} +6.59125 q^{14} -0.0890738 q^{15} -4.88898 q^{16} -5.37516 q^{17} -1.82570 q^{18} +1.56815 q^{19} +0.118753 q^{20} +3.61025 q^{21} +9.29643 q^{22} -6.71613 q^{23} -1.21739 q^{24} -4.99207 q^{25} +5.71068 q^{26} -1.00000 q^{27} -4.81317 q^{28} +8.19556 q^{29} +0.162622 q^{30} +0.829377 q^{31} +6.49106 q^{32} +5.09197 q^{33} +9.81346 q^{34} -0.321579 q^{35} +1.33320 q^{36} +6.20131 q^{37} -2.86298 q^{38} +3.12793 q^{39} +0.108437 q^{40} -5.39696 q^{41} -6.59125 q^{42} -11.8355 q^{43} -6.78859 q^{44} +0.0890738 q^{45} +12.2617 q^{46} -3.72341 q^{47} +4.88898 q^{48} +6.03390 q^{49} +9.11404 q^{50} +5.37516 q^{51} -4.17015 q^{52} -11.5351 q^{53} +1.82570 q^{54} -0.453561 q^{55} -4.39507 q^{56} -1.56815 q^{57} -14.9627 q^{58} -2.47221 q^{59} -0.118753 q^{60} -1.01584 q^{61} -1.51420 q^{62} -3.61025 q^{63} -2.07280 q^{64} -0.278617 q^{65} -9.29643 q^{66} -3.00605 q^{67} -7.16615 q^{68} +6.71613 q^{69} +0.587108 q^{70} -4.34378 q^{71} +1.21739 q^{72} +15.8543 q^{73} -11.3218 q^{74} +4.99207 q^{75} +2.09065 q^{76} +18.3833 q^{77} -5.71068 q^{78} +10.1986 q^{79} -0.435480 q^{80} +1.00000 q^{81} +9.85326 q^{82} -4.82690 q^{83} +4.81317 q^{84} -0.478786 q^{85} +21.6081 q^{86} -8.19556 q^{87} -6.19889 q^{88} -9.78253 q^{89} -0.162622 q^{90} +11.2926 q^{91} -8.95392 q^{92} -0.829377 q^{93} +6.79785 q^{94} +0.139681 q^{95} -6.49106 q^{96} +3.26995 q^{97} -11.0161 q^{98} -5.09197 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 3 q^{2} - 38 q^{3} + 49 q^{4} + 3 q^{5} + 3 q^{6} + 7 q^{7} - 12 q^{8} + 38 q^{9} + 14 q^{10} - 12 q^{11} - 49 q^{12} + 24 q^{13} + q^{14} - 3 q^{15} + 71 q^{16} + 12 q^{17} - 3 q^{18} + 16 q^{19}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.82570 −1.29097 −0.645484 0.763774i \(-0.723344\pi\)
−0.645484 + 0.763774i \(0.723344\pi\)
\(3\) −1.00000 −0.577350
\(4\) 1.33320 0.666598
\(5\) 0.0890738 0.0398350 0.0199175 0.999802i \(-0.493660\pi\)
0.0199175 + 0.999802i \(0.493660\pi\)
\(6\) 1.82570 0.745341
\(7\) −3.61025 −1.36455 −0.682273 0.731097i \(-0.739008\pi\)
−0.682273 + 0.731097i \(0.739008\pi\)
\(8\) 1.21739 0.430411
\(9\) 1.00000 0.333333
\(10\) −0.162622 −0.0514257
\(11\) −5.09197 −1.53529 −0.767643 0.640878i \(-0.778571\pi\)
−0.767643 + 0.640878i \(0.778571\pi\)
\(12\) −1.33320 −0.384861
\(13\) −3.12793 −0.867532 −0.433766 0.901026i \(-0.642816\pi\)
−0.433766 + 0.901026i \(0.642816\pi\)
\(14\) 6.59125 1.76159
\(15\) −0.0890738 −0.0229988
\(16\) −4.88898 −1.22224
\(17\) −5.37516 −1.30367 −0.651834 0.758361i \(-0.726000\pi\)
−0.651834 + 0.758361i \(0.726000\pi\)
\(18\) −1.82570 −0.430323
\(19\) 1.56815 0.359759 0.179879 0.983689i \(-0.442429\pi\)
0.179879 + 0.983689i \(0.442429\pi\)
\(20\) 0.118753 0.0265540
\(21\) 3.61025 0.787821
\(22\) 9.29643 1.98200
\(23\) −6.71613 −1.40041 −0.700205 0.713942i \(-0.746908\pi\)
−0.700205 + 0.713942i \(0.746908\pi\)
\(24\) −1.21739 −0.248498
\(25\) −4.99207 −0.998413
\(26\) 5.71068 1.11996
\(27\) −1.00000 −0.192450
\(28\) −4.81317 −0.909604
\(29\) 8.19556 1.52188 0.760938 0.648824i \(-0.224739\pi\)
0.760938 + 0.648824i \(0.224739\pi\)
\(30\) 0.162622 0.0296907
\(31\) 0.829377 0.148960 0.0744802 0.997222i \(-0.476270\pi\)
0.0744802 + 0.997222i \(0.476270\pi\)
\(32\) 6.49106 1.14747
\(33\) 5.09197 0.886398
\(34\) 9.81346 1.68299
\(35\) −0.321579 −0.0543567
\(36\) 1.33320 0.222199
\(37\) 6.20131 1.01949 0.509744 0.860326i \(-0.329740\pi\)
0.509744 + 0.860326i \(0.329740\pi\)
\(38\) −2.86298 −0.464437
\(39\) 3.12793 0.500870
\(40\) 0.108437 0.0171454
\(41\) −5.39696 −0.842864 −0.421432 0.906860i \(-0.638472\pi\)
−0.421432 + 0.906860i \(0.638472\pi\)
\(42\) −6.59125 −1.01705
\(43\) −11.8355 −1.80489 −0.902446 0.430802i \(-0.858231\pi\)
−0.902446 + 0.430802i \(0.858231\pi\)
\(44\) −6.78859 −1.02342
\(45\) 0.0890738 0.0132783
\(46\) 12.2617 1.80788
\(47\) −3.72341 −0.543116 −0.271558 0.962422i \(-0.587539\pi\)
−0.271558 + 0.962422i \(0.587539\pi\)
\(48\) 4.88898 0.705663
\(49\) 6.03390 0.861986
\(50\) 9.11404 1.28892
\(51\) 5.37516 0.752674
\(52\) −4.17015 −0.578296
\(53\) −11.5351 −1.58447 −0.792234 0.610218i \(-0.791082\pi\)
−0.792234 + 0.610218i \(0.791082\pi\)
\(54\) 1.82570 0.248447
\(55\) −0.453561 −0.0611581
\(56\) −4.39507 −0.587315
\(57\) −1.56815 −0.207707
\(58\) −14.9627 −1.96469
\(59\) −2.47221 −0.321854 −0.160927 0.986966i \(-0.551448\pi\)
−0.160927 + 0.986966i \(0.551448\pi\)
\(60\) −0.118753 −0.0153309
\(61\) −1.01584 −0.130065 −0.0650324 0.997883i \(-0.520715\pi\)
−0.0650324 + 0.997883i \(0.520715\pi\)
\(62\) −1.51420 −0.192303
\(63\) −3.61025 −0.454849
\(64\) −2.07280 −0.259100
\(65\) −0.278617 −0.0345582
\(66\) −9.29643 −1.14431
\(67\) −3.00605 −0.367247 −0.183624 0.982997i \(-0.558783\pi\)
−0.183624 + 0.982997i \(0.558783\pi\)
\(68\) −7.16615 −0.869023
\(69\) 6.71613 0.808527
\(70\) 0.587108 0.0701728
\(71\) −4.34378 −0.515511 −0.257756 0.966210i \(-0.582983\pi\)
−0.257756 + 0.966210i \(0.582983\pi\)
\(72\) 1.21739 0.143470
\(73\) 15.8543 1.85560 0.927801 0.373076i \(-0.121697\pi\)
0.927801 + 0.373076i \(0.121697\pi\)
\(74\) −11.3218 −1.31613
\(75\) 4.99207 0.576434
\(76\) 2.09065 0.239814
\(77\) 18.3833 2.09497
\(78\) −5.71068 −0.646607
\(79\) 10.1986 1.14743 0.573715 0.819055i \(-0.305502\pi\)
0.573715 + 0.819055i \(0.305502\pi\)
\(80\) −0.435480 −0.0486882
\(81\) 1.00000 0.111111
\(82\) 9.85326 1.08811
\(83\) −4.82690 −0.529821 −0.264911 0.964273i \(-0.585342\pi\)
−0.264911 + 0.964273i \(0.585342\pi\)
\(84\) 4.81317 0.525160
\(85\) −0.478786 −0.0519317
\(86\) 21.6081 2.33006
\(87\) −8.19556 −0.878656
\(88\) −6.19889 −0.660804
\(89\) −9.78253 −1.03695 −0.518473 0.855094i \(-0.673499\pi\)
−0.518473 + 0.855094i \(0.673499\pi\)
\(90\) −0.162622 −0.0171419
\(91\) 11.2926 1.18379
\(92\) −8.95392 −0.933511
\(93\) −0.829377 −0.0860024
\(94\) 6.79785 0.701145
\(95\) 0.139681 0.0143310
\(96\) −6.49106 −0.662491
\(97\) 3.26995 0.332013 0.166007 0.986125i \(-0.446913\pi\)
0.166007 + 0.986125i \(0.446913\pi\)
\(98\) −11.0161 −1.11280
\(99\) −5.09197 −0.511762
\(100\) −6.65541 −0.665541
\(101\) −6.74734 −0.671385 −0.335693 0.941972i \(-0.608970\pi\)
−0.335693 + 0.941972i \(0.608970\pi\)
\(102\) −9.81346 −0.971677
\(103\) −11.2421 −1.10772 −0.553858 0.832611i \(-0.686845\pi\)
−0.553858 + 0.832611i \(0.686845\pi\)
\(104\) −3.80790 −0.373395
\(105\) 0.321579 0.0313829
\(106\) 21.0597 2.04550
\(107\) −5.11603 −0.494585 −0.247293 0.968941i \(-0.579541\pi\)
−0.247293 + 0.968941i \(0.579541\pi\)
\(108\) −1.33320 −0.128287
\(109\) −8.22366 −0.787684 −0.393842 0.919178i \(-0.628854\pi\)
−0.393842 + 0.919178i \(0.628854\pi\)
\(110\) 0.828068 0.0789532
\(111\) −6.20131 −0.588602
\(112\) 17.6504 1.66781
\(113\) 7.67176 0.721698 0.360849 0.932624i \(-0.382487\pi\)
0.360849 + 0.932624i \(0.382487\pi\)
\(114\) 2.86298 0.268143
\(115\) −0.598231 −0.0557853
\(116\) 10.9263 1.01448
\(117\) −3.12793 −0.289177
\(118\) 4.51352 0.415504
\(119\) 19.4057 1.77892
\(120\) −0.108437 −0.00989892
\(121\) 14.9281 1.35710
\(122\) 1.85462 0.167910
\(123\) 5.39696 0.486628
\(124\) 1.10572 0.0992968
\(125\) −0.890031 −0.0796068
\(126\) 6.59125 0.587195
\(127\) 12.1479 1.07795 0.538976 0.842321i \(-0.318811\pi\)
0.538976 + 0.842321i \(0.318811\pi\)
\(128\) −9.19780 −0.812979
\(129\) 11.8355 1.04206
\(130\) 0.508672 0.0446135
\(131\) −4.00912 −0.350278 −0.175139 0.984544i \(-0.556037\pi\)
−0.175139 + 0.984544i \(0.556037\pi\)
\(132\) 6.78859 0.590871
\(133\) −5.66142 −0.490907
\(134\) 5.48816 0.474104
\(135\) −0.0890738 −0.00766625
\(136\) −6.54365 −0.561113
\(137\) −12.1032 −1.03404 −0.517022 0.855972i \(-0.672960\pi\)
−0.517022 + 0.855972i \(0.672960\pi\)
\(138\) −12.2617 −1.04378
\(139\) 11.3964 0.966630 0.483315 0.875446i \(-0.339433\pi\)
0.483315 + 0.875446i \(0.339433\pi\)
\(140\) −0.428728 −0.0362341
\(141\) 3.72341 0.313568
\(142\) 7.93045 0.665509
\(143\) 15.9273 1.33191
\(144\) −4.88898 −0.407415
\(145\) 0.730010 0.0606240
\(146\) −28.9452 −2.39552
\(147\) −6.03390 −0.497668
\(148\) 8.26756 0.679589
\(149\) −5.83379 −0.477923 −0.238962 0.971029i \(-0.576807\pi\)
−0.238962 + 0.971029i \(0.576807\pi\)
\(150\) −9.11404 −0.744158
\(151\) −4.37768 −0.356251 −0.178125 0.984008i \(-0.557003\pi\)
−0.178125 + 0.984008i \(0.557003\pi\)
\(152\) 1.90905 0.154844
\(153\) −5.37516 −0.434556
\(154\) −33.5624 −2.70454
\(155\) 0.0738757 0.00593384
\(156\) 4.17015 0.333879
\(157\) 15.9452 1.27256 0.636282 0.771456i \(-0.280471\pi\)
0.636282 + 0.771456i \(0.280471\pi\)
\(158\) −18.6196 −1.48129
\(159\) 11.5351 0.914793
\(160\) 0.578184 0.0457094
\(161\) 24.2469 1.91092
\(162\) −1.82570 −0.143441
\(163\) 21.4190 1.67767 0.838834 0.544387i \(-0.183238\pi\)
0.838834 + 0.544387i \(0.183238\pi\)
\(164\) −7.19521 −0.561852
\(165\) 0.453561 0.0353097
\(166\) 8.81250 0.683982
\(167\) −12.2941 −0.951344 −0.475672 0.879623i \(-0.657795\pi\)
−0.475672 + 0.879623i \(0.657795\pi\)
\(168\) 4.39507 0.339087
\(169\) −3.21604 −0.247388
\(170\) 0.874122 0.0670421
\(171\) 1.56815 0.119920
\(172\) −15.7790 −1.20314
\(173\) 14.2095 1.08033 0.540166 0.841559i \(-0.318362\pi\)
0.540166 + 0.841559i \(0.318362\pi\)
\(174\) 14.9627 1.13432
\(175\) 18.0226 1.36238
\(176\) 24.8945 1.87650
\(177\) 2.47221 0.185823
\(178\) 17.8600 1.33866
\(179\) 3.37466 0.252234 0.126117 0.992015i \(-0.459749\pi\)
0.126117 + 0.992015i \(0.459749\pi\)
\(180\) 0.118753 0.00885132
\(181\) 20.8237 1.54782 0.773908 0.633298i \(-0.218299\pi\)
0.773908 + 0.633298i \(0.218299\pi\)
\(182\) −20.6170 −1.52823
\(183\) 1.01584 0.0750930
\(184\) −8.17612 −0.602751
\(185\) 0.552374 0.0406113
\(186\) 1.51420 0.111026
\(187\) 27.3702 2.00150
\(188\) −4.96404 −0.362040
\(189\) 3.61025 0.262607
\(190\) −0.255017 −0.0185009
\(191\) 0.989248 0.0715795 0.0357897 0.999359i \(-0.488605\pi\)
0.0357897 + 0.999359i \(0.488605\pi\)
\(192\) 2.07280 0.149591
\(193\) 12.4163 0.893742 0.446871 0.894598i \(-0.352538\pi\)
0.446871 + 0.894598i \(0.352538\pi\)
\(194\) −5.96996 −0.428618
\(195\) 0.278617 0.0199522
\(196\) 8.04438 0.574598
\(197\) 19.5063 1.38976 0.694882 0.719124i \(-0.255457\pi\)
0.694882 + 0.719124i \(0.255457\pi\)
\(198\) 9.29643 0.660668
\(199\) −24.3936 −1.72922 −0.864609 0.502445i \(-0.832434\pi\)
−0.864609 + 0.502445i \(0.832434\pi\)
\(200\) −6.07727 −0.429728
\(201\) 3.00605 0.212030
\(202\) 12.3186 0.866737
\(203\) −29.5880 −2.07667
\(204\) 7.16615 0.501731
\(205\) −0.480728 −0.0335755
\(206\) 20.5247 1.43002
\(207\) −6.71613 −0.466803
\(208\) 15.2924 1.06034
\(209\) −7.98498 −0.552332
\(210\) −0.587108 −0.0405143
\(211\) 14.8319 1.02107 0.510534 0.859857i \(-0.329448\pi\)
0.510534 + 0.859857i \(0.329448\pi\)
\(212\) −15.3786 −1.05620
\(213\) 4.34378 0.297631
\(214\) 9.34035 0.638494
\(215\) −1.05423 −0.0718979
\(216\) −1.21739 −0.0828326
\(217\) −2.99426 −0.203263
\(218\) 15.0140 1.01687
\(219\) −15.8543 −1.07133
\(220\) −0.604686 −0.0407679
\(221\) 16.8131 1.13097
\(222\) 11.3218 0.759866
\(223\) −6.88052 −0.460754 −0.230377 0.973101i \(-0.573996\pi\)
−0.230377 + 0.973101i \(0.573996\pi\)
\(224\) −23.4343 −1.56577
\(225\) −4.99207 −0.332804
\(226\) −14.0064 −0.931690
\(227\) −17.6493 −1.17143 −0.585714 0.810518i \(-0.699186\pi\)
−0.585714 + 0.810518i \(0.699186\pi\)
\(228\) −2.09065 −0.138457
\(229\) 25.4186 1.67971 0.839853 0.542814i \(-0.182641\pi\)
0.839853 + 0.542814i \(0.182641\pi\)
\(230\) 1.09219 0.0720171
\(231\) −18.3833 −1.20953
\(232\) 9.97716 0.655032
\(233\) −10.6238 −0.695989 −0.347995 0.937497i \(-0.613137\pi\)
−0.347995 + 0.937497i \(0.613137\pi\)
\(234\) 5.71068 0.373319
\(235\) −0.331659 −0.0216350
\(236\) −3.29594 −0.214548
\(237\) −10.1986 −0.662469
\(238\) −35.4290 −2.29652
\(239\) 29.3704 1.89981 0.949905 0.312538i \(-0.101179\pi\)
0.949905 + 0.312538i \(0.101179\pi\)
\(240\) 0.435480 0.0281101
\(241\) −10.3496 −0.666677 −0.333338 0.942807i \(-0.608175\pi\)
−0.333338 + 0.942807i \(0.608175\pi\)
\(242\) −27.2544 −1.75198
\(243\) −1.00000 −0.0641500
\(244\) −1.35431 −0.0867010
\(245\) 0.537463 0.0343372
\(246\) −9.85326 −0.628221
\(247\) −4.90507 −0.312102
\(248\) 1.00967 0.0641142
\(249\) 4.82690 0.305893
\(250\) 1.62493 0.102770
\(251\) 9.20452 0.580984 0.290492 0.956877i \(-0.406181\pi\)
0.290492 + 0.956877i \(0.406181\pi\)
\(252\) −4.81317 −0.303201
\(253\) 34.1983 2.15003
\(254\) −22.1785 −1.39160
\(255\) 0.478786 0.0299828
\(256\) 20.9381 1.30863
\(257\) 7.76335 0.484265 0.242132 0.970243i \(-0.422153\pi\)
0.242132 + 0.970243i \(0.422153\pi\)
\(258\) −21.6081 −1.34526
\(259\) −22.3883 −1.39114
\(260\) −0.371451 −0.0230364
\(261\) 8.19556 0.507292
\(262\) 7.31946 0.452198
\(263\) 3.26409 0.201273 0.100636 0.994923i \(-0.467912\pi\)
0.100636 + 0.994923i \(0.467912\pi\)
\(264\) 6.19889 0.381515
\(265\) −1.02748 −0.0631173
\(266\) 10.3361 0.633745
\(267\) 9.78253 0.598681
\(268\) −4.00765 −0.244806
\(269\) 15.0673 0.918670 0.459335 0.888263i \(-0.348088\pi\)
0.459335 + 0.888263i \(0.348088\pi\)
\(270\) 0.162622 0.00989689
\(271\) −5.34308 −0.324569 −0.162285 0.986744i \(-0.551886\pi\)
−0.162285 + 0.986744i \(0.551886\pi\)
\(272\) 26.2791 1.59340
\(273\) −11.2926 −0.683460
\(274\) 22.0968 1.33492
\(275\) 25.4194 1.53285
\(276\) 8.95392 0.538963
\(277\) −28.3622 −1.70412 −0.852059 0.523446i \(-0.824646\pi\)
−0.852059 + 0.523446i \(0.824646\pi\)
\(278\) −20.8065 −1.24789
\(279\) 0.829377 0.0496535
\(280\) −0.391485 −0.0233957
\(281\) −21.5231 −1.28396 −0.641980 0.766721i \(-0.721887\pi\)
−0.641980 + 0.766721i \(0.721887\pi\)
\(282\) −6.79785 −0.404806
\(283\) −27.1679 −1.61496 −0.807482 0.589892i \(-0.799170\pi\)
−0.807482 + 0.589892i \(0.799170\pi\)
\(284\) −5.79111 −0.343639
\(285\) −0.139681 −0.00827400
\(286\) −29.0786 −1.71945
\(287\) 19.4844 1.15013
\(288\) 6.49106 0.382489
\(289\) 11.8924 0.699552
\(290\) −1.33278 −0.0782636
\(291\) −3.26995 −0.191688
\(292\) 21.1369 1.23694
\(293\) −6.99808 −0.408832 −0.204416 0.978884i \(-0.565530\pi\)
−0.204416 + 0.978884i \(0.565530\pi\)
\(294\) 11.0161 0.642473
\(295\) −0.220209 −0.0128211
\(296\) 7.54938 0.438799
\(297\) 5.09197 0.295466
\(298\) 10.6508 0.616983
\(299\) 21.0076 1.21490
\(300\) 6.65541 0.384250
\(301\) 42.7290 2.46286
\(302\) 7.99235 0.459908
\(303\) 6.74734 0.387625
\(304\) −7.66666 −0.439713
\(305\) −0.0904847 −0.00518114
\(306\) 9.81346 0.560998
\(307\) 3.68377 0.210244 0.105122 0.994459i \(-0.466477\pi\)
0.105122 + 0.994459i \(0.466477\pi\)
\(308\) 24.5085 1.39650
\(309\) 11.2421 0.639540
\(310\) −0.134875 −0.00766040
\(311\) 25.0499 1.42045 0.710224 0.703976i \(-0.248594\pi\)
0.710224 + 0.703976i \(0.248594\pi\)
\(312\) 3.80790 0.215580
\(313\) −23.7351 −1.34159 −0.670795 0.741643i \(-0.734047\pi\)
−0.670795 + 0.741643i \(0.734047\pi\)
\(314\) −29.1112 −1.64284
\(315\) −0.321579 −0.0181189
\(316\) 13.5967 0.764875
\(317\) 16.8244 0.944950 0.472475 0.881344i \(-0.343361\pi\)
0.472475 + 0.881344i \(0.343361\pi\)
\(318\) −21.0597 −1.18097
\(319\) −41.7315 −2.33652
\(320\) −0.184632 −0.0103212
\(321\) 5.11603 0.285549
\(322\) −44.2677 −2.46694
\(323\) −8.42907 −0.469006
\(324\) 1.33320 0.0740665
\(325\) 15.6148 0.866156
\(326\) −39.1048 −2.16582
\(327\) 8.22366 0.454770
\(328\) −6.57018 −0.362778
\(329\) 13.4425 0.741106
\(330\) −0.828068 −0.0455837
\(331\) 15.3426 0.843308 0.421654 0.906757i \(-0.361450\pi\)
0.421654 + 0.906757i \(0.361450\pi\)
\(332\) −6.43521 −0.353178
\(333\) 6.20131 0.339829
\(334\) 22.4453 1.22815
\(335\) −0.267760 −0.0146293
\(336\) −17.6504 −0.962910
\(337\) −6.08398 −0.331416 −0.165708 0.986175i \(-0.552991\pi\)
−0.165708 + 0.986175i \(0.552991\pi\)
\(338\) 5.87154 0.319370
\(339\) −7.67176 −0.416673
\(340\) −0.638316 −0.0346176
\(341\) −4.22316 −0.228697
\(342\) −2.86298 −0.154812
\(343\) 3.48785 0.188326
\(344\) −14.4083 −0.776846
\(345\) 0.598231 0.0322077
\(346\) −25.9424 −1.39467
\(347\) −12.2462 −0.657409 −0.328705 0.944433i \(-0.606612\pi\)
−0.328705 + 0.944433i \(0.606612\pi\)
\(348\) −10.9263 −0.585711
\(349\) −1.81732 −0.0972789 −0.0486395 0.998816i \(-0.515489\pi\)
−0.0486395 + 0.998816i \(0.515489\pi\)
\(350\) −32.9039 −1.75879
\(351\) 3.12793 0.166957
\(352\) −33.0523 −1.76169
\(353\) 32.3598 1.72234 0.861168 0.508320i \(-0.169733\pi\)
0.861168 + 0.508320i \(0.169733\pi\)
\(354\) −4.51352 −0.239891
\(355\) −0.386917 −0.0205354
\(356\) −13.0420 −0.691227
\(357\) −19.4057 −1.02706
\(358\) −6.16113 −0.325626
\(359\) 0.321434 0.0169647 0.00848233 0.999964i \(-0.497300\pi\)
0.00848233 + 0.999964i \(0.497300\pi\)
\(360\) 0.108437 0.00571514
\(361\) −16.5409 −0.870574
\(362\) −38.0180 −1.99818
\(363\) −14.9281 −0.783524
\(364\) 15.0553 0.789111
\(365\) 1.41220 0.0739179
\(366\) −1.85462 −0.0969427
\(367\) −21.9241 −1.14443 −0.572215 0.820104i \(-0.693916\pi\)
−0.572215 + 0.820104i \(0.693916\pi\)
\(368\) 32.8350 1.71164
\(369\) −5.39696 −0.280955
\(370\) −1.00847 −0.0524279
\(371\) 41.6446 2.16208
\(372\) −1.10572 −0.0573290
\(373\) −7.52271 −0.389511 −0.194756 0.980852i \(-0.562391\pi\)
−0.194756 + 0.980852i \(0.562391\pi\)
\(374\) −49.9698 −2.58388
\(375\) 0.890031 0.0459610
\(376\) −4.53283 −0.233763
\(377\) −25.6351 −1.32028
\(378\) −6.59125 −0.339017
\(379\) −32.2322 −1.65566 −0.827829 0.560981i \(-0.810424\pi\)
−0.827829 + 0.560981i \(0.810424\pi\)
\(380\) 0.186223 0.00955302
\(381\) −12.1479 −0.622356
\(382\) −1.80607 −0.0924068
\(383\) −10.7544 −0.549524 −0.274762 0.961512i \(-0.588599\pi\)
−0.274762 + 0.961512i \(0.588599\pi\)
\(384\) 9.19780 0.469373
\(385\) 1.63747 0.0834531
\(386\) −22.6684 −1.15379
\(387\) −11.8355 −0.601631
\(388\) 4.35949 0.221319
\(389\) −20.8210 −1.05566 −0.527832 0.849349i \(-0.676995\pi\)
−0.527832 + 0.849349i \(0.676995\pi\)
\(390\) −0.508672 −0.0257576
\(391\) 36.1003 1.82567
\(392\) 7.34559 0.371008
\(393\) 4.00912 0.202233
\(394\) −35.6127 −1.79414
\(395\) 0.908426 0.0457079
\(396\) −6.78859 −0.341140
\(397\) −5.66416 −0.284276 −0.142138 0.989847i \(-0.545398\pi\)
−0.142138 + 0.989847i \(0.545398\pi\)
\(398\) 44.5356 2.23237
\(399\) 5.66142 0.283425
\(400\) 24.4061 1.22031
\(401\) −1.37239 −0.0685338 −0.0342669 0.999413i \(-0.510910\pi\)
−0.0342669 + 0.999413i \(0.510910\pi\)
\(402\) −5.48816 −0.273724
\(403\) −2.59423 −0.129228
\(404\) −8.99553 −0.447544
\(405\) 0.0890738 0.00442611
\(406\) 54.0190 2.68092
\(407\) −31.5768 −1.56521
\(408\) 6.54365 0.323959
\(409\) −2.81552 −0.139218 −0.0696092 0.997574i \(-0.522175\pi\)
−0.0696092 + 0.997574i \(0.522175\pi\)
\(410\) 0.877667 0.0433449
\(411\) 12.1032 0.597006
\(412\) −14.9879 −0.738401
\(413\) 8.92530 0.439185
\(414\) 12.2617 0.602628
\(415\) −0.429951 −0.0211054
\(416\) −20.3036 −0.995466
\(417\) −11.3964 −0.558084
\(418\) 14.5782 0.713043
\(419\) −3.73420 −0.182428 −0.0912139 0.995831i \(-0.529075\pi\)
−0.0912139 + 0.995831i \(0.529075\pi\)
\(420\) 0.428728 0.0209198
\(421\) 14.0132 0.682964 0.341482 0.939888i \(-0.389071\pi\)
0.341482 + 0.939888i \(0.389071\pi\)
\(422\) −27.0786 −1.31817
\(423\) −3.72341 −0.181039
\(424\) −14.0427 −0.681972
\(425\) 26.8332 1.30160
\(426\) −7.93045 −0.384232
\(427\) 3.66743 0.177480
\(428\) −6.82067 −0.329690
\(429\) −15.9273 −0.768979
\(430\) 1.92471 0.0928179
\(431\) −6.92363 −0.333500 −0.166750 0.985999i \(-0.553327\pi\)
−0.166750 + 0.985999i \(0.553327\pi\)
\(432\) 4.88898 0.235221
\(433\) 11.3455 0.545230 0.272615 0.962123i \(-0.412112\pi\)
0.272615 + 0.962123i \(0.412112\pi\)
\(434\) 5.46663 0.262407
\(435\) −0.730010 −0.0350013
\(436\) −10.9638 −0.525069
\(437\) −10.5319 −0.503809
\(438\) 28.9452 1.38306
\(439\) −2.62975 −0.125511 −0.0627555 0.998029i \(-0.519989\pi\)
−0.0627555 + 0.998029i \(0.519989\pi\)
\(440\) −0.552159 −0.0263231
\(441\) 6.03390 0.287329
\(442\) −30.6958 −1.46005
\(443\) −9.87644 −0.469244 −0.234622 0.972087i \(-0.575385\pi\)
−0.234622 + 0.972087i \(0.575385\pi\)
\(444\) −8.26756 −0.392361
\(445\) −0.871367 −0.0413068
\(446\) 12.5618 0.594819
\(447\) 5.83379 0.275929
\(448\) 7.48332 0.353554
\(449\) −6.68632 −0.315547 −0.157774 0.987475i \(-0.550432\pi\)
−0.157774 + 0.987475i \(0.550432\pi\)
\(450\) 9.11404 0.429640
\(451\) 27.4812 1.29404
\(452\) 10.2280 0.481083
\(453\) 4.37768 0.205681
\(454\) 32.2225 1.51228
\(455\) 1.00588 0.0471562
\(456\) −1.90905 −0.0893992
\(457\) 39.1418 1.83098 0.915489 0.402344i \(-0.131804\pi\)
0.915489 + 0.402344i \(0.131804\pi\)
\(458\) −46.4068 −2.16845
\(459\) 5.37516 0.250891
\(460\) −0.797560 −0.0371864
\(461\) −5.56009 −0.258959 −0.129480 0.991582i \(-0.541331\pi\)
−0.129480 + 0.991582i \(0.541331\pi\)
\(462\) 33.5624 1.56147
\(463\) −19.4843 −0.905511 −0.452756 0.891635i \(-0.649559\pi\)
−0.452756 + 0.891635i \(0.649559\pi\)
\(464\) −40.0679 −1.86011
\(465\) −0.0738757 −0.00342591
\(466\) 19.3959 0.898500
\(467\) −22.6493 −1.04809 −0.524043 0.851692i \(-0.675577\pi\)
−0.524043 + 0.851692i \(0.675577\pi\)
\(468\) −4.17015 −0.192765
\(469\) 10.8526 0.501126
\(470\) 0.605511 0.0279301
\(471\) −15.9452 −0.734715
\(472\) −3.00963 −0.138530
\(473\) 60.2659 2.77103
\(474\) 18.6196 0.855226
\(475\) −7.82832 −0.359188
\(476\) 25.8716 1.18582
\(477\) −11.5351 −0.528156
\(478\) −53.6216 −2.45259
\(479\) −19.2755 −0.880720 −0.440360 0.897821i \(-0.645149\pi\)
−0.440360 + 0.897821i \(0.645149\pi\)
\(480\) −0.578184 −0.0263903
\(481\) −19.3973 −0.884439
\(482\) 18.8953 0.860658
\(483\) −24.2469 −1.10327
\(484\) 19.9021 0.904643
\(485\) 0.291267 0.0132258
\(486\) 1.82570 0.0828156
\(487\) −33.3931 −1.51318 −0.756592 0.653887i \(-0.773137\pi\)
−0.756592 + 0.653887i \(0.773137\pi\)
\(488\) −1.23667 −0.0559813
\(489\) −21.4190 −0.968602
\(490\) −0.981248 −0.0443283
\(491\) −23.4494 −1.05826 −0.529129 0.848541i \(-0.677481\pi\)
−0.529129 + 0.848541i \(0.677481\pi\)
\(492\) 7.19521 0.324385
\(493\) −44.0525 −1.98402
\(494\) 8.95521 0.402914
\(495\) −0.453561 −0.0203860
\(496\) −4.05481 −0.182066
\(497\) 15.6821 0.703439
\(498\) −8.81250 −0.394897
\(499\) 29.9852 1.34232 0.671160 0.741313i \(-0.265796\pi\)
0.671160 + 0.741313i \(0.265796\pi\)
\(500\) −1.18659 −0.0530658
\(501\) 12.2941 0.549259
\(502\) −16.8047 −0.750032
\(503\) −9.88121 −0.440581 −0.220291 0.975434i \(-0.570701\pi\)
−0.220291 + 0.975434i \(0.570701\pi\)
\(504\) −4.39507 −0.195772
\(505\) −0.601011 −0.0267447
\(506\) −62.4360 −2.77562
\(507\) 3.21604 0.142829
\(508\) 16.1955 0.718561
\(509\) −7.37363 −0.326830 −0.163415 0.986557i \(-0.552251\pi\)
−0.163415 + 0.986557i \(0.552251\pi\)
\(510\) −0.874122 −0.0387068
\(511\) −57.2379 −2.53205
\(512\) −19.8311 −0.876420
\(513\) −1.56815 −0.0692356
\(514\) −14.1736 −0.625170
\(515\) −1.00137 −0.0441259
\(516\) 15.7790 0.694632
\(517\) 18.9595 0.833838
\(518\) 40.8743 1.79592
\(519\) −14.2095 −0.623729
\(520\) −0.339184 −0.0148742
\(521\) 37.7485 1.65379 0.826896 0.562355i \(-0.190105\pi\)
0.826896 + 0.562355i \(0.190105\pi\)
\(522\) −14.9627 −0.654898
\(523\) −19.2823 −0.843154 −0.421577 0.906793i \(-0.638523\pi\)
−0.421577 + 0.906793i \(0.638523\pi\)
\(524\) −5.34494 −0.233495
\(525\) −18.0226 −0.786571
\(526\) −5.95927 −0.259837
\(527\) −4.45804 −0.194195
\(528\) −24.8945 −1.08340
\(529\) 22.1064 0.961147
\(530\) 1.87587 0.0814824
\(531\) −2.47221 −0.107285
\(532\) −7.54778 −0.327238
\(533\) 16.8813 0.731212
\(534\) −17.8600 −0.772878
\(535\) −0.455704 −0.0197018
\(536\) −3.65952 −0.158067
\(537\) −3.37466 −0.145627
\(538\) −27.5085 −1.18597
\(539\) −30.7244 −1.32340
\(540\) −0.118753 −0.00511031
\(541\) −27.0571 −1.16328 −0.581638 0.813448i \(-0.697588\pi\)
−0.581638 + 0.813448i \(0.697588\pi\)
\(542\) 9.75489 0.419009
\(543\) −20.8237 −0.893632
\(544\) −34.8905 −1.49592
\(545\) −0.732513 −0.0313774
\(546\) 20.6170 0.882325
\(547\) −27.1856 −1.16237 −0.581186 0.813771i \(-0.697411\pi\)
−0.581186 + 0.813771i \(0.697411\pi\)
\(548\) −16.1359 −0.689292
\(549\) −1.01584 −0.0433550
\(550\) −46.4084 −1.97886
\(551\) 12.8519 0.547508
\(552\) 8.17612 0.347999
\(553\) −36.8194 −1.56572
\(554\) 51.7809 2.19996
\(555\) −0.552374 −0.0234470
\(556\) 15.1936 0.644354
\(557\) −39.4146 −1.67005 −0.835025 0.550212i \(-0.814547\pi\)
−0.835025 + 0.550212i \(0.814547\pi\)
\(558\) −1.51420 −0.0641011
\(559\) 37.0206 1.56580
\(560\) 1.57219 0.0664372
\(561\) −27.3702 −1.15557
\(562\) 39.2948 1.65755
\(563\) −10.2795 −0.433229 −0.216615 0.976257i \(-0.569501\pi\)
−0.216615 + 0.976257i \(0.569501\pi\)
\(564\) 4.96404 0.209024
\(565\) 0.683353 0.0287489
\(566\) 49.6005 2.08487
\(567\) −3.61025 −0.151616
\(568\) −5.28805 −0.221882
\(569\) 21.1332 0.885950 0.442975 0.896534i \(-0.353923\pi\)
0.442975 + 0.896534i \(0.353923\pi\)
\(570\) 0.255017 0.0106815
\(571\) 7.14958 0.299201 0.149600 0.988747i \(-0.452201\pi\)
0.149600 + 0.988747i \(0.452201\pi\)
\(572\) 21.2343 0.887849
\(573\) −0.989248 −0.0413264
\(574\) −35.5727 −1.48478
\(575\) 33.5274 1.39819
\(576\) −2.07280 −0.0863666
\(577\) 6.32513 0.263318 0.131659 0.991295i \(-0.457970\pi\)
0.131659 + 0.991295i \(0.457970\pi\)
\(578\) −21.7120 −0.903100
\(579\) −12.4163 −0.516002
\(580\) 0.973246 0.0404119
\(581\) 17.4263 0.722966
\(582\) 5.96996 0.247463
\(583\) 58.7363 2.43261
\(584\) 19.3008 0.798671
\(585\) −0.278617 −0.0115194
\(586\) 12.7764 0.527789
\(587\) 10.0339 0.414142 0.207071 0.978326i \(-0.433607\pi\)
0.207071 + 0.978326i \(0.433607\pi\)
\(588\) −8.04438 −0.331745
\(589\) 1.30059 0.0535898
\(590\) 0.402037 0.0165516
\(591\) −19.5063 −0.802380
\(592\) −30.3181 −1.24606
\(593\) 14.6552 0.601818 0.300909 0.953653i \(-0.402710\pi\)
0.300909 + 0.953653i \(0.402710\pi\)
\(594\) −9.29643 −0.381437
\(595\) 1.72854 0.0708632
\(596\) −7.77759 −0.318583
\(597\) 24.3936 0.998365
\(598\) −38.3537 −1.56840
\(599\) 15.4711 0.632131 0.316065 0.948737i \(-0.397638\pi\)
0.316065 + 0.948737i \(0.397638\pi\)
\(600\) 6.07727 0.248104
\(601\) −42.0096 −1.71361 −0.856804 0.515643i \(-0.827553\pi\)
−0.856804 + 0.515643i \(0.827553\pi\)
\(602\) −78.0106 −3.17947
\(603\) −3.00605 −0.122416
\(604\) −5.83631 −0.237476
\(605\) 1.32971 0.0540602
\(606\) −12.3186 −0.500411
\(607\) −13.7799 −0.559311 −0.279655 0.960100i \(-0.590220\pi\)
−0.279655 + 0.960100i \(0.590220\pi\)
\(608\) 10.1790 0.412812
\(609\) 29.5880 1.19897
\(610\) 0.165198 0.00668868
\(611\) 11.6466 0.471170
\(612\) −7.16615 −0.289674
\(613\) 8.63890 0.348922 0.174461 0.984664i \(-0.444182\pi\)
0.174461 + 0.984664i \(0.444182\pi\)
\(614\) −6.72548 −0.271418
\(615\) 0.480728 0.0193848
\(616\) 22.3795 0.901697
\(617\) −44.7530 −1.80169 −0.900845 0.434142i \(-0.857052\pi\)
−0.900845 + 0.434142i \(0.857052\pi\)
\(618\) −20.5247 −0.825625
\(619\) 13.8584 0.557016 0.278508 0.960434i \(-0.410160\pi\)
0.278508 + 0.960434i \(0.410160\pi\)
\(620\) 0.0984909 0.00395549
\(621\) 6.71613 0.269509
\(622\) −45.7337 −1.83375
\(623\) 35.3174 1.41496
\(624\) −15.2924 −0.612186
\(625\) 24.8811 0.995242
\(626\) 43.3334 1.73195
\(627\) 7.98498 0.318889
\(628\) 21.2581 0.848289
\(629\) −33.3330 −1.32908
\(630\) 0.587108 0.0233909
\(631\) 10.6818 0.425237 0.212619 0.977135i \(-0.431801\pi\)
0.212619 + 0.977135i \(0.431801\pi\)
\(632\) 12.4156 0.493866
\(633\) −14.8319 −0.589514
\(634\) −30.7163 −1.21990
\(635\) 1.08206 0.0429403
\(636\) 15.3786 0.609799
\(637\) −18.8736 −0.747801
\(638\) 76.1894 3.01637
\(639\) −4.34378 −0.171837
\(640\) −0.819283 −0.0323850
\(641\) 10.8214 0.427421 0.213711 0.976897i \(-0.431445\pi\)
0.213711 + 0.976897i \(0.431445\pi\)
\(642\) −9.34035 −0.368634
\(643\) −32.4201 −1.27852 −0.639261 0.768989i \(-0.720760\pi\)
−0.639261 + 0.768989i \(0.720760\pi\)
\(644\) 32.3259 1.27382
\(645\) 1.05423 0.0415103
\(646\) 15.3890 0.605472
\(647\) −13.3101 −0.523272 −0.261636 0.965167i \(-0.584262\pi\)
−0.261636 + 0.965167i \(0.584262\pi\)
\(648\) 1.21739 0.0478234
\(649\) 12.5884 0.494138
\(650\) −28.5081 −1.11818
\(651\) 2.99426 0.117354
\(652\) 28.5558 1.11833
\(653\) 25.4263 0.995010 0.497505 0.867461i \(-0.334250\pi\)
0.497505 + 0.867461i \(0.334250\pi\)
\(654\) −15.0140 −0.587093
\(655\) −0.357107 −0.0139533
\(656\) 26.3856 1.03019
\(657\) 15.8543 0.618534
\(658\) −24.5419 −0.956745
\(659\) −25.3604 −0.987902 −0.493951 0.869490i \(-0.664448\pi\)
−0.493951 + 0.869490i \(0.664448\pi\)
\(660\) 0.604686 0.0235374
\(661\) 11.0526 0.429896 0.214948 0.976626i \(-0.431042\pi\)
0.214948 + 0.976626i \(0.431042\pi\)
\(662\) −28.0111 −1.08868
\(663\) −16.8131 −0.652969
\(664\) −5.87620 −0.228041
\(665\) −0.504284 −0.0195553
\(666\) −11.3218 −0.438709
\(667\) −55.0424 −2.13125
\(668\) −16.3904 −0.634164
\(669\) 6.88052 0.266016
\(670\) 0.488851 0.0188860
\(671\) 5.17262 0.199687
\(672\) 23.4343 0.904000
\(673\) −16.0181 −0.617451 −0.308726 0.951151i \(-0.599903\pi\)
−0.308726 + 0.951151i \(0.599903\pi\)
\(674\) 11.1076 0.427847
\(675\) 4.99207 0.192145
\(676\) −4.28762 −0.164908
\(677\) 1.00000 0.0384331
\(678\) 14.0064 0.537911
\(679\) −11.8053 −0.453047
\(680\) −0.582868 −0.0223520
\(681\) 17.6493 0.676324
\(682\) 7.71024 0.295240
\(683\) −2.90065 −0.110990 −0.0554952 0.998459i \(-0.517674\pi\)
−0.0554952 + 0.998459i \(0.517674\pi\)
\(684\) 2.09065 0.0799382
\(685\) −1.07808 −0.0411912
\(686\) −6.36779 −0.243123
\(687\) −25.4186 −0.969779
\(688\) 57.8634 2.20602
\(689\) 36.0810 1.37458
\(690\) −1.09219 −0.0415791
\(691\) 7.72885 0.294019 0.147010 0.989135i \(-0.453035\pi\)
0.147010 + 0.989135i \(0.453035\pi\)
\(692\) 18.9441 0.720147
\(693\) 18.3833 0.698323
\(694\) 22.3579 0.848695
\(695\) 1.01512 0.0385057
\(696\) −9.97716 −0.378183
\(697\) 29.0096 1.09882
\(698\) 3.31789 0.125584
\(699\) 10.6238 0.401830
\(700\) 24.0277 0.908161
\(701\) 31.4624 1.18832 0.594159 0.804348i \(-0.297485\pi\)
0.594159 + 0.804348i \(0.297485\pi\)
\(702\) −5.71068 −0.215536
\(703\) 9.72459 0.366770
\(704\) 10.5546 0.397792
\(705\) 0.331659 0.0124910
\(706\) −59.0794 −2.22348
\(707\) 24.3596 0.916136
\(708\) 3.29594 0.123869
\(709\) 17.9270 0.673261 0.336631 0.941637i \(-0.390713\pi\)
0.336631 + 0.941637i \(0.390713\pi\)
\(710\) 0.706396 0.0265106
\(711\) 10.1986 0.382477
\(712\) −11.9091 −0.446313
\(713\) −5.57020 −0.208606
\(714\) 35.4290 1.32590
\(715\) 1.41871 0.0530567
\(716\) 4.49908 0.168139
\(717\) −29.3704 −1.09686
\(718\) −0.586844 −0.0219008
\(719\) 16.3053 0.608084 0.304042 0.952659i \(-0.401664\pi\)
0.304042 + 0.952659i \(0.401664\pi\)
\(720\) −0.435480 −0.0162294
\(721\) 40.5867 1.51153
\(722\) 30.1988 1.12388
\(723\) 10.3496 0.384906
\(724\) 27.7621 1.03177
\(725\) −40.9128 −1.51946
\(726\) 27.2544 1.01150
\(727\) 46.7613 1.73428 0.867140 0.498064i \(-0.165956\pi\)
0.867140 + 0.498064i \(0.165956\pi\)
\(728\) 13.7475 0.509515
\(729\) 1.00000 0.0370370
\(730\) −2.57826 −0.0954257
\(731\) 63.6176 2.35298
\(732\) 1.35431 0.0500569
\(733\) −34.3505 −1.26877 −0.634383 0.773019i \(-0.718746\pi\)
−0.634383 + 0.773019i \(0.718746\pi\)
\(734\) 40.0270 1.47742
\(735\) −0.537463 −0.0198246
\(736\) −43.5948 −1.60693
\(737\) 15.3067 0.563830
\(738\) 9.85326 0.362703
\(739\) 31.0056 1.14056 0.570280 0.821451i \(-0.306835\pi\)
0.570280 + 0.821451i \(0.306835\pi\)
\(740\) 0.736423 0.0270715
\(741\) 4.90507 0.180192
\(742\) −76.0307 −2.79117
\(743\) −32.3758 −1.18775 −0.593876 0.804556i \(-0.702403\pi\)
−0.593876 + 0.804556i \(0.702403\pi\)
\(744\) −1.00967 −0.0370163
\(745\) −0.519638 −0.0190381
\(746\) 13.7343 0.502847
\(747\) −4.82690 −0.176607
\(748\) 36.4898 1.33420
\(749\) 18.4701 0.674884
\(750\) −1.62493 −0.0593342
\(751\) 5.40999 0.197414 0.0987068 0.995117i \(-0.468529\pi\)
0.0987068 + 0.995117i \(0.468529\pi\)
\(752\) 18.2037 0.663820
\(753\) −9.20452 −0.335432
\(754\) 46.8022 1.70444
\(755\) −0.389937 −0.0141913
\(756\) 4.81317 0.175053
\(757\) 25.1059 0.912488 0.456244 0.889855i \(-0.349194\pi\)
0.456244 + 0.889855i \(0.349194\pi\)
\(758\) 58.8465 2.13740
\(759\) −34.1983 −1.24132
\(760\) 0.170046 0.00616821
\(761\) −22.8176 −0.827138 −0.413569 0.910473i \(-0.635718\pi\)
−0.413569 + 0.910473i \(0.635718\pi\)
\(762\) 22.1785 0.803442
\(763\) 29.6895 1.07483
\(764\) 1.31886 0.0477148
\(765\) −0.478786 −0.0173106
\(766\) 19.6344 0.709418
\(767\) 7.73290 0.279219
\(768\) −20.9381 −0.755537
\(769\) 3.19460 0.115200 0.0576002 0.998340i \(-0.481655\pi\)
0.0576002 + 0.998340i \(0.481655\pi\)
\(770\) −2.98953 −0.107735
\(771\) −7.76335 −0.279590
\(772\) 16.5533 0.595767
\(773\) 44.8035 1.61147 0.805735 0.592276i \(-0.201771\pi\)
0.805735 + 0.592276i \(0.201771\pi\)
\(774\) 21.6081 0.776686
\(775\) −4.14030 −0.148724
\(776\) 3.98079 0.142902
\(777\) 22.3883 0.803174
\(778\) 38.0129 1.36283
\(779\) −8.46325 −0.303228
\(780\) 0.371451 0.0133001
\(781\) 22.1184 0.791457
\(782\) −65.9085 −2.35688
\(783\) −8.19556 −0.292885
\(784\) −29.4996 −1.05356
\(785\) 1.42030 0.0506926
\(786\) −7.31946 −0.261076
\(787\) 16.8883 0.602003 0.301002 0.953624i \(-0.402679\pi\)
0.301002 + 0.953624i \(0.402679\pi\)
\(788\) 26.0057 0.926414
\(789\) −3.26409 −0.116205
\(790\) −1.65852 −0.0590074
\(791\) −27.6970 −0.984791
\(792\) −6.19889 −0.220268
\(793\) 3.17748 0.112835
\(794\) 10.3411 0.366991
\(795\) 1.02748 0.0364408
\(796\) −32.5215 −1.15269
\(797\) −51.2579 −1.81565 −0.907824 0.419351i \(-0.862258\pi\)
−0.907824 + 0.419351i \(0.862258\pi\)
\(798\) −10.3361 −0.365893
\(799\) 20.0140 0.708043
\(800\) −32.4038 −1.14565
\(801\) −9.78253 −0.345649
\(802\) 2.50557 0.0884749
\(803\) −80.7294 −2.84888
\(804\) 4.00765 0.141339
\(805\) 2.15976 0.0761217
\(806\) 4.73630 0.166829
\(807\) −15.0673 −0.530395
\(808\) −8.21412 −0.288972
\(809\) 9.33516 0.328207 0.164103 0.986443i \(-0.447527\pi\)
0.164103 + 0.986443i \(0.447527\pi\)
\(810\) −0.162622 −0.00571397
\(811\) 6.16823 0.216596 0.108298 0.994118i \(-0.465460\pi\)
0.108298 + 0.994118i \(0.465460\pi\)
\(812\) −39.4466 −1.38431
\(813\) 5.34308 0.187390
\(814\) 57.6500 2.02063
\(815\) 1.90788 0.0668300
\(816\) −26.2791 −0.919951
\(817\) −18.5598 −0.649326
\(818\) 5.14030 0.179726
\(819\) 11.2926 0.394596
\(820\) −0.640905 −0.0223814
\(821\) −51.6821 −1.80372 −0.901859 0.432030i \(-0.857798\pi\)
−0.901859 + 0.432030i \(0.857798\pi\)
\(822\) −22.0968 −0.770715
\(823\) 49.2507 1.71677 0.858386 0.513005i \(-0.171468\pi\)
0.858386 + 0.513005i \(0.171468\pi\)
\(824\) −13.6859 −0.476773
\(825\) −25.4194 −0.884991
\(826\) −16.2950 −0.566974
\(827\) 5.70388 0.198343 0.0991717 0.995070i \(-0.468381\pi\)
0.0991717 + 0.995070i \(0.468381\pi\)
\(828\) −8.95392 −0.311170
\(829\) −54.3777 −1.88862 −0.944308 0.329064i \(-0.893267\pi\)
−0.944308 + 0.329064i \(0.893267\pi\)
\(830\) 0.784963 0.0272465
\(831\) 28.3622 0.983873
\(832\) 6.48357 0.224777
\(833\) −32.4332 −1.12374
\(834\) 20.8065 0.720469
\(835\) −1.09508 −0.0378968
\(836\) −10.6455 −0.368184
\(837\) −0.829377 −0.0286675
\(838\) 6.81755 0.235508
\(839\) 21.8358 0.753857 0.376928 0.926242i \(-0.376980\pi\)
0.376928 + 0.926242i \(0.376980\pi\)
\(840\) 0.391485 0.0135075
\(841\) 38.1672 1.31611
\(842\) −25.5840 −0.881684
\(843\) 21.5231 0.741295
\(844\) 19.7738 0.680643
\(845\) −0.286465 −0.00985470
\(846\) 6.79785 0.233715
\(847\) −53.8943 −1.85183
\(848\) 56.3949 1.93661
\(849\) 27.1679 0.932400
\(850\) −48.9894 −1.68032
\(851\) −41.6488 −1.42770
\(852\) 5.79111 0.198400
\(853\) 4.18717 0.143366 0.0716830 0.997427i \(-0.477163\pi\)
0.0716830 + 0.997427i \(0.477163\pi\)
\(854\) −6.69565 −0.229120
\(855\) 0.139681 0.00477700
\(856\) −6.22818 −0.212875
\(857\) −26.5397 −0.906579 −0.453289 0.891363i \(-0.649750\pi\)
−0.453289 + 0.891363i \(0.649750\pi\)
\(858\) 29.0786 0.992727
\(859\) 16.9927 0.579784 0.289892 0.957059i \(-0.406381\pi\)
0.289892 + 0.957059i \(0.406381\pi\)
\(860\) −1.40550 −0.0479271
\(861\) −19.4844 −0.664026
\(862\) 12.6405 0.430537
\(863\) −41.2476 −1.40408 −0.702042 0.712135i \(-0.747728\pi\)
−0.702042 + 0.712135i \(0.747728\pi\)
\(864\) −6.49106 −0.220830
\(865\) 1.26570 0.0430350
\(866\) −20.7135 −0.703874
\(867\) −11.8924 −0.403887
\(868\) −3.99193 −0.135495
\(869\) −51.9308 −1.76163
\(870\) 1.33278 0.0451855
\(871\) 9.40271 0.318599
\(872\) −10.0114 −0.339028
\(873\) 3.26995 0.110671
\(874\) 19.2281 0.650402
\(875\) 3.21324 0.108627
\(876\) −21.1369 −0.714148
\(877\) −16.9220 −0.571415 −0.285708 0.958317i \(-0.592229\pi\)
−0.285708 + 0.958317i \(0.592229\pi\)
\(878\) 4.80114 0.162031
\(879\) 6.99808 0.236039
\(880\) 2.21745 0.0747502
\(881\) −9.96061 −0.335581 −0.167791 0.985823i \(-0.553663\pi\)
−0.167791 + 0.985823i \(0.553663\pi\)
\(882\) −11.0161 −0.370932
\(883\) 39.4123 1.32633 0.663165 0.748473i \(-0.269213\pi\)
0.663165 + 0.748473i \(0.269213\pi\)
\(884\) 22.4152 0.753906
\(885\) 0.220209 0.00740225
\(886\) 18.0315 0.605779
\(887\) 16.0523 0.538984 0.269492 0.963003i \(-0.413144\pi\)
0.269492 + 0.963003i \(0.413144\pi\)
\(888\) −7.54938 −0.253341
\(889\) −43.8570 −1.47092
\(890\) 1.59086 0.0533257
\(891\) −5.09197 −0.170587
\(892\) −9.17309 −0.307138
\(893\) −5.83888 −0.195391
\(894\) −10.6508 −0.356215
\(895\) 0.300594 0.0100477
\(896\) 33.2064 1.10935
\(897\) −21.0076 −0.701423
\(898\) 12.2072 0.407361
\(899\) 6.79720 0.226699
\(900\) −6.65541 −0.221847
\(901\) 62.0030 2.06562
\(902\) −50.1725 −1.67056
\(903\) −42.7290 −1.42193
\(904\) 9.33949 0.310627
\(905\) 1.85485 0.0616573
\(906\) −7.99235 −0.265528
\(907\) 2.75942 0.0916249 0.0458125 0.998950i \(-0.485412\pi\)
0.0458125 + 0.998950i \(0.485412\pi\)
\(908\) −23.5300 −0.780871
\(909\) −6.74734 −0.223795
\(910\) −1.83643 −0.0608772
\(911\) −48.5699 −1.60919 −0.804596 0.593823i \(-0.797618\pi\)
−0.804596 + 0.593823i \(0.797618\pi\)
\(912\) 7.66666 0.253869
\(913\) 24.5784 0.813427
\(914\) −71.4614 −2.36373
\(915\) 0.0904847 0.00299133
\(916\) 33.8879 1.11969
\(917\) 14.4739 0.477971
\(918\) −9.81346 −0.323892
\(919\) 15.9662 0.526676 0.263338 0.964704i \(-0.415177\pi\)
0.263338 + 0.964704i \(0.415177\pi\)
\(920\) −0.728278 −0.0240106
\(921\) −3.68377 −0.121384
\(922\) 10.1511 0.334308
\(923\) 13.5870 0.447223
\(924\) −24.5085 −0.806271
\(925\) −30.9573 −1.01787
\(926\) 35.5725 1.16899
\(927\) −11.2421 −0.369238
\(928\) 53.1979 1.74631
\(929\) 26.0601 0.855005 0.427502 0.904014i \(-0.359394\pi\)
0.427502 + 0.904014i \(0.359394\pi\)
\(930\) 0.134875 0.00442273
\(931\) 9.46207 0.310107
\(932\) −14.1636 −0.463945
\(933\) −25.0499 −0.820096
\(934\) 41.3510 1.35305
\(935\) 2.43796 0.0797300
\(936\) −3.80790 −0.124465
\(937\) 50.9199 1.66348 0.831740 0.555166i \(-0.187345\pi\)
0.831740 + 0.555166i \(0.187345\pi\)
\(938\) −19.8136 −0.646937
\(939\) 23.7351 0.774567
\(940\) −0.442166 −0.0144219
\(941\) −17.4143 −0.567690 −0.283845 0.958870i \(-0.591610\pi\)
−0.283845 + 0.958870i \(0.591610\pi\)
\(942\) 29.1112 0.948494
\(943\) 36.2467 1.18035
\(944\) 12.0866 0.393385
\(945\) 0.321579 0.0104610
\(946\) −110.028 −3.57731
\(947\) 4.59817 0.149420 0.0747102 0.997205i \(-0.476197\pi\)
0.0747102 + 0.997205i \(0.476197\pi\)
\(948\) −13.5967 −0.441601
\(949\) −49.5911 −1.60979
\(950\) 14.2922 0.463700
\(951\) −16.8244 −0.545567
\(952\) 23.6242 0.765665
\(953\) −12.7032 −0.411498 −0.205749 0.978605i \(-0.565963\pi\)
−0.205749 + 0.978605i \(0.565963\pi\)
\(954\) 21.0597 0.681832
\(955\) 0.0881161 0.00285137
\(956\) 39.1565 1.26641
\(957\) 41.7315 1.34899
\(958\) 35.1914 1.13698
\(959\) 43.6955 1.41100
\(960\) 0.184632 0.00595897
\(961\) −30.3121 −0.977811
\(962\) 35.4137 1.14178
\(963\) −5.11603 −0.164862
\(964\) −13.7981 −0.444406
\(965\) 1.10596 0.0356022
\(966\) 44.2677 1.42429
\(967\) −8.38740 −0.269721 −0.134860 0.990865i \(-0.543059\pi\)
−0.134860 + 0.990865i \(0.543059\pi\)
\(968\) 18.1733 0.584112
\(969\) 8.42907 0.270781
\(970\) −0.531767 −0.0170740
\(971\) −17.7070 −0.568245 −0.284122 0.958788i \(-0.591702\pi\)
−0.284122 + 0.958788i \(0.591702\pi\)
\(972\) −1.33320 −0.0427623
\(973\) −41.1439 −1.31901
\(974\) 60.9658 1.95347
\(975\) −15.6148 −0.500075
\(976\) 4.96642 0.158971
\(977\) −0.772680 −0.0247202 −0.0123601 0.999924i \(-0.503934\pi\)
−0.0123601 + 0.999924i \(0.503934\pi\)
\(978\) 39.1048 1.25043
\(979\) 49.8123 1.59201
\(980\) 0.716543 0.0228891
\(981\) −8.22366 −0.262561
\(982\) 42.8117 1.36618
\(983\) −0.605210 −0.0193032 −0.00965160 0.999953i \(-0.503072\pi\)
−0.00965160 + 0.999953i \(0.503072\pi\)
\(984\) 6.57018 0.209450
\(985\) 1.73750 0.0553612
\(986\) 80.4268 2.56131
\(987\) −13.4425 −0.427878
\(988\) −6.53942 −0.208047
\(989\) 79.4886 2.52759
\(990\) 0.828068 0.0263177
\(991\) 17.2405 0.547662 0.273831 0.961778i \(-0.411709\pi\)
0.273831 + 0.961778i \(0.411709\pi\)
\(992\) 5.38353 0.170927
\(993\) −15.3426 −0.486884
\(994\) −28.6309 −0.908117
\(995\) −2.17283 −0.0688835
\(996\) 6.43521 0.203907
\(997\) −34.3846 −1.08897 −0.544486 0.838770i \(-0.683275\pi\)
−0.544486 + 0.838770i \(0.683275\pi\)
\(998\) −54.7440 −1.73289
\(999\) −6.20131 −0.196201
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2031.2.a.i.1.9 38
3.2 odd 2 6093.2.a.o.1.30 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2031.2.a.i.1.9 38 1.1 even 1 trivial
6093.2.a.o.1.30 38 3.2 odd 2