Properties

Label 2031.4.a.d.1.11
Level $2031$
Weight $4$
Character 2031.1
Self dual yes
Analytic conductor $119.833$
Analytic rank $0$
Dimension $94$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2031,4,Mod(1,2031)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2031, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2031.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2031 = 3 \cdot 677 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2031.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.832879222\)
Analytic rank: \(0\)
Dimension: \(94\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 2031.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.55506 q^{2} +3.00000 q^{3} +12.7486 q^{4} +8.74592 q^{5} -13.6652 q^{6} +18.2953 q^{7} -21.6301 q^{8} +9.00000 q^{9} -39.8382 q^{10} +12.7063 q^{11} +38.2457 q^{12} +9.77175 q^{13} -83.3363 q^{14} +26.2378 q^{15} -3.46229 q^{16} +34.5355 q^{17} -40.9956 q^{18} +121.100 q^{19} +111.498 q^{20} +54.8859 q^{21} -57.8780 q^{22} +34.1060 q^{23} -64.8903 q^{24} -48.5088 q^{25} -44.5109 q^{26} +27.0000 q^{27} +233.239 q^{28} -31.4056 q^{29} -119.515 q^{30} +58.3665 q^{31} +188.812 q^{32} +38.1189 q^{33} -157.311 q^{34} +160.009 q^{35} +114.737 q^{36} -327.799 q^{37} -551.619 q^{38} +29.3153 q^{39} -189.175 q^{40} +245.245 q^{41} -250.009 q^{42} +110.450 q^{43} +161.987 q^{44} +78.7133 q^{45} -155.355 q^{46} +95.6811 q^{47} -10.3869 q^{48} -8.28164 q^{49} +220.961 q^{50} +103.607 q^{51} +124.576 q^{52} -440.957 q^{53} -122.987 q^{54} +111.128 q^{55} -395.729 q^{56} +363.301 q^{57} +143.054 q^{58} +406.828 q^{59} +334.494 q^{60} +623.637 q^{61} -265.863 q^{62} +164.658 q^{63} -832.350 q^{64} +85.4630 q^{65} -173.634 q^{66} +256.362 q^{67} +440.279 q^{68} +102.318 q^{69} -728.852 q^{70} +221.706 q^{71} -194.671 q^{72} -132.371 q^{73} +1493.15 q^{74} -145.526 q^{75} +1543.86 q^{76} +232.466 q^{77} -133.533 q^{78} +621.010 q^{79} -30.2809 q^{80} +81.0000 q^{81} -1117.10 q^{82} +514.471 q^{83} +699.718 q^{84} +302.045 q^{85} -503.107 q^{86} -94.2167 q^{87} -274.839 q^{88} -128.152 q^{89} -358.544 q^{90} +178.777 q^{91} +434.803 q^{92} +175.100 q^{93} -435.833 q^{94} +1059.13 q^{95} +566.435 q^{96} -1515.99 q^{97} +37.7234 q^{98} +114.357 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 94 q + 19 q^{2} + 282 q^{3} + 409 q^{4} + 84 q^{5} + 57 q^{6} + 39 q^{7} + 228 q^{8} + 846 q^{9} + 145 q^{10} + 357 q^{11} + 1227 q^{12} + 271 q^{13} + 366 q^{14} + 252 q^{15} + 1865 q^{16} + 690 q^{17}+ \cdots + 3213 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.55506 −1.61046 −0.805229 0.592964i \(-0.797957\pi\)
−0.805229 + 0.592964i \(0.797957\pi\)
\(3\) 3.00000 0.577350
\(4\) 12.7486 1.59357
\(5\) 8.74592 0.782259 0.391130 0.920336i \(-0.372084\pi\)
0.391130 + 0.920336i \(0.372084\pi\)
\(6\) −13.6652 −0.929798
\(7\) 18.2953 0.987854 0.493927 0.869503i \(-0.335561\pi\)
0.493927 + 0.869503i \(0.335561\pi\)
\(8\) −21.6301 −0.955924
\(9\) 9.00000 0.333333
\(10\) −39.8382 −1.25979
\(11\) 12.7063 0.348282 0.174141 0.984721i \(-0.444285\pi\)
0.174141 + 0.984721i \(0.444285\pi\)
\(12\) 38.2457 0.920050
\(13\) 9.77175 0.208477 0.104238 0.994552i \(-0.466760\pi\)
0.104238 + 0.994552i \(0.466760\pi\)
\(14\) −83.3363 −1.59090
\(15\) 26.2378 0.451638
\(16\) −3.46229 −0.0540983
\(17\) 34.5355 0.492712 0.246356 0.969179i \(-0.420767\pi\)
0.246356 + 0.969179i \(0.420767\pi\)
\(18\) −40.9956 −0.536819
\(19\) 121.100 1.46223 0.731114 0.682256i \(-0.239001\pi\)
0.731114 + 0.682256i \(0.239001\pi\)
\(20\) 111.498 1.24659
\(21\) 54.8859 0.570338
\(22\) −57.8780 −0.560893
\(23\) 34.1060 0.309200 0.154600 0.987977i \(-0.450591\pi\)
0.154600 + 0.987977i \(0.450591\pi\)
\(24\) −64.8903 −0.551903
\(25\) −48.5088 −0.388071
\(26\) −44.5109 −0.335743
\(27\) 27.0000 0.192450
\(28\) 233.239 1.57422
\(29\) −31.4056 −0.201099 −0.100549 0.994932i \(-0.532060\pi\)
−0.100549 + 0.994932i \(0.532060\pi\)
\(30\) −119.515 −0.727343
\(31\) 58.3665 0.338159 0.169080 0.985602i \(-0.445920\pi\)
0.169080 + 0.985602i \(0.445920\pi\)
\(32\) 188.812 1.04305
\(33\) 38.1189 0.201080
\(34\) −157.311 −0.793491
\(35\) 160.009 0.772758
\(36\) 114.737 0.531191
\(37\) −327.799 −1.45648 −0.728242 0.685320i \(-0.759662\pi\)
−0.728242 + 0.685320i \(0.759662\pi\)
\(38\) −551.619 −2.35485
\(39\) 29.3153 0.120364
\(40\) −189.175 −0.747780
\(41\) 245.245 0.934165 0.467083 0.884214i \(-0.345305\pi\)
0.467083 + 0.884214i \(0.345305\pi\)
\(42\) −250.009 −0.918505
\(43\) 110.450 0.391709 0.195855 0.980633i \(-0.437252\pi\)
0.195855 + 0.980633i \(0.437252\pi\)
\(44\) 161.987 0.555012
\(45\) 78.7133 0.260753
\(46\) −155.355 −0.497953
\(47\) 95.6811 0.296947 0.148474 0.988916i \(-0.452564\pi\)
0.148474 + 0.988916i \(0.452564\pi\)
\(48\) −10.3869 −0.0312337
\(49\) −8.28164 −0.0241447
\(50\) 220.961 0.624971
\(51\) 103.607 0.284467
\(52\) 124.576 0.332223
\(53\) −440.957 −1.14283 −0.571416 0.820660i \(-0.693606\pi\)
−0.571416 + 0.820660i \(0.693606\pi\)
\(54\) −122.987 −0.309933
\(55\) 111.128 0.272446
\(56\) −395.729 −0.944313
\(57\) 363.301 0.844217
\(58\) 143.054 0.323861
\(59\) 406.828 0.897703 0.448852 0.893606i \(-0.351833\pi\)
0.448852 + 0.893606i \(0.351833\pi\)
\(60\) 334.494 0.719717
\(61\) 623.637 1.30899 0.654496 0.756065i \(-0.272881\pi\)
0.654496 + 0.756065i \(0.272881\pi\)
\(62\) −265.863 −0.544591
\(63\) 164.658 0.329285
\(64\) −832.350 −1.62568
\(65\) 85.4630 0.163083
\(66\) −173.634 −0.323832
\(67\) 256.362 0.467457 0.233728 0.972302i \(-0.424907\pi\)
0.233728 + 0.972302i \(0.424907\pi\)
\(68\) 440.279 0.785172
\(69\) 102.318 0.178517
\(70\) −728.852 −1.24449
\(71\) 221.706 0.370586 0.185293 0.982683i \(-0.440677\pi\)
0.185293 + 0.982683i \(0.440677\pi\)
\(72\) −194.671 −0.318641
\(73\) −132.371 −0.212230 −0.106115 0.994354i \(-0.533841\pi\)
−0.106115 + 0.994354i \(0.533841\pi\)
\(74\) 1493.15 2.34560
\(75\) −145.526 −0.224053
\(76\) 1543.86 2.33017
\(77\) 232.466 0.344051
\(78\) −133.533 −0.193841
\(79\) 621.010 0.884419 0.442209 0.896912i \(-0.354195\pi\)
0.442209 + 0.896912i \(0.354195\pi\)
\(80\) −30.2809 −0.0423189
\(81\) 81.0000 0.111111
\(82\) −1117.10 −1.50443
\(83\) 514.471 0.680367 0.340184 0.940359i \(-0.389511\pi\)
0.340184 + 0.940359i \(0.389511\pi\)
\(84\) 699.718 0.908875
\(85\) 302.045 0.385428
\(86\) −503.107 −0.630831
\(87\) −94.2167 −0.116104
\(88\) −274.839 −0.332931
\(89\) −128.152 −0.152630 −0.0763151 0.997084i \(-0.524315\pi\)
−0.0763151 + 0.997084i \(0.524315\pi\)
\(90\) −358.544 −0.419932
\(91\) 178.777 0.205945
\(92\) 434.803 0.492732
\(93\) 175.100 0.195236
\(94\) −435.833 −0.478221
\(95\) 1059.13 1.14384
\(96\) 566.435 0.602203
\(97\) −1515.99 −1.58686 −0.793431 0.608660i \(-0.791707\pi\)
−0.793431 + 0.608660i \(0.791707\pi\)
\(98\) 37.7234 0.0388841
\(99\) 114.357 0.116094
\(100\) −618.419 −0.618419
\(101\) 893.235 0.880002 0.440001 0.897997i \(-0.354978\pi\)
0.440001 + 0.897997i \(0.354978\pi\)
\(102\) −471.934 −0.458122
\(103\) −592.477 −0.566781 −0.283391 0.959005i \(-0.591459\pi\)
−0.283391 + 0.959005i \(0.591459\pi\)
\(104\) −211.364 −0.199288
\(105\) 480.028 0.446152
\(106\) 2008.59 1.84048
\(107\) 1683.62 1.52114 0.760569 0.649257i \(-0.224920\pi\)
0.760569 + 0.649257i \(0.224920\pi\)
\(108\) 344.212 0.306683
\(109\) 1023.66 0.899534 0.449767 0.893146i \(-0.351507\pi\)
0.449767 + 0.893146i \(0.351507\pi\)
\(110\) −506.197 −0.438763
\(111\) −983.398 −0.840901
\(112\) −63.3437 −0.0534412
\(113\) 1004.92 0.836589 0.418295 0.908311i \(-0.362628\pi\)
0.418295 + 0.908311i \(0.362628\pi\)
\(114\) −1654.86 −1.35958
\(115\) 298.289 0.241874
\(116\) −400.376 −0.320466
\(117\) 87.9458 0.0694922
\(118\) −1853.13 −1.44571
\(119\) 631.838 0.486727
\(120\) −567.525 −0.431731
\(121\) −1169.55 −0.878700
\(122\) −2840.70 −2.10808
\(123\) 735.734 0.539341
\(124\) 744.091 0.538882
\(125\) −1517.49 −1.08583
\(126\) −750.026 −0.530299
\(127\) 86.9016 0.0607187 0.0303593 0.999539i \(-0.490335\pi\)
0.0303593 + 0.999539i \(0.490335\pi\)
\(128\) 2280.91 1.57505
\(129\) 331.351 0.226153
\(130\) −389.289 −0.262638
\(131\) 1730.20 1.15396 0.576978 0.816760i \(-0.304232\pi\)
0.576978 + 0.816760i \(0.304232\pi\)
\(132\) 485.962 0.320436
\(133\) 2215.57 1.44447
\(134\) −1167.74 −0.752819
\(135\) 236.140 0.150546
\(136\) −747.007 −0.470995
\(137\) −2136.04 −1.33207 −0.666036 0.745919i \(-0.732010\pi\)
−0.666036 + 0.745919i \(0.732010\pi\)
\(138\) −466.065 −0.287493
\(139\) 1265.25 0.772066 0.386033 0.922485i \(-0.373845\pi\)
0.386033 + 0.922485i \(0.373845\pi\)
\(140\) 2039.89 1.23145
\(141\) 287.043 0.171443
\(142\) −1009.88 −0.596813
\(143\) 124.163 0.0726086
\(144\) −31.1606 −0.0180328
\(145\) −274.671 −0.157311
\(146\) 602.956 0.341788
\(147\) −24.8449 −0.0139400
\(148\) −4178.98 −2.32101
\(149\) 984.115 0.541086 0.270543 0.962708i \(-0.412797\pi\)
0.270543 + 0.962708i \(0.412797\pi\)
\(150\) 662.882 0.360827
\(151\) −3537.60 −1.90653 −0.953265 0.302135i \(-0.902301\pi\)
−0.953265 + 0.302135i \(0.902301\pi\)
\(152\) −2619.41 −1.39778
\(153\) 310.820 0.164237
\(154\) −1058.90 −0.554080
\(155\) 510.469 0.264528
\(156\) 373.728 0.191809
\(157\) 3060.67 1.55585 0.777923 0.628359i \(-0.216273\pi\)
0.777923 + 0.628359i \(0.216273\pi\)
\(158\) −2828.74 −1.42432
\(159\) −1322.87 −0.659815
\(160\) 1651.33 0.815933
\(161\) 623.980 0.305444
\(162\) −368.960 −0.178940
\(163\) 3839.28 1.84488 0.922441 0.386138i \(-0.126191\pi\)
0.922441 + 0.386138i \(0.126191\pi\)
\(164\) 3126.52 1.48866
\(165\) 333.385 0.157297
\(166\) −2343.44 −1.09570
\(167\) 2304.59 1.06787 0.533936 0.845525i \(-0.320712\pi\)
0.533936 + 0.845525i \(0.320712\pi\)
\(168\) −1187.19 −0.545199
\(169\) −2101.51 −0.956537
\(170\) −1375.83 −0.620716
\(171\) 1089.90 0.487409
\(172\) 1408.08 0.624217
\(173\) −2285.84 −1.00456 −0.502280 0.864705i \(-0.667505\pi\)
−0.502280 + 0.864705i \(0.667505\pi\)
\(174\) 429.163 0.186981
\(175\) −887.484 −0.383357
\(176\) −43.9930 −0.0188415
\(177\) 1220.48 0.518289
\(178\) 583.740 0.245804
\(179\) −1946.89 −0.812944 −0.406472 0.913663i \(-0.633241\pi\)
−0.406472 + 0.913663i \(0.633241\pi\)
\(180\) 1003.48 0.415529
\(181\) −3902.46 −1.60258 −0.801291 0.598275i \(-0.795853\pi\)
−0.801291 + 0.598275i \(0.795853\pi\)
\(182\) −814.341 −0.331665
\(183\) 1870.91 0.755747
\(184\) −737.716 −0.295571
\(185\) −2866.91 −1.13935
\(186\) −797.589 −0.314420
\(187\) 438.819 0.171602
\(188\) 1219.80 0.473207
\(189\) 493.973 0.190113
\(190\) −4824.42 −1.84211
\(191\) −4278.96 −1.62102 −0.810509 0.585726i \(-0.800810\pi\)
−0.810509 + 0.585726i \(0.800810\pi\)
\(192\) −2497.05 −0.938589
\(193\) −3463.46 −1.29174 −0.645869 0.763448i \(-0.723505\pi\)
−0.645869 + 0.763448i \(0.723505\pi\)
\(194\) 6905.43 2.55557
\(195\) 256.389 0.0941559
\(196\) −105.579 −0.0384764
\(197\) 155.996 0.0564175 0.0282087 0.999602i \(-0.491020\pi\)
0.0282087 + 0.999602i \(0.491020\pi\)
\(198\) −520.902 −0.186964
\(199\) −1443.49 −0.514201 −0.257101 0.966385i \(-0.582767\pi\)
−0.257101 + 0.966385i \(0.582767\pi\)
\(200\) 1049.25 0.370966
\(201\) 769.086 0.269886
\(202\) −4068.74 −1.41721
\(203\) −574.574 −0.198656
\(204\) 1320.84 0.453319
\(205\) 2144.89 0.730759
\(206\) 2698.77 0.912777
\(207\) 306.954 0.103067
\(208\) −33.8327 −0.0112782
\(209\) 1538.74 0.509267
\(210\) −2186.56 −0.718509
\(211\) −466.361 −0.152159 −0.0760796 0.997102i \(-0.524240\pi\)
−0.0760796 + 0.997102i \(0.524240\pi\)
\(212\) −5621.58 −1.82119
\(213\) 665.117 0.213958
\(214\) −7668.99 −2.44973
\(215\) 965.989 0.306418
\(216\) −584.012 −0.183968
\(217\) 1067.83 0.334052
\(218\) −4662.85 −1.44866
\(219\) −397.112 −0.122531
\(220\) 1416.73 0.434163
\(221\) 337.473 0.102719
\(222\) 4479.44 1.35424
\(223\) 265.929 0.0798560 0.0399280 0.999203i \(-0.487287\pi\)
0.0399280 + 0.999203i \(0.487287\pi\)
\(224\) 3454.37 1.03038
\(225\) −436.579 −0.129357
\(226\) −4577.46 −1.34729
\(227\) 3760.42 1.09951 0.549753 0.835327i \(-0.314722\pi\)
0.549753 + 0.835327i \(0.314722\pi\)
\(228\) 4631.57 1.34532
\(229\) −6670.93 −1.92501 −0.962505 0.271263i \(-0.912559\pi\)
−0.962505 + 0.271263i \(0.912559\pi\)
\(230\) −1358.72 −0.389528
\(231\) 697.398 0.198638
\(232\) 679.305 0.192235
\(233\) 933.360 0.262431 0.131216 0.991354i \(-0.458112\pi\)
0.131216 + 0.991354i \(0.458112\pi\)
\(234\) −400.598 −0.111914
\(235\) 836.820 0.232290
\(236\) 5186.48 1.43056
\(237\) 1863.03 0.510619
\(238\) −2878.06 −0.783853
\(239\) 151.421 0.0409816 0.0204908 0.999790i \(-0.493477\pi\)
0.0204908 + 0.999790i \(0.493477\pi\)
\(240\) −90.8428 −0.0244328
\(241\) 2827.74 0.755812 0.377906 0.925844i \(-0.376644\pi\)
0.377906 + 0.925844i \(0.376644\pi\)
\(242\) 5327.37 1.41511
\(243\) 243.000 0.0641500
\(244\) 7950.49 2.08597
\(245\) −72.4306 −0.0188874
\(246\) −3351.31 −0.868585
\(247\) 1183.36 0.304840
\(248\) −1262.47 −0.323255
\(249\) 1543.41 0.392810
\(250\) 6912.28 1.74868
\(251\) 2324.37 0.584514 0.292257 0.956340i \(-0.405594\pi\)
0.292257 + 0.956340i \(0.405594\pi\)
\(252\) 2099.15 0.524739
\(253\) 433.362 0.107689
\(254\) −395.842 −0.0977848
\(255\) 906.135 0.222527
\(256\) −3730.90 −0.910864
\(257\) −2139.85 −0.519377 −0.259689 0.965692i \(-0.583620\pi\)
−0.259689 + 0.965692i \(0.583620\pi\)
\(258\) −1509.32 −0.364210
\(259\) −5997.19 −1.43879
\(260\) 1089.53 0.259884
\(261\) −282.650 −0.0670329
\(262\) −7881.16 −1.85840
\(263\) 272.073 0.0637899 0.0318949 0.999491i \(-0.489846\pi\)
0.0318949 + 0.999491i \(0.489846\pi\)
\(264\) −824.516 −0.192218
\(265\) −3856.58 −0.893991
\(266\) −10092.0 −2.32625
\(267\) −384.456 −0.0881211
\(268\) 3268.25 0.744926
\(269\) 1324.60 0.300233 0.150116 0.988668i \(-0.452035\pi\)
0.150116 + 0.988668i \(0.452035\pi\)
\(270\) −1075.63 −0.242448
\(271\) −10.0506 −0.00225289 −0.00112644 0.999999i \(-0.500359\pi\)
−0.00112644 + 0.999999i \(0.500359\pi\)
\(272\) −119.572 −0.0266549
\(273\) 536.332 0.118902
\(274\) 9729.78 2.14525
\(275\) −616.368 −0.135158
\(276\) 1304.41 0.284479
\(277\) −8637.85 −1.87364 −0.936820 0.349813i \(-0.886245\pi\)
−0.936820 + 0.349813i \(0.886245\pi\)
\(278\) −5763.29 −1.24338
\(279\) 525.299 0.112720
\(280\) −3461.02 −0.738698
\(281\) −765.126 −0.162433 −0.0812164 0.996696i \(-0.525880\pi\)
−0.0812164 + 0.996696i \(0.525880\pi\)
\(282\) −1307.50 −0.276101
\(283\) −4264.69 −0.895793 −0.447896 0.894085i \(-0.647827\pi\)
−0.447896 + 0.894085i \(0.647827\pi\)
\(284\) 2826.43 0.590556
\(285\) 3177.40 0.660397
\(286\) −565.570 −0.116933
\(287\) 4486.83 0.922819
\(288\) 1699.30 0.347682
\(289\) −3720.30 −0.757235
\(290\) 1251.14 0.253343
\(291\) −4547.97 −0.916175
\(292\) −1687.54 −0.338204
\(293\) 7618.43 1.51902 0.759511 0.650495i \(-0.225438\pi\)
0.759511 + 0.650495i \(0.225438\pi\)
\(294\) 113.170 0.0224497
\(295\) 3558.09 0.702237
\(296\) 7090.33 1.39229
\(297\) 343.070 0.0670268
\(298\) −4482.71 −0.871397
\(299\) 333.276 0.0644610
\(300\) −1855.26 −0.357044
\(301\) 2020.72 0.386951
\(302\) 16114.0 3.07039
\(303\) 2679.71 0.508070
\(304\) −419.285 −0.0791041
\(305\) 5454.28 1.02397
\(306\) −1415.80 −0.264497
\(307\) 5610.25 1.04298 0.521488 0.853258i \(-0.325377\pi\)
0.521488 + 0.853258i \(0.325377\pi\)
\(308\) 2963.61 0.548271
\(309\) −1777.43 −0.327231
\(310\) −2325.22 −0.426011
\(311\) −7103.21 −1.29513 −0.647566 0.762009i \(-0.724213\pi\)
−0.647566 + 0.762009i \(0.724213\pi\)
\(312\) −634.092 −0.115059
\(313\) 2508.52 0.453003 0.226502 0.974011i \(-0.427271\pi\)
0.226502 + 0.974011i \(0.427271\pi\)
\(314\) −13941.5 −2.50562
\(315\) 1440.08 0.257586
\(316\) 7917.00 1.40939
\(317\) −3416.84 −0.605390 −0.302695 0.953087i \(-0.597886\pi\)
−0.302695 + 0.953087i \(0.597886\pi\)
\(318\) 6025.76 1.06260
\(319\) −399.049 −0.0700390
\(320\) −7279.67 −1.27171
\(321\) 5050.86 0.878229
\(322\) −2842.27 −0.491905
\(323\) 4182.26 0.720456
\(324\) 1032.64 0.177064
\(325\) −474.016 −0.0809037
\(326\) −17488.2 −2.97110
\(327\) 3070.99 0.519346
\(328\) −5304.66 −0.892991
\(329\) 1750.52 0.293341
\(330\) −1518.59 −0.253320
\(331\) 3066.97 0.509292 0.254646 0.967034i \(-0.418041\pi\)
0.254646 + 0.967034i \(0.418041\pi\)
\(332\) 6558.77 1.08421
\(333\) −2950.19 −0.485494
\(334\) −10497.5 −1.71976
\(335\) 2242.12 0.365672
\(336\) −190.031 −0.0308543
\(337\) −11316.0 −1.82914 −0.914572 0.404423i \(-0.867472\pi\)
−0.914572 + 0.404423i \(0.867472\pi\)
\(338\) 9572.52 1.54046
\(339\) 3014.75 0.483005
\(340\) 3850.65 0.614208
\(341\) 741.623 0.117775
\(342\) −4964.57 −0.784952
\(343\) −6426.81 −1.01171
\(344\) −2389.05 −0.374444
\(345\) 894.866 0.139646
\(346\) 10412.1 1.61780
\(347\) −6755.02 −1.04504 −0.522519 0.852627i \(-0.675008\pi\)
−0.522519 + 0.852627i \(0.675008\pi\)
\(348\) −1201.13 −0.185021
\(349\) −4316.66 −0.662078 −0.331039 0.943617i \(-0.607399\pi\)
−0.331039 + 0.943617i \(0.607399\pi\)
\(350\) 4042.54 0.617380
\(351\) 263.837 0.0401214
\(352\) 2399.10 0.363274
\(353\) 9568.66 1.44274 0.721372 0.692548i \(-0.243512\pi\)
0.721372 + 0.692548i \(0.243512\pi\)
\(354\) −5559.38 −0.834683
\(355\) 1939.02 0.289894
\(356\) −1633.76 −0.243227
\(357\) 1895.52 0.281012
\(358\) 8868.18 1.30921
\(359\) 6482.94 0.953082 0.476541 0.879152i \(-0.341890\pi\)
0.476541 + 0.879152i \(0.341890\pi\)
\(360\) −1702.58 −0.249260
\(361\) 7806.29 1.13811
\(362\) 17775.9 2.58089
\(363\) −3508.65 −0.507318
\(364\) 2279.16 0.328188
\(365\) −1157.70 −0.166019
\(366\) −8522.11 −1.21710
\(367\) 2710.76 0.385560 0.192780 0.981242i \(-0.438250\pi\)
0.192780 + 0.981242i \(0.438250\pi\)
\(368\) −118.085 −0.0167272
\(369\) 2207.20 0.311388
\(370\) 13058.9 1.83487
\(371\) −8067.45 −1.12895
\(372\) 2232.27 0.311123
\(373\) 3503.90 0.486394 0.243197 0.969977i \(-0.421804\pi\)
0.243197 + 0.969977i \(0.421804\pi\)
\(374\) −1998.85 −0.276358
\(375\) −4552.48 −0.626905
\(376\) −2069.59 −0.283859
\(377\) −306.887 −0.0419244
\(378\) −2250.08 −0.306168
\(379\) 13016.2 1.76411 0.882053 0.471151i \(-0.156161\pi\)
0.882053 + 0.471151i \(0.156161\pi\)
\(380\) 13502.5 1.82279
\(381\) 260.705 0.0350559
\(382\) 19490.9 2.61058
\(383\) 12611.8 1.68259 0.841293 0.540579i \(-0.181795\pi\)
0.841293 + 0.540579i \(0.181795\pi\)
\(384\) 6842.74 0.909354
\(385\) 2033.13 0.269137
\(386\) 15776.3 2.08029
\(387\) 994.052 0.130570
\(388\) −19326.7 −2.52878
\(389\) 8644.84 1.12676 0.563382 0.826197i \(-0.309500\pi\)
0.563382 + 0.826197i \(0.309500\pi\)
\(390\) −1167.87 −0.151634
\(391\) 1177.87 0.152346
\(392\) 179.133 0.0230805
\(393\) 5190.60 0.666237
\(394\) −710.571 −0.0908580
\(395\) 5431.31 0.691845
\(396\) 1457.89 0.185004
\(397\) −13068.5 −1.65212 −0.826058 0.563585i \(-0.809422\pi\)
−0.826058 + 0.563585i \(0.809422\pi\)
\(398\) 6575.17 0.828099
\(399\) 6646.70 0.833963
\(400\) 167.952 0.0209940
\(401\) 11123.0 1.38518 0.692589 0.721333i \(-0.256470\pi\)
0.692589 + 0.721333i \(0.256470\pi\)
\(402\) −3503.23 −0.434640
\(403\) 570.343 0.0704983
\(404\) 11387.5 1.40235
\(405\) 708.420 0.0869177
\(406\) 2617.22 0.319927
\(407\) −4165.12 −0.507266
\(408\) −2241.02 −0.271929
\(409\) 10348.6 1.25112 0.625558 0.780178i \(-0.284871\pi\)
0.625558 + 0.780178i \(0.284871\pi\)
\(410\) −9770.11 −1.17686
\(411\) −6408.11 −0.769072
\(412\) −7553.24 −0.903207
\(413\) 7443.05 0.886800
\(414\) −1398.19 −0.165984
\(415\) 4499.52 0.532223
\(416\) 1845.02 0.217451
\(417\) 3795.75 0.445752
\(418\) −7009.05 −0.820153
\(419\) 10772.2 1.25598 0.627991 0.778220i \(-0.283877\pi\)
0.627991 + 0.778220i \(0.283877\pi\)
\(420\) 6119.68 0.710976
\(421\) 8150.55 0.943548 0.471774 0.881720i \(-0.343614\pi\)
0.471774 + 0.881720i \(0.343614\pi\)
\(422\) 2124.30 0.245046
\(423\) 861.130 0.0989825
\(424\) 9537.95 1.09246
\(425\) −1675.28 −0.191207
\(426\) −3029.65 −0.344570
\(427\) 11409.6 1.29309
\(428\) 21463.8 2.42404
\(429\) 372.489 0.0419206
\(430\) −4400.14 −0.493473
\(431\) 10897.6 1.21791 0.608955 0.793204i \(-0.291589\pi\)
0.608955 + 0.793204i \(0.291589\pi\)
\(432\) −93.4819 −0.0104112
\(433\) 2835.54 0.314705 0.157352 0.987543i \(-0.449704\pi\)
0.157352 + 0.987543i \(0.449704\pi\)
\(434\) −4864.05 −0.537977
\(435\) −824.012 −0.0908238
\(436\) 13050.3 1.43347
\(437\) 4130.25 0.452120
\(438\) 1808.87 0.197331
\(439\) −17519.5 −1.90469 −0.952346 0.305021i \(-0.901337\pi\)
−0.952346 + 0.305021i \(0.901337\pi\)
\(440\) −2403.72 −0.260438
\(441\) −74.5348 −0.00804824
\(442\) −1537.21 −0.165424
\(443\) 1782.71 0.191195 0.0955974 0.995420i \(-0.469524\pi\)
0.0955974 + 0.995420i \(0.469524\pi\)
\(444\) −12536.9 −1.34004
\(445\) −1120.81 −0.119396
\(446\) −1211.32 −0.128605
\(447\) 2952.35 0.312396
\(448\) −15228.1 −1.60594
\(449\) 6378.38 0.670411 0.335205 0.942145i \(-0.391194\pi\)
0.335205 + 0.942145i \(0.391194\pi\)
\(450\) 1988.65 0.208324
\(451\) 3116.15 0.325353
\(452\) 12811.3 1.33317
\(453\) −10612.8 −1.10074
\(454\) −17128.9 −1.77071
\(455\) 1563.57 0.161102
\(456\) −7858.23 −0.807008
\(457\) 5904.09 0.604336 0.302168 0.953255i \(-0.402290\pi\)
0.302168 + 0.953255i \(0.402290\pi\)
\(458\) 30386.5 3.10015
\(459\) 932.460 0.0948224
\(460\) 3802.76 0.385444
\(461\) 329.915 0.0333311 0.0166656 0.999861i \(-0.494695\pi\)
0.0166656 + 0.999861i \(0.494695\pi\)
\(462\) −3176.69 −0.319898
\(463\) −162.404 −0.0163014 −0.00815072 0.999967i \(-0.502594\pi\)
−0.00815072 + 0.999967i \(0.502594\pi\)
\(464\) 108.735 0.0108791
\(465\) 1531.41 0.152725
\(466\) −4251.51 −0.422634
\(467\) −4935.39 −0.489042 −0.244521 0.969644i \(-0.578631\pi\)
−0.244521 + 0.969644i \(0.578631\pi\)
\(468\) 1121.18 0.110741
\(469\) 4690.22 0.461779
\(470\) −3811.77 −0.374093
\(471\) 9182.01 0.898269
\(472\) −8799.73 −0.858136
\(473\) 1403.41 0.136425
\(474\) −8486.22 −0.822331
\(475\) −5874.44 −0.567448
\(476\) 8055.04 0.775635
\(477\) −3968.62 −0.380944
\(478\) −689.731 −0.0659991
\(479\) 14755.4 1.40750 0.703751 0.710447i \(-0.251507\pi\)
0.703751 + 0.710447i \(0.251507\pi\)
\(480\) 4954.00 0.471079
\(481\) −3203.18 −0.303643
\(482\) −12880.5 −1.21720
\(483\) 1871.94 0.176348
\(484\) −14910.1 −1.40027
\(485\) −13258.7 −1.24134
\(486\) −1106.88 −0.103311
\(487\) 11238.4 1.04571 0.522854 0.852422i \(-0.324867\pi\)
0.522854 + 0.852422i \(0.324867\pi\)
\(488\) −13489.3 −1.25130
\(489\) 11517.8 1.06514
\(490\) 329.926 0.0304174
\(491\) −20283.5 −1.86433 −0.932163 0.362040i \(-0.882080\pi\)
−0.932163 + 0.362040i \(0.882080\pi\)
\(492\) 9379.56 0.859478
\(493\) −1084.61 −0.0990837
\(494\) −5390.29 −0.490932
\(495\) 1000.16 0.0908155
\(496\) −202.082 −0.0182939
\(497\) 4056.17 0.366085
\(498\) −7030.33 −0.632604
\(499\) 4542.60 0.407525 0.203762 0.979020i \(-0.434683\pi\)
0.203762 + 0.979020i \(0.434683\pi\)
\(500\) −19345.9 −1.73035
\(501\) 6913.77 0.616536
\(502\) −10587.7 −0.941335
\(503\) −5811.95 −0.515193 −0.257596 0.966253i \(-0.582930\pi\)
−0.257596 + 0.966253i \(0.582930\pi\)
\(504\) −3561.56 −0.314771
\(505\) 7812.17 0.688390
\(506\) −1973.99 −0.173428
\(507\) −6304.54 −0.552257
\(508\) 1107.87 0.0967596
\(509\) 10952.8 0.953780 0.476890 0.878963i \(-0.341764\pi\)
0.476890 + 0.878963i \(0.341764\pi\)
\(510\) −4127.50 −0.358370
\(511\) −2421.76 −0.209653
\(512\) −1252.84 −0.108141
\(513\) 3269.71 0.281406
\(514\) 9747.13 0.836435
\(515\) −5181.76 −0.443370
\(516\) 4224.25 0.360392
\(517\) 1215.75 0.103421
\(518\) 27317.6 2.31711
\(519\) −6857.51 −0.579983
\(520\) −1848.57 −0.155895
\(521\) −19312.4 −1.62398 −0.811990 0.583672i \(-0.801616\pi\)
−0.811990 + 0.583672i \(0.801616\pi\)
\(522\) 1287.49 0.107954
\(523\) 9730.02 0.813507 0.406753 0.913538i \(-0.366661\pi\)
0.406753 + 0.913538i \(0.366661\pi\)
\(524\) 22057.6 1.83891
\(525\) −2662.45 −0.221331
\(526\) −1239.31 −0.102731
\(527\) 2015.72 0.166615
\(528\) −131.979 −0.0108781
\(529\) −11003.8 −0.904395
\(530\) 17567.0 1.43974
\(531\) 3661.45 0.299234
\(532\) 28245.4 2.30186
\(533\) 2396.47 0.194752
\(534\) 1751.22 0.141915
\(535\) 14724.8 1.18992
\(536\) −5545.13 −0.446853
\(537\) −5840.66 −0.469354
\(538\) −6033.65 −0.483512
\(539\) −105.229 −0.00840916
\(540\) 3010.45 0.239906
\(541\) 8759.35 0.696107 0.348053 0.937475i \(-0.386843\pi\)
0.348053 + 0.937475i \(0.386843\pi\)
\(542\) 45.7813 0.00362818
\(543\) −11707.4 −0.925251
\(544\) 6520.71 0.513921
\(545\) 8952.88 0.703669
\(546\) −2443.02 −0.191487
\(547\) 5909.21 0.461901 0.230950 0.972966i \(-0.425816\pi\)
0.230950 + 0.972966i \(0.425816\pi\)
\(548\) −27231.4 −2.12275
\(549\) 5612.73 0.436331
\(550\) 2807.60 0.217666
\(551\) −3803.22 −0.294052
\(552\) −2213.15 −0.170648
\(553\) 11361.6 0.873677
\(554\) 39345.9 3.01742
\(555\) −8600.72 −0.657803
\(556\) 16130.1 1.23034
\(557\) −15368.8 −1.16912 −0.584558 0.811352i \(-0.698732\pi\)
−0.584558 + 0.811352i \(0.698732\pi\)
\(558\) −2392.77 −0.181530
\(559\) 1079.29 0.0816622
\(560\) −553.999 −0.0418049
\(561\) 1316.46 0.0990747
\(562\) 3485.20 0.261591
\(563\) −24500.9 −1.83408 −0.917041 0.398793i \(-0.869429\pi\)
−0.917041 + 0.398793i \(0.869429\pi\)
\(564\) 3659.40 0.273206
\(565\) 8788.92 0.654430
\(566\) 19425.9 1.44264
\(567\) 1481.92 0.109762
\(568\) −4795.51 −0.354252
\(569\) 21985.1 1.61980 0.809899 0.586570i \(-0.199522\pi\)
0.809899 + 0.586570i \(0.199522\pi\)
\(570\) −14473.3 −1.06354
\(571\) 21934.5 1.60758 0.803790 0.594913i \(-0.202813\pi\)
0.803790 + 0.594913i \(0.202813\pi\)
\(572\) 1582.90 0.115707
\(573\) −12836.9 −0.935895
\(574\) −20437.8 −1.48616
\(575\) −1654.44 −0.119991
\(576\) −7491.15 −0.541895
\(577\) 4510.06 0.325401 0.162700 0.986676i \(-0.447980\pi\)
0.162700 + 0.986676i \(0.447980\pi\)
\(578\) 16946.2 1.21950
\(579\) −10390.4 −0.745785
\(580\) −3501.66 −0.250687
\(581\) 9412.40 0.672103
\(582\) 20716.3 1.47546
\(583\) −5602.94 −0.398028
\(584\) 2863.19 0.202876
\(585\) 769.167 0.0543609
\(586\) −34702.4 −2.44632
\(587\) 15348.9 1.07925 0.539623 0.841907i \(-0.318567\pi\)
0.539623 + 0.841907i \(0.318567\pi\)
\(588\) −316.738 −0.0222143
\(589\) 7068.21 0.494466
\(590\) −16207.3 −1.13092
\(591\) 467.988 0.0325727
\(592\) 1134.94 0.0787933
\(593\) −10515.1 −0.728165 −0.364082 0.931367i \(-0.618617\pi\)
−0.364082 + 0.931367i \(0.618617\pi\)
\(594\) −1562.71 −0.107944
\(595\) 5526.01 0.380747
\(596\) 12546.1 0.862261
\(597\) −4330.46 −0.296874
\(598\) −1518.09 −0.103812
\(599\) 4526.71 0.308775 0.154388 0.988010i \(-0.450660\pi\)
0.154388 + 0.988010i \(0.450660\pi\)
\(600\) 3147.75 0.214177
\(601\) −2187.26 −0.148453 −0.0742265 0.997241i \(-0.523649\pi\)
−0.0742265 + 0.997241i \(0.523649\pi\)
\(602\) −9204.51 −0.623169
\(603\) 2307.26 0.155819
\(604\) −45099.4 −3.03819
\(605\) −10228.8 −0.687371
\(606\) −12206.2 −0.818225
\(607\) 12060.3 0.806443 0.403221 0.915102i \(-0.367890\pi\)
0.403221 + 0.915102i \(0.367890\pi\)
\(608\) 22865.2 1.52517
\(609\) −1723.72 −0.114694
\(610\) −24844.6 −1.64906
\(611\) 934.973 0.0619066
\(612\) 3962.51 0.261724
\(613\) −13459.4 −0.886820 −0.443410 0.896319i \(-0.646232\pi\)
−0.443410 + 0.896319i \(0.646232\pi\)
\(614\) −25555.0 −1.67967
\(615\) 6434.67 0.421904
\(616\) −5028.26 −0.328887
\(617\) 10467.2 0.682970 0.341485 0.939887i \(-0.389070\pi\)
0.341485 + 0.939887i \(0.389070\pi\)
\(618\) 8096.30 0.526992
\(619\) 5187.90 0.336865 0.168432 0.985713i \(-0.446130\pi\)
0.168432 + 0.985713i \(0.446130\pi\)
\(620\) 6507.76 0.421545
\(621\) 920.862 0.0595055
\(622\) 32355.6 2.08575
\(623\) −2344.58 −0.150776
\(624\) −101.498 −0.00651150
\(625\) −7208.29 −0.461331
\(626\) −11426.5 −0.729543
\(627\) 4616.22 0.294025
\(628\) 39019.2 2.47936
\(629\) −11320.7 −0.717626
\(630\) −6559.67 −0.414831
\(631\) −22233.6 −1.40270 −0.701351 0.712816i \(-0.747419\pi\)
−0.701351 + 0.712816i \(0.747419\pi\)
\(632\) −13432.5 −0.845437
\(633\) −1399.08 −0.0878492
\(634\) 15563.9 0.974955
\(635\) 760.035 0.0474977
\(636\) −16864.7 −1.05146
\(637\) −80.9262 −0.00503361
\(638\) 1817.69 0.112795
\(639\) 1995.35 0.123529
\(640\) 19948.7 1.23210
\(641\) 6468.10 0.398556 0.199278 0.979943i \(-0.436140\pi\)
0.199278 + 0.979943i \(0.436140\pi\)
\(642\) −23007.0 −1.41435
\(643\) 1197.51 0.0734448 0.0367224 0.999326i \(-0.488308\pi\)
0.0367224 + 0.999326i \(0.488308\pi\)
\(644\) 7954.86 0.486748
\(645\) 2897.97 0.176911
\(646\) −19050.5 −1.16026
\(647\) −13534.0 −0.822377 −0.411189 0.911550i \(-0.634886\pi\)
−0.411189 + 0.911550i \(0.634886\pi\)
\(648\) −1752.04 −0.106214
\(649\) 5169.29 0.312654
\(650\) 2159.17 0.130292
\(651\) 3203.50 0.192865
\(652\) 48945.4 2.93995
\(653\) −10606.3 −0.635614 −0.317807 0.948155i \(-0.602946\pi\)
−0.317807 + 0.948155i \(0.602946\pi\)
\(654\) −13988.6 −0.836385
\(655\) 15132.2 0.902692
\(656\) −849.109 −0.0505368
\(657\) −1191.34 −0.0707434
\(658\) −7973.71 −0.472413
\(659\) 4859.49 0.287252 0.143626 0.989632i \(-0.454124\pi\)
0.143626 + 0.989632i \(0.454124\pi\)
\(660\) 4250.19 0.250664
\(661\) 12050.0 0.709062 0.354531 0.935044i \(-0.384641\pi\)
0.354531 + 0.935044i \(0.384641\pi\)
\(662\) −13970.2 −0.820193
\(663\) 1012.42 0.0593048
\(664\) −11128.0 −0.650379
\(665\) 19377.2 1.12995
\(666\) 13438.3 0.781868
\(667\) −1071.12 −0.0621797
\(668\) 29380.2 1.70173
\(669\) 797.786 0.0461049
\(670\) −10213.0 −0.588900
\(671\) 7924.13 0.455898
\(672\) 10363.1 0.594889
\(673\) −31642.7 −1.81238 −0.906192 0.422866i \(-0.861024\pi\)
−0.906192 + 0.422866i \(0.861024\pi\)
\(674\) 51545.1 2.94576
\(675\) −1309.74 −0.0746842
\(676\) −26791.3 −1.52431
\(677\) 677.000 0.0384331
\(678\) −13732.4 −0.777859
\(679\) −27735.5 −1.56759
\(680\) −6533.26 −0.368440
\(681\) 11281.3 0.634800
\(682\) −3378.14 −0.189671
\(683\) 519.835 0.0291229 0.0145614 0.999894i \(-0.495365\pi\)
0.0145614 + 0.999894i \(0.495365\pi\)
\(684\) 13894.7 0.776722
\(685\) −18681.6 −1.04203
\(686\) 29274.5 1.62931
\(687\) −20012.8 −1.11141
\(688\) −382.411 −0.0211908
\(689\) −4308.93 −0.238254
\(690\) −4076.17 −0.224894
\(691\) 11836.5 0.651637 0.325818 0.945432i \(-0.394360\pi\)
0.325818 + 0.945432i \(0.394360\pi\)
\(692\) −29141.2 −1.60084
\(693\) 2092.19 0.114684
\(694\) 30769.5 1.68299
\(695\) 11065.8 0.603955
\(696\) 2037.91 0.110987
\(697\) 8469.65 0.460274
\(698\) 19662.6 1.06625
\(699\) 2800.08 0.151515
\(700\) −11314.2 −0.610907
\(701\) −923.652 −0.0497659 −0.0248829 0.999690i \(-0.507921\pi\)
−0.0248829 + 0.999690i \(0.507921\pi\)
\(702\) −1201.80 −0.0646137
\(703\) −39696.6 −2.12971
\(704\) −10576.1 −0.566196
\(705\) 2510.46 0.134113
\(706\) −43585.8 −2.32348
\(707\) 16342.0 0.869314
\(708\) 15559.4 0.825932
\(709\) −21364.5 −1.13168 −0.565838 0.824516i \(-0.691447\pi\)
−0.565838 + 0.824516i \(0.691447\pi\)
\(710\) −8832.36 −0.466863
\(711\) 5589.09 0.294806
\(712\) 2771.94 0.145903
\(713\) 1990.65 0.104559
\(714\) −8634.19 −0.452558
\(715\) 1085.92 0.0567987
\(716\) −24820.0 −1.29549
\(717\) 454.262 0.0236607
\(718\) −29530.2 −1.53490
\(719\) −18900.2 −0.980332 −0.490166 0.871629i \(-0.663064\pi\)
−0.490166 + 0.871629i \(0.663064\pi\)
\(720\) −272.529 −0.0141063
\(721\) −10839.5 −0.559897
\(722\) −35558.1 −1.83288
\(723\) 8483.22 0.436369
\(724\) −49750.8 −2.55383
\(725\) 1523.45 0.0780405
\(726\) 15982.1 0.817013
\(727\) 10283.8 0.524631 0.262315 0.964982i \(-0.415514\pi\)
0.262315 + 0.964982i \(0.415514\pi\)
\(728\) −3866.97 −0.196867
\(729\) 729.000 0.0370370
\(730\) 5273.41 0.267367
\(731\) 3814.46 0.193000
\(732\) 23851.5 1.20434
\(733\) −2905.05 −0.146385 −0.0731926 0.997318i \(-0.523319\pi\)
−0.0731926 + 0.997318i \(0.523319\pi\)
\(734\) −12347.7 −0.620928
\(735\) −217.292 −0.0109047
\(736\) 6439.61 0.322510
\(737\) 3257.42 0.162807
\(738\) −10053.9 −0.501478
\(739\) −11422.4 −0.568577 −0.284289 0.958739i \(-0.591757\pi\)
−0.284289 + 0.958739i \(0.591757\pi\)
\(740\) −36549.0 −1.81563
\(741\) 3550.09 0.176000
\(742\) 36747.7 1.81813
\(743\) −15000.2 −0.740652 −0.370326 0.928902i \(-0.620754\pi\)
−0.370326 + 0.928902i \(0.620754\pi\)
\(744\) −3787.42 −0.186631
\(745\) 8607.00 0.423270
\(746\) −15960.5 −0.783318
\(747\) 4630.23 0.226789
\(748\) 5594.33 0.273461
\(749\) 30802.4 1.50266
\(750\) 20736.8 1.00960
\(751\) 3796.45 0.184467 0.0922334 0.995737i \(-0.470599\pi\)
0.0922334 + 0.995737i \(0.470599\pi\)
\(752\) −331.276 −0.0160644
\(753\) 6973.11 0.337469
\(754\) 1397.89 0.0675175
\(755\) −30939.6 −1.49140
\(756\) 6297.46 0.302958
\(757\) −14402.1 −0.691484 −0.345742 0.938330i \(-0.612373\pi\)
−0.345742 + 0.938330i \(0.612373\pi\)
\(758\) −59289.5 −2.84102
\(759\) 1300.09 0.0621740
\(760\) −22909.2 −1.09342
\(761\) −24730.9 −1.17805 −0.589023 0.808116i \(-0.700487\pi\)
−0.589023 + 0.808116i \(0.700487\pi\)
\(762\) −1187.53 −0.0564561
\(763\) 18728.2 0.888608
\(764\) −54550.7 −2.58321
\(765\) 2718.41 0.128476
\(766\) −57447.3 −2.70973
\(767\) 3975.42 0.187150
\(768\) −11192.7 −0.525887
\(769\) 24729.4 1.15964 0.579822 0.814743i \(-0.303122\pi\)
0.579822 + 0.814743i \(0.303122\pi\)
\(770\) −9261.03 −0.433434
\(771\) −6419.54 −0.299863
\(772\) −44154.2 −2.05848
\(773\) −31978.2 −1.48794 −0.743968 0.668215i \(-0.767059\pi\)
−0.743968 + 0.668215i \(0.767059\pi\)
\(774\) −4527.97 −0.210277
\(775\) −2831.29 −0.131230
\(776\) 32791.0 1.51692
\(777\) −17991.6 −0.830687
\(778\) −39377.8 −1.81460
\(779\) 29699.2 1.36596
\(780\) 3268.60 0.150044
\(781\) 2817.06 0.129068
\(782\) −5365.27 −0.245347
\(783\) −847.950 −0.0387015
\(784\) 28.6735 0.00130619
\(785\) 26768.4 1.21708
\(786\) −23643.5 −1.07295
\(787\) 34827.5 1.57747 0.788733 0.614736i \(-0.210737\pi\)
0.788733 + 0.614736i \(0.210737\pi\)
\(788\) 1988.73 0.0899054
\(789\) 816.219 0.0368291
\(790\) −24739.9 −1.11419
\(791\) 18385.3 0.826428
\(792\) −2473.55 −0.110977
\(793\) 6094.03 0.272894
\(794\) 59527.9 2.66066
\(795\) −11569.7 −0.516146
\(796\) −18402.4 −0.819417
\(797\) 29580.6 1.31468 0.657340 0.753594i \(-0.271682\pi\)
0.657340 + 0.753594i \(0.271682\pi\)
\(798\) −30276.1 −1.34306
\(799\) 3304.40 0.146309
\(800\) −9159.03 −0.404776
\(801\) −1153.37 −0.0508767
\(802\) −50666.0 −2.23077
\(803\) −1681.94 −0.0739159
\(804\) 9804.76 0.430083
\(805\) 5457.28 0.238937
\(806\) −2597.95 −0.113535
\(807\) 3973.81 0.173339
\(808\) −19320.8 −0.841215
\(809\) −25380.6 −1.10301 −0.551505 0.834172i \(-0.685946\pi\)
−0.551505 + 0.834172i \(0.685946\pi\)
\(810\) −3226.90 −0.139977
\(811\) 7885.35 0.341421 0.170710 0.985321i \(-0.445394\pi\)
0.170710 + 0.985321i \(0.445394\pi\)
\(812\) −7325.01 −0.316573
\(813\) −30.1519 −0.00130071
\(814\) 18972.4 0.816931
\(815\) 33578.1 1.44318
\(816\) −358.716 −0.0153892
\(817\) 13375.6 0.572768
\(818\) −47138.6 −2.01487
\(819\) 1609.00 0.0686482
\(820\) 27344.3 1.16452
\(821\) 261.584 0.0111198 0.00555990 0.999985i \(-0.498230\pi\)
0.00555990 + 0.999985i \(0.498230\pi\)
\(822\) 29189.3 1.23856
\(823\) −13226.4 −0.560198 −0.280099 0.959971i \(-0.590367\pi\)
−0.280099 + 0.959971i \(0.590367\pi\)
\(824\) 12815.3 0.541800
\(825\) −1849.11 −0.0780334
\(826\) −33903.5 −1.42815
\(827\) 34863.5 1.46593 0.732964 0.680268i \(-0.238136\pi\)
0.732964 + 0.680268i \(0.238136\pi\)
\(828\) 3913.23 0.164244
\(829\) −7156.22 −0.299814 −0.149907 0.988700i \(-0.547897\pi\)
−0.149907 + 0.988700i \(0.547897\pi\)
\(830\) −20495.6 −0.857123
\(831\) −25913.5 −1.08175
\(832\) −8133.52 −0.338917
\(833\) −286.011 −0.0118964
\(834\) −17289.9 −0.717865
\(835\) 20155.8 0.835352
\(836\) 19616.7 0.811554
\(837\) 1575.90 0.0650788
\(838\) −49068.1 −2.02271
\(839\) −33918.3 −1.39570 −0.697849 0.716245i \(-0.745859\pi\)
−0.697849 + 0.716245i \(0.745859\pi\)
\(840\) −10383.0 −0.426487
\(841\) −23402.7 −0.959559
\(842\) −37126.3 −1.51954
\(843\) −2295.38 −0.0937806
\(844\) −5945.44 −0.242477
\(845\) −18379.7 −0.748260
\(846\) −3922.50 −0.159407
\(847\) −21397.3 −0.868027
\(848\) 1526.72 0.0618253
\(849\) −12794.1 −0.517186
\(850\) 7631.00 0.307931
\(851\) −11179.9 −0.450344
\(852\) 8479.30 0.340958
\(853\) 11362.1 0.456072 0.228036 0.973653i \(-0.426770\pi\)
0.228036 + 0.973653i \(0.426770\pi\)
\(854\) −51971.6 −2.08247
\(855\) 9532.21 0.381280
\(856\) −36416.9 −1.45409
\(857\) 923.026 0.0367911 0.0183956 0.999831i \(-0.494144\pi\)
0.0183956 + 0.999831i \(0.494144\pi\)
\(858\) −1696.71 −0.0675113
\(859\) −16783.2 −0.666631 −0.333316 0.942815i \(-0.608167\pi\)
−0.333316 + 0.942815i \(0.608167\pi\)
\(860\) 12315.0 0.488300
\(861\) 13460.5 0.532790
\(862\) −49639.3 −1.96139
\(863\) −30425.3 −1.20010 −0.600052 0.799961i \(-0.704853\pi\)
−0.600052 + 0.799961i \(0.704853\pi\)
\(864\) 5097.91 0.200734
\(865\) −19991.8 −0.785827
\(866\) −12916.0 −0.506819
\(867\) −11160.9 −0.437190
\(868\) 13613.4 0.532336
\(869\) 7890.75 0.308027
\(870\) 3753.42 0.146268
\(871\) 2505.11 0.0974538
\(872\) −22141.9 −0.859886
\(873\) −13643.9 −0.528954
\(874\) −18813.5 −0.728121
\(875\) −27763.0 −1.07264
\(876\) −5062.61 −0.195262
\(877\) 16904.1 0.650869 0.325434 0.945565i \(-0.394489\pi\)
0.325434 + 0.945565i \(0.394489\pi\)
\(878\) 79802.3 3.06742
\(879\) 22855.3 0.877008
\(880\) −384.759 −0.0147389
\(881\) 27928.6 1.06803 0.534017 0.845474i \(-0.320682\pi\)
0.534017 + 0.845474i \(0.320682\pi\)
\(882\) 339.510 0.0129614
\(883\) 18997.5 0.724029 0.362014 0.932173i \(-0.382089\pi\)
0.362014 + 0.932173i \(0.382089\pi\)
\(884\) 4302.30 0.163690
\(885\) 10674.3 0.405437
\(886\) −8120.37 −0.307911
\(887\) 29581.5 1.11978 0.559892 0.828566i \(-0.310843\pi\)
0.559892 + 0.828566i \(0.310843\pi\)
\(888\) 21271.0 0.803837
\(889\) 1589.89 0.0599812
\(890\) 5105.35 0.192283
\(891\) 1029.21 0.0386980
\(892\) 3390.21 0.127256
\(893\) 11587.0 0.434205
\(894\) −13448.1 −0.503101
\(895\) −17027.3 −0.635933
\(896\) 41730.0 1.55592
\(897\) 999.827 0.0372166
\(898\) −29053.9 −1.07967
\(899\) −1833.03 −0.0680034
\(900\) −5565.77 −0.206140
\(901\) −15228.7 −0.563087
\(902\) −14194.3 −0.523966
\(903\) 6062.16 0.223407
\(904\) −21736.4 −0.799716
\(905\) −34130.6 −1.25363
\(906\) 48342.0 1.77269
\(907\) −16670.8 −0.610303 −0.305152 0.952304i \(-0.598707\pi\)
−0.305152 + 0.952304i \(0.598707\pi\)
\(908\) 47940.0 1.75214
\(909\) 8039.12 0.293334
\(910\) −7122.17 −0.259448
\(911\) 23493.9 0.854434 0.427217 0.904149i \(-0.359494\pi\)
0.427217 + 0.904149i \(0.359494\pi\)
\(912\) −1257.85 −0.0456707
\(913\) 6537.02 0.236959
\(914\) −26893.5 −0.973258
\(915\) 16362.8 0.591190
\(916\) −85044.9 −3.06764
\(917\) 31654.5 1.13994
\(918\) −4247.41 −0.152707
\(919\) 29701.6 1.06612 0.533060 0.846077i \(-0.321042\pi\)
0.533060 + 0.846077i \(0.321042\pi\)
\(920\) −6452.01 −0.231213
\(921\) 16830.7 0.602163
\(922\) −1502.78 −0.0536784
\(923\) 2166.45 0.0772586
\(924\) 8890.83 0.316544
\(925\) 15901.2 0.565218
\(926\) 739.762 0.0262528
\(927\) −5332.29 −0.188927
\(928\) −5929.74 −0.209755
\(929\) −2709.20 −0.0956793 −0.0478397 0.998855i \(-0.515234\pi\)
−0.0478397 + 0.998855i \(0.515234\pi\)
\(930\) −6975.66 −0.245958
\(931\) −1002.91 −0.0353051
\(932\) 11899.0 0.418203
\(933\) −21309.6 −0.747745
\(934\) 22481.0 0.787581
\(935\) 3837.88 0.134238
\(936\) −1902.28 −0.0664293
\(937\) −31513.7 −1.09873 −0.549364 0.835583i \(-0.685130\pi\)
−0.549364 + 0.835583i \(0.685130\pi\)
\(938\) −21364.2 −0.743675
\(939\) 7525.57 0.261542
\(940\) 10668.3 0.370171
\(941\) −3252.29 −0.112669 −0.0563345 0.998412i \(-0.517941\pi\)
−0.0563345 + 0.998412i \(0.517941\pi\)
\(942\) −41824.6 −1.44662
\(943\) 8364.32 0.288844
\(944\) −1408.56 −0.0485643
\(945\) 4320.25 0.148717
\(946\) −6392.64 −0.219707
\(947\) −7433.07 −0.255061 −0.127530 0.991835i \(-0.540705\pi\)
−0.127530 + 0.991835i \(0.540705\pi\)
\(948\) 23751.0 0.813709
\(949\) −1293.49 −0.0442451
\(950\) 26758.4 0.913850
\(951\) −10250.5 −0.349522
\(952\) −13666.7 −0.465274
\(953\) −656.194 −0.0223045 −0.0111523 0.999938i \(-0.503550\pi\)
−0.0111523 + 0.999938i \(0.503550\pi\)
\(954\) 18077.3 0.613495
\(955\) −37423.4 −1.26806
\(956\) 1930.40 0.0653071
\(957\) −1197.15 −0.0404370
\(958\) −67212.0 −2.26672
\(959\) −39079.4 −1.31589
\(960\) −21839.0 −0.734220
\(961\) −26384.3 −0.885648
\(962\) 14590.7 0.489004
\(963\) 15152.6 0.507046
\(964\) 36049.7 1.20444
\(965\) −30291.2 −1.01047
\(966\) −8526.80 −0.284001
\(967\) −10705.6 −0.356019 −0.178009 0.984029i \(-0.556966\pi\)
−0.178009 + 0.984029i \(0.556966\pi\)
\(968\) 25297.5 0.839970
\(969\) 12546.8 0.415956
\(970\) 60394.4 1.99912
\(971\) −18902.7 −0.624733 −0.312367 0.949962i \(-0.601122\pi\)
−0.312367 + 0.949962i \(0.601122\pi\)
\(972\) 3097.91 0.102228
\(973\) 23148.1 0.762688
\(974\) −51191.5 −1.68407
\(975\) −1422.05 −0.0467098
\(976\) −2159.21 −0.0708143
\(977\) 25645.8 0.839797 0.419898 0.907571i \(-0.362066\pi\)
0.419898 + 0.907571i \(0.362066\pi\)
\(978\) −52464.5 −1.71537
\(979\) −1628.34 −0.0531583
\(980\) −923.387 −0.0300985
\(981\) 9212.97 0.299845
\(982\) 92392.8 3.00242
\(983\) 49668.3 1.61157 0.805785 0.592209i \(-0.201744\pi\)
0.805785 + 0.592209i \(0.201744\pi\)
\(984\) −15914.0 −0.515568
\(985\) 1364.33 0.0441331
\(986\) 4940.45 0.159570
\(987\) 5251.55 0.169360
\(988\) 15086.2 0.485785
\(989\) 3767.02 0.121116
\(990\) −4555.77 −0.146254
\(991\) 33684.1 1.07973 0.539864 0.841752i \(-0.318476\pi\)
0.539864 + 0.841752i \(0.318476\pi\)
\(992\) 11020.3 0.352716
\(993\) 9200.90 0.294040
\(994\) −18476.1 −0.589564
\(995\) −12624.6 −0.402239
\(996\) 19676.3 0.625972
\(997\) 32444.2 1.03061 0.515304 0.857007i \(-0.327679\pi\)
0.515304 + 0.857007i \(0.327679\pi\)
\(998\) −20691.8 −0.656301
\(999\) −8850.58 −0.280300
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2031.4.a.d.1.11 94
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2031.4.a.d.1.11 94 1.1 even 1 trivial