Properties

Label 2040.2.a.x
Level $2040$
Weight $2$
Character orbit 2040.a
Self dual yes
Analytic conductor $16.289$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2040,2,Mod(1,2040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2040.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2894820123\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + q^{5} + (\beta_1 + 1) q^{7} + q^{9} + ( - \beta_{2} - 2 \beta_1 + 2) q^{11} + ( - \beta_{2} + \beta_1 - 1) q^{13} - q^{15} - q^{17} + ( - \beta_{2} + 2 \beta_1 + 2) q^{19} + ( - \beta_1 - 1) q^{21}+ \cdots + ( - \beta_{2} - 2 \beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 3 q^{5} + 3 q^{7} + 3 q^{9} + 7 q^{11} - 2 q^{13} - 3 q^{15} - 3 q^{17} + 7 q^{19} - 3 q^{21} + 10 q^{23} + 3 q^{25} - 3 q^{27} - q^{29} + 10 q^{31} - 7 q^{33} + 3 q^{35} - 13 q^{37} + 2 q^{39}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 2\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.470683
−1.81361
2.34292
0 −1.00000 0 1.00000 0 −1.77846 0 1.00000 0
1.2 0 −1.00000 0 1.00000 0 1.28917 0 1.00000 0
1.3 0 −1.00000 0 1.00000 0 3.48929 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2040.2.a.x 3
3.b odd 2 1 6120.2.a.bp 3
4.b odd 2 1 4080.2.a.bs 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2040.2.a.x 3 1.a even 1 1 trivial
4080.2.a.bs 3 4.b odd 2 1
6120.2.a.bp 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2040))\):

\( T_{7}^{3} - 3T_{7}^{2} - 4T_{7} + 8 \) Copy content Toggle raw display
\( T_{11}^{3} - 7T_{11}^{2} - 16T_{11} + 128 \) Copy content Toggle raw display
\( T_{13}^{3} + 2T_{13}^{2} - 28T_{13} + 8 \) Copy content Toggle raw display
\( T_{19}^{3} - 7T_{19}^{2} - 40T_{19} + 272 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 3 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$11$ \( T^{3} - 7 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$13$ \( T^{3} + 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$17$ \( (T + 1)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 7 T^{2} + \cdots + 272 \) Copy content Toggle raw display
$23$ \( T^{3} - 10 T^{2} + \cdots + 352 \) Copy content Toggle raw display
$29$ \( T^{3} + T^{2} + \cdots - 172 \) Copy content Toggle raw display
$31$ \( T^{3} - 10 T^{2} + \cdots + 352 \) Copy content Toggle raw display
$37$ \( T^{3} + 13 T^{2} + \cdots - 124 \) Copy content Toggle raw display
$41$ \( T^{3} + T^{2} + \cdots + 164 \) Copy content Toggle raw display
$43$ \( T^{3} - 16 T^{2} + \cdots + 352 \) Copy content Toggle raw display
$47$ \( T^{3} + T^{2} + \cdots - 352 \) Copy content Toggle raw display
$53$ \( T^{3} + 5 T^{2} + \cdots - 44 \) Copy content Toggle raw display
$59$ \( T^{3} - 16 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$61$ \( T^{3} - 10 T^{2} + \cdots + 232 \) Copy content Toggle raw display
$67$ \( T^{3} + 8 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$71$ \( T^{3} - 136T - 608 \) Copy content Toggle raw display
$73$ \( T^{3} - 9 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$79$ \( T^{3} - 30 T^{2} + \cdots - 736 \) Copy content Toggle raw display
$83$ \( T^{3} - 4 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$89$ \( T^{3} - 8 T^{2} + \cdots + 1936 \) Copy content Toggle raw display
$97$ \( T^{3} + 14 T^{2} + \cdots - 8 \) Copy content Toggle raw display
show more
show less