Properties

Label 207.2.i.b.127.1
Level $207$
Weight $2$
Character 207.127
Analytic conductor $1.653$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [207,2,Mod(55,207)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(207, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("207.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 207.i (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.65290332184\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 69)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 127.1
Root \(0.142315 + 0.989821i\) of defining polynomial
Character \(\chi\) \(=\) 207.127
Dual form 207.2.i.b.163.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.402869 - 0.258908i) q^{2} +(-0.735560 + 1.61065i) q^{4} +(-3.37102 + 0.989821i) q^{5} +(0.527646 + 0.608936i) q^{7} +(0.256983 + 1.78736i) q^{8} +(-1.10181 + 1.27155i) q^{10} +(2.98325 + 1.91722i) q^{11} +(-4.32972 + 4.99677i) q^{13} +(0.370231 + 0.108710i) q^{14} +(-1.75278 - 2.02282i) q^{16} +(-0.387956 - 0.849505i) q^{17} +(1.55773 - 3.41095i) q^{19} +(0.885331 - 6.15762i) q^{20} +1.69824 q^{22} +(4.71737 + 0.863983i) q^{23} +(6.17778 - 3.97022i) q^{25} +(-0.450608 + 3.13404i) q^{26} +(-1.36890 + 0.401945i) q^{28} +(-0.657326 - 1.43934i) q^{29} +(-0.0804100 - 0.559264i) q^{31} +(-4.69505 - 1.37859i) q^{32} +(-0.376239 - 0.241794i) q^{34} +(-2.38145 - 1.53046i) q^{35} +(7.84580 + 2.30374i) q^{37} +(-0.255563 - 1.77748i) q^{38} +(-2.63546 - 5.77086i) q^{40} +(-3.65843 + 1.07421i) q^{41} +(-0.975753 + 6.78651i) q^{43} +(-5.28234 + 3.39475i) q^{44} +(2.12417 - 0.873293i) q^{46} +5.69427 q^{47} +(0.903811 - 6.28614i) q^{49} +(1.46091 - 3.19895i) q^{50} +(-4.86328 - 10.6491i) q^{52} +(4.57100 + 5.27521i) q^{53} +(-11.9543 - 3.51011i) q^{55} +(-0.952791 + 1.09958i) q^{56} +(-0.637474 - 0.409680i) q^{58} +(0.663766 - 0.766027i) q^{59} +(1.74697 + 12.1505i) q^{61} +(-0.177193 - 0.204491i) q^{62} +(2.88789 - 0.847960i) q^{64} +(9.64969 - 21.1299i) q^{65} +(2.09309 - 1.34515i) q^{67} +1.65362 q^{68} -1.35566 q^{70} +(-11.1508 + 7.16620i) q^{71} +(2.78441 - 6.09701i) q^{73} +(3.75729 - 1.10324i) q^{74} +(4.34805 + 5.01792i) q^{76} +(0.406637 + 2.82823i) q^{77} +(-0.940694 + 1.08562i) q^{79} +(7.91090 + 5.08403i) q^{80} +(-1.19575 + 1.37997i) q^{82} +(-1.68020 - 0.493351i) q^{83} +(2.14867 + 2.47969i) q^{85} +(1.36398 + 2.98671i) q^{86} +(-2.66011 + 5.82484i) q^{88} +(-0.667422 + 4.64202i) q^{89} -5.32728 q^{91} +(-4.86148 + 6.96252i) q^{92} +(2.29404 - 1.47429i) q^{94} +(-1.87491 + 13.0403i) q^{95} +(-0.762432 + 0.223870i) q^{97} +(-1.26342 - 2.76650i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} + 8 q^{4} - 5 q^{5} - 8 q^{7} + 15 q^{8} - 2 q^{10} - 7 q^{11} - 30 q^{13} - q^{14} + 12 q^{16} + 2 q^{17} + 10 q^{19} - 4 q^{20} + 6 q^{22} + q^{23} + 24 q^{25} - q^{26} + 9 q^{28} + 14 q^{29}+ \cdots - 58 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/207\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(47\)
\(\chi(n)\) \(e\left(\frac{10}{11}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.402869 0.258908i 0.284871 0.183076i −0.390399 0.920646i \(-0.627663\pi\)
0.675271 + 0.737570i \(0.264027\pi\)
\(3\) 0 0
\(4\) −0.735560 + 1.61065i −0.367780 + 0.805326i
\(5\) −3.37102 + 0.989821i −1.50757 + 0.442662i −0.928099 0.372333i \(-0.878558\pi\)
−0.579468 + 0.814995i \(0.696740\pi\)
\(6\) 0 0
\(7\) 0.527646 + 0.608936i 0.199432 + 0.230156i 0.846652 0.532146i \(-0.178614\pi\)
−0.647221 + 0.762302i \(0.724069\pi\)
\(8\) 0.256983 + 1.78736i 0.0908573 + 0.631927i
\(9\) 0 0
\(10\) −1.10181 + 1.27155i −0.348422 + 0.402101i
\(11\) 2.98325 + 1.91722i 0.899485 + 0.578064i 0.906637 0.421911i \(-0.138640\pi\)
−0.00715262 + 0.999974i \(0.502277\pi\)
\(12\) 0 0
\(13\) −4.32972 + 4.99677i −1.20085 + 1.38585i −0.298747 + 0.954332i \(0.596569\pi\)
−0.902103 + 0.431522i \(0.857977\pi\)
\(14\) 0.370231 + 0.108710i 0.0989484 + 0.0290539i
\(15\) 0 0
\(16\) −1.75278 2.02282i −0.438196 0.505705i
\(17\) −0.387956 0.849505i −0.0940931 0.206035i 0.856733 0.515760i \(-0.172490\pi\)
−0.950826 + 0.309725i \(0.899763\pi\)
\(18\) 0 0
\(19\) 1.55773 3.41095i 0.357368 0.782526i −0.642500 0.766285i \(-0.722103\pi\)
0.999868 0.0162408i \(-0.00516984\pi\)
\(20\) 0.885331 6.15762i 0.197966 1.37688i
\(21\) 0 0
\(22\) 1.69824 0.362067
\(23\) 4.71737 + 0.863983i 0.983639 + 0.180153i
\(24\) 0 0
\(25\) 6.17778 3.97022i 1.23556 0.794043i
\(26\) −0.450608 + 3.13404i −0.0883714 + 0.614637i
\(27\) 0 0
\(28\) −1.36890 + 0.401945i −0.258698 + 0.0759605i
\(29\) −0.657326 1.43934i −0.122062 0.267279i 0.838730 0.544547i \(-0.183298\pi\)
−0.960793 + 0.277268i \(0.910571\pi\)
\(30\) 0 0
\(31\) −0.0804100 0.559264i −0.0144421 0.100447i 0.981325 0.192355i \(-0.0616125\pi\)
−0.995767 + 0.0919082i \(0.970703\pi\)
\(32\) −4.69505 1.37859i −0.829976 0.243703i
\(33\) 0 0
\(34\) −0.376239 0.241794i −0.0645245 0.0414674i
\(35\) −2.38145 1.53046i −0.402538 0.258695i
\(36\) 0 0
\(37\) 7.84580 + 2.30374i 1.28984 + 0.378732i 0.853521 0.521059i \(-0.174463\pi\)
0.436321 + 0.899791i \(0.356281\pi\)
\(38\) −0.255563 1.77748i −0.0414577 0.288345i
\(39\) 0 0
\(40\) −2.63546 5.77086i −0.416703 0.912453i
\(41\) −3.65843 + 1.07421i −0.571351 + 0.167764i −0.554631 0.832096i \(-0.687141\pi\)
−0.0167200 + 0.999860i \(0.505322\pi\)
\(42\) 0 0
\(43\) −0.975753 + 6.78651i −0.148801 + 1.03493i 0.769386 + 0.638785i \(0.220562\pi\)
−0.918187 + 0.396148i \(0.870347\pi\)
\(44\) −5.28234 + 3.39475i −0.796342 + 0.511778i
\(45\) 0 0
\(46\) 2.12417 0.873293i 0.313192 0.128760i
\(47\) 5.69427 0.830594 0.415297 0.909686i \(-0.363678\pi\)
0.415297 + 0.909686i \(0.363678\pi\)
\(48\) 0 0
\(49\) 0.903811 6.28614i 0.129116 0.898021i
\(50\) 1.46091 3.19895i 0.206604 0.452401i
\(51\) 0 0
\(52\) −4.86328 10.6491i −0.674416 1.47676i
\(53\) 4.57100 + 5.27521i 0.627875 + 0.724606i 0.977182 0.212402i \(-0.0681286\pi\)
−0.349308 + 0.937008i \(0.613583\pi\)
\(54\) 0 0
\(55\) −11.9543 3.51011i −1.61192 0.473302i
\(56\) −0.952791 + 1.09958i −0.127322 + 0.146938i
\(57\) 0 0
\(58\) −0.637474 0.409680i −0.0837044 0.0537936i
\(59\) 0.663766 0.766027i 0.0864150 0.0997282i −0.710895 0.703298i \(-0.751710\pi\)
0.797310 + 0.603570i \(0.206255\pi\)
\(60\) 0 0
\(61\) 1.74697 + 12.1505i 0.223677 + 1.55571i 0.723958 + 0.689844i \(0.242321\pi\)
−0.500281 + 0.865863i \(0.666770\pi\)
\(62\) −0.177193 0.204491i −0.0225035 0.0259704i
\(63\) 0 0
\(64\) 2.88789 0.847960i 0.360986 0.105995i
\(65\) 9.64969 21.1299i 1.19690 2.62084i
\(66\) 0 0
\(67\) 2.09309 1.34515i 0.255712 0.164336i −0.406504 0.913649i \(-0.633252\pi\)
0.662216 + 0.749313i \(0.269616\pi\)
\(68\) 1.65362 0.200531
\(69\) 0 0
\(70\) −1.35566 −0.162032
\(71\) −11.1508 + 7.16620i −1.32336 + 0.850471i −0.995547 0.0942715i \(-0.969948\pi\)
−0.327813 + 0.944743i \(0.606311\pi\)
\(72\) 0 0
\(73\) 2.78441 6.09701i 0.325891 0.713601i −0.673789 0.738924i \(-0.735334\pi\)
0.999679 + 0.0253229i \(0.00806139\pi\)
\(74\) 3.75729 1.10324i 0.436776 0.128249i
\(75\) 0 0
\(76\) 4.34805 + 5.01792i 0.498756 + 0.575595i
\(77\) 0.406637 + 2.82823i 0.0463406 + 0.322306i
\(78\) 0 0
\(79\) −0.940694 + 1.08562i −0.105836 + 0.122142i −0.806196 0.591648i \(-0.798477\pi\)
0.700360 + 0.713790i \(0.253023\pi\)
\(80\) 7.91090 + 5.08403i 0.884465 + 0.568411i
\(81\) 0 0
\(82\) −1.19575 + 1.37997i −0.132048 + 0.152392i
\(83\) −1.68020 0.493351i −0.184426 0.0541523i 0.188216 0.982128i \(-0.439730\pi\)
−0.372641 + 0.927975i \(0.621548\pi\)
\(84\) 0 0
\(85\) 2.14867 + 2.47969i 0.233055 + 0.268960i
\(86\) 1.36398 + 2.98671i 0.147082 + 0.322065i
\(87\) 0 0
\(88\) −2.66011 + 5.82484i −0.283569 + 0.620930i
\(89\) −0.667422 + 4.64202i −0.0707466 + 0.492053i 0.923385 + 0.383875i \(0.125411\pi\)
−0.994132 + 0.108178i \(0.965498\pi\)
\(90\) 0 0
\(91\) −5.32728 −0.558450
\(92\) −4.86148 + 6.96252i −0.506844 + 0.725893i
\(93\) 0 0
\(94\) 2.29404 1.47429i 0.236613 0.152062i
\(95\) −1.87491 + 13.0403i −0.192362 + 1.33790i
\(96\) 0 0
\(97\) −0.762432 + 0.223870i −0.0774132 + 0.0227306i −0.320210 0.947347i \(-0.603753\pi\)
0.242797 + 0.970077i \(0.421935\pi\)
\(98\) −1.26342 2.76650i −0.127624 0.279458i
\(99\) 0 0
\(100\) 1.85051 + 12.8706i 0.185051 + 1.28706i
\(101\) −12.0847 3.54840i −1.20248 0.353079i −0.381678 0.924295i \(-0.624654\pi\)
−0.820800 + 0.571216i \(0.806472\pi\)
\(102\) 0 0
\(103\) 8.91245 + 5.72768i 0.878169 + 0.564365i 0.900241 0.435391i \(-0.143390\pi\)
−0.0220720 + 0.999756i \(0.507026\pi\)
\(104\) −10.0437 6.45468i −0.984864 0.632934i
\(105\) 0 0
\(106\) 3.20731 + 0.941751i 0.311521 + 0.0914709i
\(107\) −0.913569 6.35401i −0.0883181 0.614266i −0.985124 0.171842i \(-0.945028\pi\)
0.896806 0.442423i \(-0.145881\pi\)
\(108\) 0 0
\(109\) −0.487454 1.06738i −0.0466896 0.102236i 0.884850 0.465877i \(-0.154261\pi\)
−0.931539 + 0.363641i \(0.881534\pi\)
\(110\) −5.72482 + 1.68096i −0.545840 + 0.160273i
\(111\) 0 0
\(112\) 0.306919 2.13467i 0.0290011 0.201707i
\(113\) 14.5204 9.33173i 1.36597 0.877855i 0.367334 0.930089i \(-0.380271\pi\)
0.998635 + 0.0522342i \(0.0166342\pi\)
\(114\) 0 0
\(115\) −16.7575 + 1.75684i −1.56265 + 0.163826i
\(116\) 2.80178 0.260139
\(117\) 0 0
\(118\) 0.0690802 0.480463i 0.00635934 0.0442302i
\(119\) 0.312591 0.684478i 0.0286552 0.0627460i
\(120\) 0 0
\(121\) 0.654502 + 1.43316i 0.0595002 + 0.130287i
\(122\) 3.84966 + 4.44274i 0.348531 + 0.402227i
\(123\) 0 0
\(124\) 0.959925 + 0.281859i 0.0862038 + 0.0253117i
\(125\) −5.39189 + 6.22257i −0.482265 + 0.556563i
\(126\) 0 0
\(127\) 7.96136 + 5.11646i 0.706457 + 0.454012i 0.843902 0.536497i \(-0.180253\pi\)
−0.137445 + 0.990509i \(0.543889\pi\)
\(128\) 7.35271 8.48548i 0.649894 0.750018i
\(129\) 0 0
\(130\) −1.58314 11.0110i −0.138850 0.965725i
\(131\) 8.83379 + 10.1947i 0.771812 + 0.890718i 0.996490 0.0837147i \(-0.0266784\pi\)
−0.224678 + 0.974433i \(0.572133\pi\)
\(132\) 0 0
\(133\) 2.89898 0.851218i 0.251374 0.0738100i
\(134\) 0.494973 1.08384i 0.0427591 0.0936294i
\(135\) 0 0
\(136\) 1.41867 0.911725i 0.121650 0.0781797i
\(137\) 0.768502 0.0656576 0.0328288 0.999461i \(-0.489548\pi\)
0.0328288 + 0.999461i \(0.489548\pi\)
\(138\) 0 0
\(139\) −14.8410 −1.25879 −0.629397 0.777084i \(-0.716698\pi\)
−0.629397 + 0.777084i \(0.716698\pi\)
\(140\) 4.21674 2.70993i 0.356379 0.229031i
\(141\) 0 0
\(142\) −2.63693 + 5.77408i −0.221287 + 0.484550i
\(143\) −22.4966 + 6.60559i −1.88126 + 0.552387i
\(144\) 0 0
\(145\) 3.64055 + 4.20142i 0.302331 + 0.348909i
\(146\) −0.456813 3.17721i −0.0378061 0.262947i
\(147\) 0 0
\(148\) −9.48157 + 10.9423i −0.779381 + 0.899453i
\(149\) 7.81799 + 5.02432i 0.640475 + 0.411608i 0.820175 0.572113i \(-0.193876\pi\)
−0.179700 + 0.983722i \(0.557513\pi\)
\(150\) 0 0
\(151\) 5.52469 6.37583i 0.449593 0.518857i −0.485031 0.874497i \(-0.661192\pi\)
0.934623 + 0.355640i \(0.115737\pi\)
\(152\) 6.49691 + 1.90766i 0.526969 + 0.154732i
\(153\) 0 0
\(154\) 0.896073 + 1.03412i 0.0722076 + 0.0833320i
\(155\) 0.824635 + 1.80570i 0.0662363 + 0.145037i
\(156\) 0 0
\(157\) 3.89922 8.53811i 0.311192 0.681415i −0.687819 0.725882i \(-0.741432\pi\)
0.999011 + 0.0444670i \(0.0141590\pi\)
\(158\) −0.0979009 + 0.680916i −0.00778858 + 0.0541707i
\(159\) 0 0
\(160\) 17.1917 1.35912
\(161\) 1.96299 + 3.32845i 0.154705 + 0.262319i
\(162\) 0 0
\(163\) −14.3998 + 9.25418i −1.12788 + 0.724843i −0.965116 0.261822i \(-0.915677\pi\)
−0.162762 + 0.986665i \(0.552040\pi\)
\(164\) 0.960814 6.68261i 0.0750270 0.521824i
\(165\) 0 0
\(166\) −0.804632 + 0.236261i −0.0624516 + 0.0183374i
\(167\) −4.44222 9.72711i −0.343750 0.752707i 0.656249 0.754545i \(-0.272142\pi\)
−0.999998 + 0.00183806i \(0.999415\pi\)
\(168\) 0 0
\(169\) −4.37109 30.4016i −0.336237 2.33858i
\(170\) 1.50764 + 0.442684i 0.115631 + 0.0339523i
\(171\) 0 0
\(172\) −10.2130 6.56348i −0.778732 0.500461i
\(173\) 20.3079 + 13.0511i 1.54398 + 0.992255i 0.986815 + 0.161852i \(0.0517468\pi\)
0.557164 + 0.830403i \(0.311890\pi\)
\(174\) 0 0
\(175\) 5.67729 + 1.66700i 0.429163 + 0.126014i
\(176\) −1.35080 9.39505i −0.101821 0.708179i
\(177\) 0 0
\(178\) 0.932974 + 2.04293i 0.0699293 + 0.153124i
\(179\) 2.50104 0.734371i 0.186936 0.0548894i −0.186925 0.982374i \(-0.559852\pi\)
0.373861 + 0.927485i \(0.378034\pi\)
\(180\) 0 0
\(181\) 1.42736 9.92752i 0.106095 0.737907i −0.865440 0.501012i \(-0.832961\pi\)
0.971535 0.236895i \(-0.0761296\pi\)
\(182\) −2.14620 + 1.37928i −0.159087 + 0.102239i
\(183\) 0 0
\(184\) −0.331964 + 8.65365i −0.0244727 + 0.637956i
\(185\) −28.7287 −2.11217
\(186\) 0 0
\(187\) 0.471317 3.27808i 0.0344661 0.239717i
\(188\) −4.18848 + 9.17148i −0.305476 + 0.668899i
\(189\) 0 0
\(190\) 2.62089 + 5.73895i 0.190139 + 0.416347i
\(191\) −16.4041 18.9313i −1.18696 1.36982i −0.912938 0.408097i \(-0.866192\pi\)
−0.274019 0.961724i \(-0.588353\pi\)
\(192\) 0 0
\(193\) 0.0958162 + 0.0281342i 0.00689700 + 0.00202514i 0.285179 0.958474i \(-0.407947\pi\)
−0.278282 + 0.960499i \(0.589765\pi\)
\(194\) −0.249198 + 0.287590i −0.0178914 + 0.0206478i
\(195\) 0 0
\(196\) 9.45998 + 6.07956i 0.675713 + 0.434254i
\(197\) 10.8572 12.5299i 0.773543 0.892716i −0.223083 0.974800i \(-0.571612\pi\)
0.996625 + 0.0820836i \(0.0261575\pi\)
\(198\) 0 0
\(199\) −2.85274 19.8412i −0.202225 1.40651i −0.797662 0.603104i \(-0.793930\pi\)
0.595437 0.803402i \(-0.296979\pi\)
\(200\) 8.68379 + 10.0216i 0.614036 + 0.708636i
\(201\) 0 0
\(202\) −5.78728 + 1.69930i −0.407192 + 0.119562i
\(203\) 0.529632 1.15973i 0.0371729 0.0813973i
\(204\) 0 0
\(205\) 11.2694 7.24239i 0.787087 0.505830i
\(206\) 5.07349 0.353487
\(207\) 0 0
\(208\) 17.6966 1.22704
\(209\) 11.1867 7.18922i 0.773797 0.497289i
\(210\) 0 0
\(211\) −0.964715 + 2.11243i −0.0664137 + 0.145426i −0.939928 0.341373i \(-0.889108\pi\)
0.873514 + 0.486799i \(0.161835\pi\)
\(212\) −11.8588 + 3.48205i −0.814464 + 0.239148i
\(213\) 0 0
\(214\) −2.01316 2.32331i −0.137616 0.158818i
\(215\) −3.42815 23.8433i −0.233798 1.62610i
\(216\) 0 0
\(217\) 0.298128 0.344058i 0.0202382 0.0233562i
\(218\) −0.472733 0.303807i −0.0320175 0.0205764i
\(219\) 0 0
\(220\) 14.4467 16.6724i 0.973995 1.12405i
\(221\) 5.92452 + 1.73960i 0.398526 + 0.117018i
\(222\) 0 0
\(223\) 3.01311 + 3.47732i 0.201773 + 0.232858i 0.847614 0.530614i \(-0.178038\pi\)
−0.645841 + 0.763472i \(0.723493\pi\)
\(224\) −1.63785 3.58640i −0.109434 0.239626i
\(225\) 0 0
\(226\) 3.43378 7.51893i 0.228412 0.500152i
\(227\) 1.24145 8.63450i 0.0823981 0.573092i −0.906239 0.422767i \(-0.861059\pi\)
0.988637 0.150325i \(-0.0480320\pi\)
\(228\) 0 0
\(229\) −9.31081 −0.615276 −0.307638 0.951503i \(-0.599539\pi\)
−0.307638 + 0.951503i \(0.599539\pi\)
\(230\) −6.29623 + 5.04644i −0.415161 + 0.332752i
\(231\) 0 0
\(232\) 2.40370 1.54476i 0.157811 0.101419i
\(233\) −0.419991 + 2.92111i −0.0275146 + 0.191368i −0.998943 0.0459644i \(-0.985364\pi\)
0.971429 + 0.237332i \(0.0762730\pi\)
\(234\) 0 0
\(235\) −19.1955 + 5.63631i −1.25218 + 0.367672i
\(236\) 0.745563 + 1.63255i 0.0485320 + 0.106270i
\(237\) 0 0
\(238\) −0.0512839 0.356688i −0.00332424 0.0231206i
\(239\) −15.7671 4.62963i −1.01989 0.299466i −0.271294 0.962496i \(-0.587452\pi\)
−0.748592 + 0.663031i \(0.769270\pi\)
\(240\) 0 0
\(241\) −1.11201 0.714643i −0.0716306 0.0460342i 0.504335 0.863508i \(-0.331738\pi\)
−0.575966 + 0.817474i \(0.695374\pi\)
\(242\) 0.634735 + 0.407920i 0.0408023 + 0.0262221i
\(243\) 0 0
\(244\) −20.8552 6.12363i −1.33511 0.392025i
\(245\) 3.17539 + 22.0853i 0.202868 + 1.41098i
\(246\) 0 0
\(247\) 10.2992 + 22.5521i 0.655322 + 1.43496i
\(248\) 0.978940 0.287443i 0.0621628 0.0182526i
\(249\) 0 0
\(250\) −0.561150 + 3.90288i −0.0354902 + 0.246840i
\(251\) 15.7308 10.1096i 0.992920 0.638111i 0.0600015 0.998198i \(-0.480889\pi\)
0.932919 + 0.360087i \(0.117253\pi\)
\(252\) 0 0
\(253\) 12.4166 + 11.6217i 0.780628 + 0.730651i
\(254\) 4.53208 0.284368
\(255\) 0 0
\(256\) −0.0914606 + 0.636123i −0.00571629 + 0.0397577i
\(257\) −2.62732 + 5.75302i −0.163888 + 0.358864i −0.973703 0.227821i \(-0.926840\pi\)
0.809816 + 0.586685i \(0.199567\pi\)
\(258\) 0 0
\(259\) 2.73698 + 5.99315i 0.170068 + 0.372396i
\(260\) 26.9349 + 31.0846i 1.67043 + 1.92778i
\(261\) 0 0
\(262\) 6.19836 + 1.82000i 0.382936 + 0.112440i
\(263\) −15.9658 + 18.4255i −0.984491 + 1.13616i 0.00619241 + 0.999981i \(0.498029\pi\)
−0.990684 + 0.136183i \(0.956517\pi\)
\(264\) 0 0
\(265\) −20.6305 13.2584i −1.26732 0.814456i
\(266\) 0.947523 1.09350i 0.0580964 0.0670468i
\(267\) 0 0
\(268\) 0.626972 + 4.36068i 0.0382984 + 0.266371i
\(269\) −8.87170 10.2385i −0.540917 0.624252i 0.417825 0.908527i \(-0.362792\pi\)
−0.958743 + 0.284276i \(0.908247\pi\)
\(270\) 0 0
\(271\) −10.6726 + 3.13375i −0.648312 + 0.190362i −0.589324 0.807897i \(-0.700606\pi\)
−0.0589883 + 0.998259i \(0.518787\pi\)
\(272\) −1.03839 + 2.27376i −0.0629618 + 0.137867i
\(273\) 0 0
\(274\) 0.309606 0.198972i 0.0187040 0.0120203i
\(275\) 26.0417 1.57037
\(276\) 0 0
\(277\) −14.7239 −0.884673 −0.442337 0.896849i \(-0.645850\pi\)
−0.442337 + 0.896849i \(0.645850\pi\)
\(278\) −5.97896 + 3.84245i −0.358594 + 0.230455i
\(279\) 0 0
\(280\) 2.12349 4.64980i 0.126903 0.277879i
\(281\) 20.2215 5.93758i 1.20632 0.354206i 0.384051 0.923312i \(-0.374529\pi\)
0.822264 + 0.569106i \(0.192711\pi\)
\(282\) 0 0
\(283\) 3.85528 + 4.44924i 0.229173 + 0.264480i 0.858677 0.512518i \(-0.171287\pi\)
−0.629504 + 0.776998i \(0.716742\pi\)
\(284\) −3.34015 23.2313i −0.198201 1.37852i
\(285\) 0 0
\(286\) −7.35293 + 8.48574i −0.434788 + 0.501772i
\(287\) −2.58449 1.66095i −0.152557 0.0980426i
\(288\) 0 0
\(289\) 10.5615 12.1886i 0.621264 0.716977i
\(290\) 2.55445 + 0.750054i 0.150002 + 0.0440447i
\(291\) 0 0
\(292\) 7.77206 + 8.96944i 0.454825 + 0.524897i
\(293\) 0.0808672 + 0.177074i 0.00472431 + 0.0103448i 0.911979 0.410236i \(-0.134554\pi\)
−0.907255 + 0.420581i \(0.861826\pi\)
\(294\) 0 0
\(295\) −1.47934 + 3.23930i −0.0861305 + 0.188600i
\(296\) −2.10136 + 14.6153i −0.122139 + 0.849496i
\(297\) 0 0
\(298\) 4.45047 0.257809
\(299\) −24.7420 + 19.8308i −1.43087 + 1.14684i
\(300\) 0 0
\(301\) −4.64740 + 2.98671i −0.267872 + 0.172151i
\(302\) 0.574971 3.99901i 0.0330859 0.230117i
\(303\) 0 0
\(304\) −9.63010 + 2.82765i −0.552324 + 0.162177i
\(305\) −17.9159 39.2303i −1.02586 2.24632i
\(306\) 0 0
\(307\) 1.84026 + 12.7993i 0.105029 + 0.730492i 0.972483 + 0.232975i \(0.0748459\pi\)
−0.867454 + 0.497518i \(0.834245\pi\)
\(308\) −4.85439 1.42538i −0.276605 0.0812185i
\(309\) 0 0
\(310\) 0.799730 + 0.513955i 0.0454216 + 0.0291907i
\(311\) 25.2289 + 16.2136i 1.43060 + 0.919391i 0.999857 + 0.0169172i \(0.00538516\pi\)
0.430744 + 0.902474i \(0.358251\pi\)
\(312\) 0 0
\(313\) 1.46922 + 0.431401i 0.0830451 + 0.0243843i 0.322991 0.946402i \(-0.395312\pi\)
−0.239946 + 0.970786i \(0.577130\pi\)
\(314\) −0.639710 4.44928i −0.0361009 0.251087i
\(315\) 0 0
\(316\) −1.05662 2.31367i −0.0594393 0.130154i
\(317\) −20.3746 + 5.98254i −1.14435 + 0.336013i −0.798334 0.602215i \(-0.794285\pi\)
−0.346020 + 0.938227i \(0.612467\pi\)
\(318\) 0 0
\(319\) 0.798568 5.55416i 0.0447112 0.310973i
\(320\) −8.89580 + 5.71698i −0.497290 + 0.319589i
\(321\) 0 0
\(322\) 1.65259 + 0.832697i 0.0920953 + 0.0464044i
\(323\) −3.50195 −0.194854
\(324\) 0 0
\(325\) −6.90982 + 48.0589i −0.383288 + 2.66583i
\(326\) −3.40525 + 7.45645i −0.188599 + 0.412974i
\(327\) 0 0
\(328\) −2.86016 6.26287i −0.157926 0.345809i
\(329\) 3.00456 + 3.46745i 0.165647 + 0.191167i
\(330\) 0 0
\(331\) 0.778568 + 0.228608i 0.0427940 + 0.0125654i 0.303059 0.952972i \(-0.401992\pi\)
−0.260266 + 0.965537i \(0.583810\pi\)
\(332\) 2.03050 2.34332i 0.111438 0.128607i
\(333\) 0 0
\(334\) −4.30806 2.76862i −0.235727 0.151492i
\(335\) −5.72441 + 6.60632i −0.312758 + 0.360942i
\(336\) 0 0
\(337\) 2.55623 + 17.7790i 0.139247 + 0.968483i 0.932906 + 0.360120i \(0.117264\pi\)
−0.793659 + 0.608363i \(0.791827\pi\)
\(338\) −9.63219 11.1161i −0.523922 0.604639i
\(339\) 0 0
\(340\) −5.57439 + 1.63679i −0.302314 + 0.0887674i
\(341\) 0.832348 1.82259i 0.0450742 0.0986987i
\(342\) 0 0
\(343\) 9.04957 5.81580i 0.488631 0.314024i
\(344\) −12.3807 −0.667521
\(345\) 0 0
\(346\) 11.5604 0.621493
\(347\) 3.92153 2.52021i 0.210519 0.135292i −0.431133 0.902288i \(-0.641886\pi\)
0.641651 + 0.766996i \(0.278250\pi\)
\(348\) 0 0
\(349\) −6.62642 + 14.5098i −0.354704 + 0.776694i 0.645215 + 0.764001i \(0.276768\pi\)
−0.999919 + 0.0126928i \(0.995960\pi\)
\(350\) 2.71881 0.798313i 0.145326 0.0426716i
\(351\) 0 0
\(352\) −11.3635 13.1141i −0.605675 0.698986i
\(353\) 3.97269 + 27.6307i 0.211445 + 1.47063i 0.768336 + 0.640047i \(0.221085\pi\)
−0.556891 + 0.830586i \(0.688006\pi\)
\(354\) 0 0
\(355\) 30.4964 35.1947i 1.61858 1.86794i
\(356\) −6.98575 4.48947i −0.370244 0.237941i
\(357\) 0 0
\(358\) 0.817456 0.943394i 0.0432039 0.0498599i
\(359\) 31.6936 + 9.30607i 1.67272 + 0.491156i 0.974436 0.224663i \(-0.0721282\pi\)
0.698286 + 0.715819i \(0.253946\pi\)
\(360\) 0 0
\(361\) 3.23428 + 3.73256i 0.170225 + 0.196450i
\(362\) −1.99528 4.36905i −0.104869 0.229632i
\(363\) 0 0
\(364\) 3.91853 8.58039i 0.205387 0.449734i
\(365\) −3.35136 + 23.3092i −0.175418 + 1.22006i
\(366\) 0 0
\(367\) −13.3155 −0.695066 −0.347533 0.937668i \(-0.612981\pi\)
−0.347533 + 0.937668i \(0.612981\pi\)
\(368\) −6.52083 11.0568i −0.339922 0.576373i
\(369\) 0 0
\(370\) −11.5739 + 7.43809i −0.601698 + 0.386688i
\(371\) −0.800398 + 5.56689i −0.0415546 + 0.289019i
\(372\) 0 0
\(373\) 23.7335 6.96879i 1.22888 0.360830i 0.398050 0.917364i \(-0.369687\pi\)
0.830825 + 0.556533i \(0.187869\pi\)
\(374\) −0.658844 1.44267i −0.0340680 0.0745985i
\(375\) 0 0
\(376\) 1.46333 + 10.1777i 0.0754656 + 0.524875i
\(377\) 10.0381 + 2.94745i 0.516988 + 0.151801i
\(378\) 0 0
\(379\) 32.2149 + 20.7033i 1.65477 + 1.06345i 0.925152 + 0.379597i \(0.123938\pi\)
0.729616 + 0.683857i \(0.239699\pi\)
\(380\) −19.6242 12.6117i −1.00670 0.646968i
\(381\) 0 0
\(382\) −11.5102 3.37969i −0.588911 0.172920i
\(383\) −2.38718 16.6032i −0.121979 0.848383i −0.955309 0.295608i \(-0.904478\pi\)
0.833330 0.552775i \(-0.186431\pi\)
\(384\) 0 0
\(385\) −4.17022 9.13151i −0.212534 0.465385i
\(386\) 0.0458856 0.0134732i 0.00233551 0.000685768i
\(387\) 0 0
\(388\) 0.200237 1.39268i 0.0101655 0.0707027i
\(389\) −1.65871 + 1.06599i −0.0841000 + 0.0540478i −0.582015 0.813178i \(-0.697736\pi\)
0.497915 + 0.867226i \(0.334099\pi\)
\(390\) 0 0
\(391\) −1.09617 4.34261i −0.0554358 0.219615i
\(392\) 11.4679 0.579214
\(393\) 0 0
\(394\) 1.12994 7.85891i 0.0569256 0.395926i
\(395\) 2.09653 4.59076i 0.105488 0.230986i
\(396\) 0 0
\(397\) −12.0830 26.4580i −0.606426 1.32789i −0.924992 0.379988i \(-0.875928\pi\)
0.318565 0.947901i \(-0.396799\pi\)
\(398\) −6.28633 7.25481i −0.315105 0.363651i
\(399\) 0 0
\(400\) −18.8593 5.53760i −0.942967 0.276880i
\(401\) −5.76326 + 6.65116i −0.287803 + 0.332143i −0.881179 0.472783i \(-0.843249\pi\)
0.593376 + 0.804926i \(0.297795\pi\)
\(402\) 0 0
\(403\) 3.14266 + 2.01967i 0.156547 + 0.100607i
\(404\) 14.6043 16.8543i 0.726591 0.838531i
\(405\) 0 0
\(406\) −0.0868920 0.604347i −0.00431238 0.0299932i
\(407\) 18.9892 + 21.9148i 0.941262 + 1.08627i
\(408\) 0 0
\(409\) −6.24249 + 1.83296i −0.308671 + 0.0906340i −0.432400 0.901682i \(-0.642333\pi\)
0.123729 + 0.992316i \(0.460515\pi\)
\(410\) 2.66497 5.83547i 0.131613 0.288193i
\(411\) 0 0
\(412\) −15.7809 + 10.1418i −0.777471 + 0.499650i
\(413\) 0.816695 0.0401869
\(414\) 0 0
\(415\) 6.15231 0.302005
\(416\) 27.2168 17.4912i 1.33441 0.857575i
\(417\) 0 0
\(418\) 2.64541 5.79263i 0.129391 0.283327i
\(419\) 8.92579 2.62085i 0.436054 0.128037i −0.0563359 0.998412i \(-0.517942\pi\)
0.492389 + 0.870375i \(0.336124\pi\)
\(420\) 0 0
\(421\) 3.18611 + 3.67697i 0.155282 + 0.179205i 0.828060 0.560640i \(-0.189445\pi\)
−0.672778 + 0.739844i \(0.734899\pi\)
\(422\) 0.158272 + 1.10081i 0.00770456 + 0.0535864i
\(423\) 0 0
\(424\) −8.25402 + 9.52565i −0.400851 + 0.462607i
\(425\) −5.76942 3.70778i −0.279858 0.179854i
\(426\) 0 0
\(427\) −6.47707 + 7.47494i −0.313447 + 0.361738i
\(428\) 10.9061 + 3.20232i 0.527166 + 0.154790i
\(429\) 0 0
\(430\) −7.55432 8.71815i −0.364302 0.420427i
\(431\) −13.7691 30.1501i −0.663234 1.45228i −0.879478 0.475940i \(-0.842108\pi\)
0.216244 0.976339i \(-0.430619\pi\)
\(432\) 0 0
\(433\) 12.7795 27.9833i 0.614145 1.34479i −0.305557 0.952174i \(-0.598843\pi\)
0.919702 0.392617i \(-0.128430\pi\)
\(434\) 0.0310271 0.215798i 0.00148935 0.0103586i
\(435\) 0 0
\(436\) 2.07772 0.0995048
\(437\) 10.2954 14.7449i 0.492495 0.705342i
\(438\) 0 0
\(439\) 26.1267 16.7906i 1.24696 0.801371i 0.260514 0.965470i \(-0.416108\pi\)
0.986444 + 0.164099i \(0.0524716\pi\)
\(440\) 3.20175 22.2687i 0.152638 1.06162i
\(441\) 0 0
\(442\) 2.83720 0.833078i 0.134952 0.0396255i
\(443\) 1.34137 + 2.93720i 0.0637305 + 0.139550i 0.938817 0.344416i \(-0.111923\pi\)
−0.875087 + 0.483966i \(0.839196\pi\)
\(444\) 0 0
\(445\) −2.34488 16.3090i −0.111158 0.773120i
\(446\) 2.11420 + 0.620784i 0.100110 + 0.0293950i
\(447\) 0 0
\(448\) 2.04014 + 1.31112i 0.0963874 + 0.0619444i
\(449\) −17.6082 11.3161i −0.830982 0.534040i 0.0546076 0.998508i \(-0.482609\pi\)
−0.885590 + 0.464468i \(0.846246\pi\)
\(450\) 0 0
\(451\) −12.9735 3.80937i −0.610900 0.179376i
\(452\) 4.34950 + 30.2514i 0.204583 + 1.42291i
\(453\) 0 0
\(454\) −1.73540 3.79999i −0.0814463 0.178343i
\(455\) 17.9584 5.27305i 0.841901 0.247205i
\(456\) 0 0
\(457\) 0.0771726 0.536747i 0.00360998 0.0251080i −0.987937 0.154857i \(-0.950508\pi\)
0.991547 + 0.129749i \(0.0414173\pi\)
\(458\) −3.75104 + 2.41065i −0.175275 + 0.112642i
\(459\) 0 0
\(460\) 9.49651 28.2828i 0.442777 1.31869i
\(461\) −2.74045 −0.127636 −0.0638178 0.997962i \(-0.520328\pi\)
−0.0638178 + 0.997962i \(0.520328\pi\)
\(462\) 0 0
\(463\) −1.60699 + 11.1768i −0.0746831 + 0.519432i 0.917799 + 0.397045i \(0.129964\pi\)
−0.992482 + 0.122388i \(0.960945\pi\)
\(464\) −1.75938 + 3.85251i −0.0816772 + 0.178848i
\(465\) 0 0
\(466\) 0.587097 + 1.28556i 0.0271967 + 0.0595525i
\(467\) −3.78682 4.37023i −0.175233 0.202230i 0.661338 0.750088i \(-0.269989\pi\)
−0.836571 + 0.547858i \(0.815443\pi\)
\(468\) 0 0
\(469\) 1.92352 + 0.564798i 0.0888201 + 0.0260799i
\(470\) −6.27399 + 7.24057i −0.289398 + 0.333983i
\(471\) 0 0
\(472\) 1.53974 + 0.989532i 0.0708723 + 0.0455469i
\(473\) −15.9222 + 18.3751i −0.732101 + 0.844890i
\(474\) 0 0
\(475\) −3.91891 27.2566i −0.179812 1.25062i
\(476\) 0.872527 + 1.00695i 0.0399922 + 0.0461535i
\(477\) 0 0
\(478\) −7.55071 + 2.21709i −0.345361 + 0.101407i
\(479\) −3.47182 + 7.60222i −0.158631 + 0.347354i −0.972214 0.234096i \(-0.924787\pi\)
0.813582 + 0.581450i \(0.197514\pi\)
\(480\) 0 0
\(481\) −45.4814 + 29.2291i −2.07377 + 1.33273i
\(482\) −0.633020 −0.0288333
\(483\) 0 0
\(484\) −2.78974 −0.126807
\(485\) 2.34858 1.50934i 0.106644 0.0685357i
\(486\) 0 0
\(487\) −1.44084 + 3.15501i −0.0652909 + 0.142967i −0.939464 0.342647i \(-0.888677\pi\)
0.874173 + 0.485614i \(0.161404\pi\)
\(488\) −21.2683 + 6.24493i −0.962770 + 0.282695i
\(489\) 0 0
\(490\) 6.99735 + 8.07537i 0.316108 + 0.364808i
\(491\) 0.0523189 + 0.363886i 0.00236112 + 0.0164219i 0.990968 0.134099i \(-0.0428140\pi\)
−0.988607 + 0.150521i \(0.951905\pi\)
\(492\) 0 0
\(493\) −0.967715 + 1.11680i −0.0435837 + 0.0502983i
\(494\) 9.98815 + 6.41900i 0.449388 + 0.288804i
\(495\) 0 0
\(496\) −0.990348 + 1.14292i −0.0444679 + 0.0513187i
\(497\) −10.2474 3.00892i −0.459661 0.134969i
\(498\) 0 0
\(499\) −8.88893 10.2584i −0.397923 0.459228i 0.521063 0.853518i \(-0.325536\pi\)
−0.918986 + 0.394291i \(0.870990\pi\)
\(500\) −6.05633 13.2615i −0.270847 0.593073i
\(501\) 0 0
\(502\) 3.72001 8.14567i 0.166032 0.363559i
\(503\) −2.38681 + 16.6006i −0.106423 + 0.740186i 0.864818 + 0.502086i \(0.167434\pi\)
−0.971241 + 0.238100i \(0.923475\pi\)
\(504\) 0 0
\(505\) 44.2502 1.96911
\(506\) 8.01124 + 1.46726i 0.356143 + 0.0652275i
\(507\) 0 0
\(508\) −14.0969 + 9.05952i −0.625449 + 0.401951i
\(509\) 0.426906 2.96920i 0.0189223 0.131607i −0.978171 0.207804i \(-0.933368\pi\)
0.997093 + 0.0761963i \(0.0242776\pi\)
\(510\) 0 0
\(511\) 5.18188 1.52154i 0.229233 0.0673088i
\(512\) 9.45633 + 20.7065i 0.417915 + 0.915105i
\(513\) 0 0
\(514\) 0.431040 + 2.99795i 0.0190124 + 0.132234i
\(515\) −35.7134 10.4864i −1.57372 0.462086i
\(516\) 0 0
\(517\) 16.9874 + 10.9172i 0.747107 + 0.480137i
\(518\) 2.65432 + 1.70583i 0.116624 + 0.0749498i
\(519\) 0 0
\(520\) 40.2465 + 11.8174i 1.76492 + 0.518228i
\(521\) −1.30671 9.08839i −0.0572482 0.398170i −0.998218 0.0596783i \(-0.980993\pi\)
0.940970 0.338491i \(-0.109917\pi\)
\(522\) 0 0
\(523\) −3.03941 6.65538i −0.132904 0.291019i 0.831466 0.555575i \(-0.187502\pi\)
−0.964370 + 0.264556i \(0.914775\pi\)
\(524\) −22.9180 + 6.72932i −1.00118 + 0.293972i
\(525\) 0 0
\(526\) −1.66161 + 11.5567i −0.0724495 + 0.503897i
\(527\) −0.443901 + 0.285278i −0.0193367 + 0.0124269i
\(528\) 0 0
\(529\) 21.5071 + 8.15145i 0.935090 + 0.354411i
\(530\) −11.7441 −0.510130
\(531\) 0 0
\(532\) −0.761360 + 5.29537i −0.0330091 + 0.229584i
\(533\) 10.4724 22.9314i 0.453610 0.993268i
\(534\) 0 0
\(535\) 9.36900 + 20.5153i 0.405057 + 0.886952i
\(536\) 2.94216 + 3.39543i 0.127082 + 0.146660i
\(537\) 0 0
\(538\) −6.22496 1.82781i −0.268377 0.0788027i
\(539\) 14.7482 17.0204i 0.635251 0.733119i
\(540\) 0 0
\(541\) 0.558457 + 0.358898i 0.0240099 + 0.0154303i 0.552591 0.833453i \(-0.313639\pi\)
−0.528581 + 0.848883i \(0.677276\pi\)
\(542\) −3.48829 + 4.02570i −0.149835 + 0.172919i
\(543\) 0 0
\(544\) 0.650353 + 4.52330i 0.0278836 + 0.193935i
\(545\) 2.69973 + 3.11565i 0.115644 + 0.133460i
\(546\) 0 0
\(547\) 17.4721 5.13026i 0.747052 0.219354i 0.114018 0.993479i \(-0.463628\pi\)
0.633033 + 0.774124i \(0.281810\pi\)
\(548\) −0.565279 + 1.23779i −0.0241475 + 0.0528757i
\(549\) 0 0
\(550\) 10.4914 6.74240i 0.447354 0.287497i
\(551\) −5.93346 −0.252774
\(552\) 0 0
\(553\) −1.15743 −0.0492188
\(554\) −5.93180 + 3.81214i −0.252018 + 0.161962i
\(555\) 0 0
\(556\) 10.9164 23.9036i 0.462959 1.01374i
\(557\) −24.4462 + 7.17805i −1.03582 + 0.304144i −0.755075 0.655639i \(-0.772399\pi\)
−0.280744 + 0.959783i \(0.590581\pi\)
\(558\) 0 0
\(559\) −29.6859 34.2593i −1.25558 1.44901i
\(560\) 1.07831 + 7.49980i 0.0455669 + 0.316924i
\(561\) 0 0
\(562\) 6.60934 7.62759i 0.278798 0.321750i
\(563\) 17.8550 + 11.4747i 0.752499 + 0.483602i 0.859804 0.510624i \(-0.170586\pi\)
−0.107305 + 0.994226i \(0.534222\pi\)
\(564\) 0 0
\(565\) −39.7120 + 45.8301i −1.67070 + 1.92809i
\(566\) 2.70512 + 0.794295i 0.113705 + 0.0333867i
\(567\) 0 0
\(568\) −15.6741 18.0889i −0.657672 0.758994i
\(569\) 13.9743 + 30.5994i 0.585833 + 1.28279i 0.937928 + 0.346831i \(0.112742\pi\)
−0.352095 + 0.935964i \(0.614531\pi\)
\(570\) 0 0
\(571\) −5.34091 + 11.6950i −0.223510 + 0.489419i −0.987853 0.155391i \(-0.950336\pi\)
0.764343 + 0.644810i \(0.223064\pi\)
\(572\) 5.90827 41.0929i 0.247037 1.71818i
\(573\) 0 0
\(574\) −1.47124 −0.0614085
\(575\) 32.5730 13.3915i 1.35839 0.558463i
\(576\) 0 0
\(577\) −9.24070 + 5.93864i −0.384695 + 0.247229i −0.718667 0.695354i \(-0.755247\pi\)
0.333972 + 0.942583i \(0.391611\pi\)
\(578\) 1.09917 7.64487i 0.0457193 0.317985i
\(579\) 0 0
\(580\) −9.44487 + 2.77326i −0.392177 + 0.115154i
\(581\) −0.586131 1.28345i −0.0243168 0.0532464i
\(582\) 0 0
\(583\) 3.52270 + 24.5009i 0.145895 + 1.01472i
\(584\) 11.6131 + 3.40991i 0.480553 + 0.141103i
\(585\) 0 0
\(586\) 0.0784249 + 0.0504006i 0.00323970 + 0.00208203i
\(587\) 11.4406 + 7.35242i 0.472204 + 0.303467i 0.755014 0.655709i \(-0.227630\pi\)
−0.282810 + 0.959176i \(0.591267\pi\)
\(588\) 0 0
\(589\) −2.03288 0.596907i −0.0837633 0.0245951i
\(590\) 0.242702 + 1.68803i 0.00999188 + 0.0694950i
\(591\) 0 0
\(592\) −9.09195 19.9086i −0.373677 0.818238i
\(593\) 41.1409 12.0800i 1.68945 0.496068i 0.711113 0.703077i \(-0.248191\pi\)
0.978339 + 0.207009i \(0.0663731\pi\)
\(594\) 0 0
\(595\) −0.376239 + 2.61680i −0.0154243 + 0.107278i
\(596\) −13.8430 + 8.89638i −0.567033 + 0.364410i
\(597\) 0 0
\(598\) −4.83344 + 14.3951i −0.197654 + 0.588660i
\(599\) 14.6628 0.599106 0.299553 0.954080i \(-0.403162\pi\)
0.299553 + 0.954080i \(0.403162\pi\)
\(600\) 0 0
\(601\) 4.44759 30.9337i 0.181421 1.26181i −0.671985 0.740564i \(-0.734558\pi\)
0.853406 0.521246i \(-0.174533\pi\)
\(602\) −1.09901 + 2.40650i −0.0447924 + 0.0980817i
\(603\) 0 0
\(604\) 6.20550 + 13.5881i 0.252498 + 0.552894i
\(605\) −3.62491 4.18337i −0.147374 0.170078i
\(606\) 0 0
\(607\) −3.74039 1.09828i −0.151818 0.0445777i 0.204941 0.978774i \(-0.434300\pi\)
−0.356758 + 0.934197i \(0.616118\pi\)
\(608\) −12.0159 + 13.8671i −0.487311 + 0.562386i
\(609\) 0 0
\(610\) −17.3748 11.1661i −0.703485 0.452102i
\(611\) −24.6546 + 28.4529i −0.997419 + 1.15108i
\(612\) 0 0
\(613\) 4.96719 + 34.5476i 0.200623 + 1.39536i 0.802442 + 0.596731i \(0.203534\pi\)
−0.601819 + 0.798633i \(0.705557\pi\)
\(614\) 4.05522 + 4.67997i 0.163655 + 0.188868i
\(615\) 0 0
\(616\) −4.95055 + 1.45361i −0.199464 + 0.0585678i
\(617\) 6.31092 13.8190i 0.254068 0.556332i −0.739023 0.673681i \(-0.764712\pi\)
0.993091 + 0.117349i \(0.0374396\pi\)
\(618\) 0 0
\(619\) −4.17467 + 2.68290i −0.167794 + 0.107835i −0.621843 0.783142i \(-0.713616\pi\)
0.454048 + 0.890977i \(0.349979\pi\)
\(620\) −3.51492 −0.141163
\(621\) 0 0
\(622\) 14.3618 0.575856
\(623\) −3.17886 + 2.04293i −0.127358 + 0.0818482i
\(624\) 0 0
\(625\) −3.23614 + 7.08616i −0.129446 + 0.283447i
\(626\) 0.703596 0.206594i 0.0281214 0.00825718i
\(627\) 0 0
\(628\) 10.8838 + 12.5606i 0.434311 + 0.501222i
\(629\) −1.08679 7.55879i −0.0433332 0.301389i
\(630\) 0 0
\(631\) −24.0121 + 27.7114i −0.955905 + 1.10317i 0.0386804 + 0.999252i \(0.487685\pi\)
−0.994585 + 0.103922i \(0.966861\pi\)
\(632\) −2.18213 1.40237i −0.0868006 0.0557833i
\(633\) 0 0
\(634\) −6.65939 + 7.68534i −0.264478 + 0.305224i
\(635\) −31.9023 9.36737i −1.26600 0.371733i
\(636\) 0 0
\(637\) 27.4972 + 31.7334i 1.08948 + 1.25732i
\(638\) −1.11630 2.44436i −0.0441947 0.0967730i
\(639\) 0 0
\(640\) −16.3870 + 35.8826i −0.647755 + 1.41838i
\(641\) 1.95454 13.5941i 0.0771997 0.536936i −0.914118 0.405448i \(-0.867116\pi\)
0.991318 0.131488i \(-0.0419754\pi\)
\(642\) 0 0
\(643\) −34.2265 −1.34976 −0.674880 0.737927i \(-0.735805\pi\)
−0.674880 + 0.737927i \(0.735805\pi\)
\(644\) −6.80487 + 0.713416i −0.268150 + 0.0281125i
\(645\) 0 0
\(646\) −1.41083 + 0.906684i −0.0555083 + 0.0356730i
\(647\) −5.48316 + 38.1362i −0.215565 + 1.49929i 0.538576 + 0.842577i \(0.318962\pi\)
−0.754141 + 0.656712i \(0.771947\pi\)
\(648\) 0 0
\(649\) 3.44882 1.01267i 0.135378 0.0397506i
\(650\) 9.65908 + 21.1504i 0.378860 + 0.829588i
\(651\) 0 0
\(652\) −4.31336 30.0000i −0.168924 1.17489i
\(653\) 19.8816 + 5.83777i 0.778027 + 0.228449i 0.646552 0.762870i \(-0.276210\pi\)
0.131475 + 0.991319i \(0.458029\pi\)
\(654\) 0 0
\(655\) −39.8699 25.6228i −1.55785 1.00117i
\(656\) 8.58537 + 5.51748i 0.335203 + 0.215422i
\(657\) 0 0
\(658\) 2.10819 + 0.619022i 0.0821860 + 0.0241320i
\(659\) −2.25543 15.6869i −0.0878592 0.611074i −0.985414 0.170172i \(-0.945568\pi\)
0.897555 0.440902i \(-0.145341\pi\)
\(660\) 0 0
\(661\) −0.0565318 0.123787i −0.00219883 0.00481477i 0.908529 0.417821i \(-0.137206\pi\)
−0.910728 + 0.413006i \(0.864479\pi\)
\(662\) 0.372850 0.109479i 0.0144912 0.00425500i
\(663\) 0 0
\(664\) 0.450011 3.12990i 0.0174638 0.121464i
\(665\) −8.92998 + 5.73895i −0.346290 + 0.222547i
\(666\) 0 0
\(667\) −1.85728 7.35782i −0.0719141 0.284896i
\(668\) 18.9345 0.732598
\(669\) 0 0
\(670\) −0.595757 + 4.14358i −0.0230161 + 0.160080i
\(671\) −18.0834 + 39.5972i −0.698104 + 1.52863i
\(672\) 0 0
\(673\) −8.57511 18.7769i −0.330546 0.723795i 0.669269 0.743020i \(-0.266607\pi\)
−0.999815 + 0.0192250i \(0.993880\pi\)
\(674\) 5.63295 + 6.50077i 0.216973 + 0.250400i
\(675\) 0 0
\(676\) 52.1815 + 15.3219i 2.00698 + 0.589303i
\(677\) 18.5314 21.3864i 0.712220 0.821945i −0.278129 0.960544i \(-0.589714\pi\)
0.990349 + 0.138599i \(0.0442598\pi\)
\(678\) 0 0
\(679\) −0.538617 0.346148i −0.0206702 0.0132839i
\(680\) −3.87993 + 4.47767i −0.148788 + 0.171711i
\(681\) 0 0
\(682\) −0.136556 0.949767i −0.00522899 0.0363684i
\(683\) −12.7796 14.7484i −0.488997 0.564332i 0.456601 0.889672i \(-0.349067\pi\)
−0.945597 + 0.325340i \(0.894521\pi\)
\(684\) 0 0
\(685\) −2.59064 + 0.760680i −0.0989832 + 0.0290641i
\(686\) 2.14003 4.68601i 0.0817068 0.178913i
\(687\) 0 0
\(688\) 15.4382 9.92150i 0.588574 0.378254i
\(689\) −46.1502 −1.75818
\(690\) 0 0
\(691\) 18.2405 0.693902 0.346951 0.937883i \(-0.387217\pi\)
0.346951 + 0.937883i \(0.387217\pi\)
\(692\) −35.9584 + 23.1091i −1.36693 + 0.878474i
\(693\) 0 0
\(694\) 0.927358 2.03063i 0.0352020 0.0770817i
\(695\) 50.0292 14.6899i 1.89772 0.557220i
\(696\) 0 0
\(697\) 2.33186 + 2.69111i 0.0883254 + 0.101933i
\(698\) 1.08714 + 7.56120i 0.0411487 + 0.286196i
\(699\) 0 0
\(700\) −6.86095 + 7.91796i −0.259319 + 0.299271i
\(701\) −21.0479 13.5267i −0.794970 0.510896i 0.0790011 0.996875i \(-0.474827\pi\)
−0.873971 + 0.485979i \(0.838463\pi\)
\(702\) 0 0
\(703\) 20.0796 23.1731i 0.757315 0.873989i
\(704\) 10.2410 + 3.00704i 0.385973 + 0.113332i
\(705\) 0 0
\(706\) 8.75429 + 10.1030i 0.329472 + 0.380231i
\(707\) −4.21572 9.23114i −0.158549 0.347173i
\(708\) 0 0
\(709\) −13.2237 + 28.9559i −0.496626 + 1.08746i 0.480925 + 0.876762i \(0.340301\pi\)
−0.977551 + 0.210698i \(0.932426\pi\)
\(710\) 3.17385 22.0746i 0.119113 0.828447i
\(711\) 0 0
\(712\) −8.46847 −0.317369
\(713\) 0.103871 2.70772i 0.00389001 0.101405i
\(714\) 0 0
\(715\) 69.2981 44.5352i 2.59160 1.66552i
\(716\) −0.656847 + 4.56847i −0.0245475 + 0.170732i
\(717\) 0 0
\(718\) 15.1778 4.45660i 0.566430 0.166319i
\(719\) 0.758817 + 1.66158i 0.0282991 + 0.0619664i 0.923254 0.384191i \(-0.125520\pi\)
−0.894955 + 0.446157i \(0.852792\pi\)
\(720\) 0 0
\(721\) 1.21483 + 8.44930i 0.0452425 + 0.314668i
\(722\) 2.26938 + 0.666350i 0.0844576 + 0.0247990i
\(723\) 0 0
\(724\) 14.9399 + 9.60127i 0.555236 + 0.356828i
\(725\) −9.77531 6.28221i −0.363046 0.233315i
\(726\) 0 0
\(727\) 35.9742 + 10.5630i 1.33421 + 0.391759i 0.869600 0.493757i \(-0.164377\pi\)
0.464609 + 0.885516i \(0.346195\pi\)
\(728\) −1.36902 9.52175i −0.0507393 0.352900i
\(729\) 0 0
\(730\) 4.68479 + 10.2583i 0.173392 + 0.379675i
\(731\) 6.14372 1.80396i 0.227234 0.0667218i
\(732\) 0 0
\(733\) 0.471638 3.28031i 0.0174203 0.121161i −0.979256 0.202629i \(-0.935052\pi\)
0.996676 + 0.0814675i \(0.0259607\pi\)
\(734\) −5.36442 + 3.44751i −0.198004 + 0.127250i
\(735\) 0 0
\(736\) −20.9572 10.5598i −0.772493 0.389238i
\(737\) 8.82318 0.325006
\(738\) 0 0
\(739\) 0.762673 5.30451i 0.0280554 0.195129i −0.970974 0.239187i \(-0.923119\pi\)
0.999029 + 0.0440571i \(0.0140284\pi\)
\(740\) 21.1317 46.2719i 0.776815 1.70099i
\(741\) 0 0
\(742\) 1.11886 + 2.44996i 0.0410746 + 0.0899408i
\(743\) −16.8909 19.4931i −0.619665 0.715132i 0.355978 0.934494i \(-0.384148\pi\)
−0.975643 + 0.219362i \(0.929602\pi\)
\(744\) 0 0
\(745\) −31.3278 9.19867i −1.14776 0.337013i
\(746\) 7.75723 8.95231i 0.284012 0.327768i
\(747\) 0 0
\(748\) 4.93317 + 3.17036i 0.180375 + 0.115920i
\(749\) 3.38715 3.90898i 0.123764 0.142831i
\(750\) 0 0
\(751\) −5.51058 38.3269i −0.201084 1.39857i −0.801075 0.598564i \(-0.795738\pi\)
0.599991 0.800007i \(-0.295171\pi\)
\(752\) −9.98081 11.5185i −0.363963 0.420036i
\(753\) 0 0
\(754\) 4.80716 1.41151i 0.175066 0.0514041i
\(755\) −12.3129 + 26.9615i −0.448113 + 0.981230i
\(756\) 0 0
\(757\) 21.7825 13.9987i 0.791697 0.508793i −0.0811996 0.996698i \(-0.525875\pi\)
0.872897 + 0.487905i \(0.162239\pi\)
\(758\) 18.3386 0.666089
\(759\) 0 0
\(760\) −23.7895 −0.862934
\(761\) −25.7260 + 16.5331i −0.932568 + 0.599325i −0.916278 0.400542i \(-0.868822\pi\)
−0.0162899 + 0.999867i \(0.505185\pi\)
\(762\) 0 0
\(763\) 0.392760 0.860025i 0.0142189 0.0311350i
\(764\) 42.5579 12.4961i 1.53969 0.452094i
\(765\) 0 0
\(766\) −5.26042 6.07085i −0.190067 0.219349i
\(767\) 0.953734 + 6.63337i 0.0344374 + 0.239517i
\(768\) 0 0
\(769\) 9.90083 11.4262i 0.357033 0.412038i −0.548610 0.836078i \(-0.684843\pi\)
0.905643 + 0.424040i \(0.139388\pi\)
\(770\) −4.04428 2.59910i −0.145746 0.0936651i
\(771\) 0 0
\(772\) −0.115793 + 0.133632i −0.00416748 + 0.00480953i
\(773\) −24.1446 7.08951i −0.868423 0.254992i −0.182978 0.983117i \(-0.558574\pi\)
−0.685444 + 0.728125i \(0.740392\pi\)
\(774\) 0 0
\(775\) −2.71715 3.13576i −0.0976030 0.112640i
\(776\) −0.596068 1.30521i −0.0213976 0.0468542i
\(777\) 0 0
\(778\) −0.392250 + 0.858908i −0.0140628 + 0.0307933i
\(779\) −2.03476 + 14.1521i −0.0729029 + 0.507051i
\(780\) 0 0
\(781\) −47.0049 −1.68197
\(782\) −1.56595 1.46570i −0.0559983 0.0524132i
\(783\) 0 0
\(784\) −14.2999 + 9.19000i −0.510711 + 0.328214i
\(785\) −4.69317 + 32.6417i −0.167506 + 1.16503i
\(786\) 0 0
\(787\) −21.0701 + 6.18675i −0.751070 + 0.220534i −0.634792 0.772683i \(-0.718914\pi\)
−0.116277 + 0.993217i \(0.537096\pi\)
\(788\) 12.1951 + 26.7036i 0.434434 + 0.951277i
\(789\) 0 0
\(790\) −0.343959 2.39229i −0.0122375 0.0851137i
\(791\) 13.3441 + 3.91818i 0.474461 + 0.139314i
\(792\) 0 0
\(793\) −68.2769 43.8789i −2.42458 1.55819i
\(794\) −11.7180 7.53073i −0.415858 0.267256i
\(795\) 0 0
\(796\) 34.0556 + 9.99964i 1.20707 + 0.354428i
\(797\) −0.684007 4.75737i −0.0242288 0.168515i 0.974114 0.226056i \(-0.0725831\pi\)
−0.998343 + 0.0575409i \(0.981674\pi\)
\(798\) 0 0
\(799\) −2.20912 4.83731i −0.0781532 0.171132i
\(800\) −34.4783 + 10.1237i −1.21899 + 0.357928i
\(801\) 0 0
\(802\) −0.599800 + 4.17170i −0.0211797 + 0.147308i
\(803\) 19.9959 12.8506i 0.705641 0.453488i
\(804\) 0 0
\(805\) −9.91185 9.27728i −0.349347 0.326981i
\(806\) 1.78899 0.0630145
\(807\) 0 0
\(808\) 3.23669 22.5117i 0.113866 0.791957i
\(809\) 12.2663 26.8594i 0.431260 0.944327i −0.561861 0.827232i \(-0.689914\pi\)
0.993121 0.117095i \(-0.0373583\pi\)
\(810\) 0 0
\(811\) −9.34727 20.4677i −0.328227 0.718717i 0.671525 0.740982i \(-0.265640\pi\)
−0.999752 + 0.0222649i \(0.992912\pi\)
\(812\) 1.47835 + 1.70611i 0.0518799 + 0.0598726i
\(813\) 0 0
\(814\) 13.3241 + 3.91231i 0.467009 + 0.137126i
\(815\) 39.3820 45.4493i 1.37949 1.59202i
\(816\) 0 0
\(817\) 21.6285 + 13.8998i 0.756685 + 0.486292i
\(818\) −2.04034 + 2.35467i −0.0713387 + 0.0823292i
\(819\) 0 0
\(820\) 3.37566 + 23.4783i 0.117883 + 0.819896i
\(821\) −12.2433 14.1296i −0.427296 0.493125i 0.500750 0.865592i \(-0.333058\pi\)
−0.928046 + 0.372467i \(0.878512\pi\)
\(822\) 0 0
\(823\) 39.1112 11.4841i 1.36333 0.400310i 0.483396 0.875402i \(-0.339403\pi\)
0.879936 + 0.475092i \(0.157585\pi\)
\(824\) −7.94707 + 17.4017i −0.276849 + 0.606215i
\(825\) 0 0
\(826\) 0.329021 0.211449i 0.0114481 0.00735726i
\(827\) −23.5429 −0.818666 −0.409333 0.912385i \(-0.634239\pi\)
−0.409333 + 0.912385i \(0.634239\pi\)
\(828\) 0 0
\(829\) −10.5885 −0.367752 −0.183876 0.982949i \(-0.558865\pi\)
−0.183876 + 0.982949i \(0.558865\pi\)
\(830\) 2.47858 1.59288i 0.0860327 0.0552898i
\(831\) 0 0
\(832\) −8.26669 + 18.1015i −0.286596 + 0.627558i
\(833\) −5.69075 + 1.67095i −0.197173 + 0.0578951i
\(834\) 0 0
\(835\) 24.6029 + 28.3933i 0.851420 + 0.982591i
\(836\) 3.35088 + 23.3059i 0.115893 + 0.806052i
\(837\) 0 0
\(838\) 2.91737 3.36682i 0.100779 0.116305i
\(839\) −33.0705 21.2531i −1.14172 0.733740i −0.173747 0.984790i \(-0.555588\pi\)
−0.967974 + 0.251051i \(0.919224\pi\)
\(840\) 0 0
\(841\) 17.3513 20.0245i 0.598322 0.690500i
\(842\) 2.23558 + 0.656427i 0.0770433 + 0.0226220i
\(843\) 0 0
\(844\) −2.69278 3.10764i −0.0926894 0.106969i
\(845\) 44.8272 + 98.1578i 1.54210 + 3.37673i
\(846\) 0 0
\(847\) −0.527357 + 1.15475i −0.0181202 + 0.0396777i
\(848\) 2.65883 18.4926i 0.0913048 0.635039i
\(849\) 0 0
\(850\) −3.28430 −0.112650
\(851\) 35.0211 + 17.6462i 1.20051 + 0.604904i
\(852\) 0 0
\(853\) −34.9175 + 22.4401i −1.19555 + 0.768335i −0.978181 0.207754i \(-0.933385\pi\)
−0.217372 + 0.976089i \(0.569748\pi\)
\(854\) −0.674089 + 4.68839i −0.0230668 + 0.160433i
\(855\) 0 0
\(856\) 11.1221 3.26575i 0.380147 0.111621i
\(857\) −4.65231 10.1871i −0.158920 0.347986i 0.813376 0.581738i \(-0.197627\pi\)
−0.972296 + 0.233752i \(0.924900\pi\)
\(858\) 0 0
\(859\) −0.286639 1.99362i −0.00978001 0.0680215i 0.984347 0.176242i \(-0.0563940\pi\)
−0.994127 + 0.108220i \(0.965485\pi\)
\(860\) 40.9248 + 12.0166i 1.39553 + 0.409763i
\(861\) 0 0
\(862\) −13.3533 8.58161i −0.454814 0.292291i
\(863\) −18.5634 11.9299i −0.631904 0.406100i 0.185110 0.982718i \(-0.440736\pi\)
−0.817014 + 0.576618i \(0.804372\pi\)
\(864\) 0 0
\(865\) −81.3765 23.8943i −2.76688 0.812431i
\(866\) −2.09662 14.5823i −0.0712461 0.495528i
\(867\) 0 0
\(868\) 0.334867 + 0.733255i 0.0113661 + 0.0248883i
\(869\) −4.88770 + 1.43516i −0.165804 + 0.0486844i
\(870\) 0 0
\(871\) −2.34112 + 16.2828i −0.0793258 + 0.551723i
\(872\) 1.78252 1.14555i 0.0603636 0.0387933i
\(873\) 0 0
\(874\) 0.330128 8.60581i 0.0111668 0.291096i
\(875\) −6.63416 −0.224275
\(876\) 0 0
\(877\) 7.99011 55.5724i 0.269807 1.87655i −0.180355 0.983602i \(-0.557725\pi\)
0.450162 0.892947i \(-0.351366\pi\)
\(878\) 6.17841 13.5288i 0.208511 0.456576i
\(879\) 0 0
\(880\) 13.8530 + 30.3339i 0.466985 + 1.02255i
\(881\) −26.6917 30.8039i −0.899267 1.03781i −0.999084 0.0428034i \(-0.986371\pi\)
0.0998167 0.995006i \(-0.468174\pi\)
\(882\) 0 0
\(883\) 7.31464 + 2.14777i 0.246157 + 0.0722783i 0.402484 0.915427i \(-0.368147\pi\)
−0.156326 + 0.987705i \(0.549965\pi\)
\(884\) −7.15972 + 8.26276i −0.240808 + 0.277907i
\(885\) 0 0
\(886\) 1.30086 + 0.836013i 0.0437033 + 0.0280864i
\(887\) 26.3936 30.4598i 0.886210 1.02274i −0.113364 0.993554i \(-0.536163\pi\)
0.999574 0.0291872i \(-0.00929190\pi\)
\(888\) 0 0
\(889\) 1.08519 + 7.54764i 0.0363960 + 0.253140i
\(890\) −5.16721 5.96328i −0.173205 0.199890i
\(891\) 0 0
\(892\) −7.81707 + 2.29530i −0.261735 + 0.0768523i
\(893\) 8.87013 19.4229i 0.296828 0.649962i
\(894\) 0 0
\(895\) −7.70415 + 4.95116i −0.257521 + 0.165499i
\(896\) 9.04675 0.302231
\(897\) 0 0
\(898\) −10.0236 −0.334493
\(899\) −0.752116 + 0.483356i −0.0250845 + 0.0161208i
\(900\) 0 0
\(901\) 2.70797 5.92963i 0.0902156 0.197545i
\(902\) −6.21291 + 1.82428i −0.206867 + 0.0607417i
\(903\) 0 0
\(904\) 20.4107 + 23.5551i 0.678848 + 0.783433i
\(905\) 5.01480 + 34.8787i 0.166698 + 1.15941i
\(906\) 0 0
\(907\) 12.7271 14.6878i 0.422595 0.487701i −0.504031 0.863686i \(-0.668150\pi\)
0.926626 + 0.375985i \(0.122696\pi\)
\(908\) 12.9940 + 8.35074i 0.431221 + 0.277129i
\(909\) 0 0
\(910\) 5.86963 6.77392i 0.194577 0.224553i
\(911\) −45.9029 13.4783i −1.52083 0.446556i −0.588602 0.808423i \(-0.700321\pi\)
−0.932230 + 0.361867i \(0.882140\pi\)
\(912\) 0 0
\(913\) −4.06659 4.69310i −0.134585 0.155319i
\(914\) −0.107878 0.236219i −0.00356828 0.00781344i
\(915\) 0 0
\(916\) 6.84866 14.9965i 0.226286 0.495498i
\(917\) −1.54683 + 10.7584i −0.0510808 + 0.355275i
\(918\) 0 0
\(919\) 50.2660 1.65812 0.829061 0.559158i \(-0.188876\pi\)
0.829061 + 0.559158i \(0.188876\pi\)
\(920\) −7.44651 29.5002i −0.245504 0.972594i
\(921\) 0 0
\(922\) −1.10404 + 0.709526i −0.0363597 + 0.0233670i
\(923\) 12.4722 86.7457i 0.410526 2.85527i
\(924\) 0 0
\(925\) 57.6159 16.9176i 1.89440 0.556246i
\(926\) 2.24637 + 4.91887i 0.0738204 + 0.161644i
\(927\) 0 0
\(928\) 1.10191 + 7.66397i 0.0361721 + 0.251582i
\(929\) 45.0030 + 13.2141i 1.47650 + 0.433540i 0.918206 0.396103i \(-0.129638\pi\)
0.558295 + 0.829643i \(0.311456\pi\)
\(930\) 0 0
\(931\) −20.0338 12.8750i −0.656583 0.421960i
\(932\) −4.39595 2.82511i −0.143994 0.0925395i
\(933\) 0 0
\(934\) −2.65708 0.780190i −0.0869424 0.0255286i
\(935\) 1.65590 + 11.5170i 0.0541536 + 0.376647i
\(936\) 0 0
\(937\) 0.316944 + 0.694011i 0.0103541 + 0.0226724i 0.914738 0.404047i \(-0.132397\pi\)
−0.904384 + 0.426719i \(0.859669\pi\)
\(938\) 0.921159 0.270477i 0.0300769 0.00883138i
\(939\) 0 0
\(940\) 5.04131 35.0631i 0.164430 1.14363i
\(941\) −27.2858 + 17.5355i −0.889492 + 0.571642i −0.903656 0.428258i \(-0.859127\pi\)
0.0141648 + 0.999900i \(0.495491\pi\)
\(942\) 0 0
\(943\) −18.1863 + 1.90663i −0.592226 + 0.0620884i
\(944\) −2.71297 −0.0882997
\(945\) 0 0
\(946\) −1.65707 + 11.5252i −0.0538759 + 0.374715i
\(947\) −13.0693 + 28.6178i −0.424696 + 0.929954i 0.569462 + 0.822018i \(0.307152\pi\)
−0.994158 + 0.107937i \(0.965576\pi\)
\(948\) 0 0
\(949\) 18.4096 + 40.3114i 0.597602 + 1.30856i
\(950\) −8.63577 9.96622i −0.280182 0.323347i
\(951\) 0 0
\(952\) 1.30374 + 0.382812i 0.0422544 + 0.0124070i
\(953\) −3.07721 + 3.55129i −0.0996808 + 0.115038i −0.803398 0.595442i \(-0.796977\pi\)
0.703717 + 0.710480i \(0.251522\pi\)
\(954\) 0 0
\(955\) 74.0371 + 47.5808i 2.39578 + 1.53968i
\(956\) 19.0543 21.9899i 0.616261 0.711203i
\(957\) 0 0
\(958\) 0.569590 + 3.96158i 0.0184026 + 0.127993i
\(959\) 0.405497 + 0.467969i 0.0130942 + 0.0151115i
\(960\) 0 0
\(961\) 29.4380 8.64377i 0.949612 0.278831i
\(962\) −10.7554 + 23.5510i −0.346768 + 0.759315i
\(963\) 0 0
\(964\) 1.96899 1.26539i 0.0634168 0.0407555i
\(965\) −0.350846 −0.0112941
\(966\) 0 0
\(967\) −26.0335 −0.837180 −0.418590 0.908175i \(-0.637476\pi\)
−0.418590 + 0.908175i \(0.637476\pi\)
\(968\) −2.39337 + 1.53813i −0.0769259 + 0.0494373i
\(969\) 0 0
\(970\) 0.555390 1.21613i 0.0178325 0.0390477i
\(971\) −1.29473 + 0.380168i −0.0415500 + 0.0122002i −0.302442 0.953168i \(-0.597802\pi\)
0.260892 + 0.965368i \(0.415984\pi\)
\(972\) 0 0
\(973\) −7.83078 9.03720i −0.251043 0.289719i
\(974\) 0.236386 + 1.64410i 0.00757430 + 0.0526804i
\(975\) 0 0
\(976\) 21.5161 24.8309i 0.688714 0.794818i
\(977\) 10.8844 + 6.99500i 0.348224 + 0.223790i 0.703047 0.711144i \(-0.251822\pi\)
−0.354823 + 0.934934i \(0.615459\pi\)
\(978\) 0 0
\(979\) −10.8909 + 12.5687i −0.348074 + 0.401698i
\(980\) −37.9075 11.1306i −1.21091 0.355555i
\(981\) 0 0
\(982\) 0.115291 + 0.133053i 0.00367907 + 0.00424588i
\(983\) −4.04926 8.86663i −0.129151 0.282802i 0.833999 0.551766i \(-0.186046\pi\)
−0.963150 + 0.268964i \(0.913319\pi\)
\(984\) 0 0
\(985\) −24.1975 + 52.9851i −0.770996 + 1.68825i
\(986\) −0.100713 + 0.700475i −0.00320736 + 0.0223077i
\(987\) 0 0
\(988\) −43.8993 −1.39662
\(989\) −10.4664 + 31.1714i −0.332813 + 0.991193i
\(990\) 0 0
\(991\) −17.6477 + 11.3415i −0.560598 + 0.360274i −0.790047 0.613046i \(-0.789944\pi\)
0.229449 + 0.973321i \(0.426308\pi\)
\(992\) −0.393467 + 2.73662i −0.0124926 + 0.0868879i
\(993\) 0 0
\(994\) −4.90742 + 1.44095i −0.155654 + 0.0457041i
\(995\) 29.2559 + 64.0615i 0.927474 + 2.03088i
\(996\) 0 0
\(997\) 1.29155 + 8.98293i 0.0409038 + 0.284492i 0.999999 + 0.00140859i \(0.000448368\pi\)
−0.959095 + 0.283084i \(0.908643\pi\)
\(998\) −6.23705 1.83136i −0.197430 0.0579708i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.2.i.b.127.1 10
3.2 odd 2 69.2.e.a.58.1 yes 10
23.2 even 11 inner 207.2.i.b.163.1 10
23.5 odd 22 4761.2.a.bq.1.3 5
23.18 even 11 4761.2.a.br.1.3 5
69.2 odd 22 69.2.e.a.25.1 10
69.5 even 22 1587.2.a.p.1.3 5
69.41 odd 22 1587.2.a.o.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.e.a.25.1 10 69.2 odd 22
69.2.e.a.58.1 yes 10 3.2 odd 2
207.2.i.b.127.1 10 1.1 even 1 trivial
207.2.i.b.163.1 10 23.2 even 11 inner
1587.2.a.o.1.3 5 69.41 odd 22
1587.2.a.p.1.3 5 69.5 even 22
4761.2.a.bq.1.3 5 23.5 odd 22
4761.2.a.br.1.3 5 23.18 even 11