Properties

Label 207.7.d.a
Level 207207
Weight 77
Character orbit 207.d
Self dual yes
Analytic conductor 47.62147.621
Analytic rank 00
Dimension 11
CM discriminant -23
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [207,7,Mod(91,207)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(207, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("207.91");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: N N == 207=3223 207 = 3^{2} \cdot 23
Weight: k k == 7 7
Character orbit: [χ][\chi] == 207.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 47.621195309347.6211953093
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+7q215q4553q8+1082q132911q16+12167q23+15625q25+7574q2630746q29+58754q31+15015q3243634q41+85169q46+205342q47+117649q49++823543q98+O(q100) q + 7 q^{2} - 15 q^{4} - 553 q^{8} + 1082 q^{13} - 2911 q^{16} + 12167 q^{23} + 15625 q^{25} + 7574 q^{26} - 30746 q^{29} + 58754 q^{31} + 15015 q^{32} - 43634 q^{41} + 85169 q^{46} + 205342 q^{47} + 117649 q^{49}+ \cdots + 823543 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/207Z)×\left(\mathbb{Z}/207\mathbb{Z}\right)^\times.

nn 2828 4747
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
91.1
0
7.00000 0 −15.0000 0 0 0 −553.000 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by Q(23)\Q(\sqrt{-23})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 207.7.d.a 1
3.b odd 2 1 23.7.b.a 1
12.b even 2 1 368.7.f.a 1
23.b odd 2 1 CM 207.7.d.a 1
69.c even 2 1 23.7.b.a 1
276.h odd 2 1 368.7.f.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.7.b.a 1 3.b odd 2 1
23.7.b.a 1 69.c even 2 1
207.7.d.a 1 1.a even 1 1 trivial
207.7.d.a 1 23.b odd 2 1 CM
368.7.f.a 1 12.b even 2 1
368.7.f.a 1 276.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T27 T_{2} - 7 acting on S7new(207,[χ])S_{7}^{\mathrm{new}}(207, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T7 T - 7 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T1082 T - 1082 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T12167 T - 12167 Copy content Toggle raw display
2929 T+30746 T + 30746 Copy content Toggle raw display
3131 T58754 T - 58754 Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T+43634 T + 43634 Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T205342 T - 205342 Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T253942 T - 253942 Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T+667154 T + 667154 Copy content Toggle raw display
7373 T725042 T - 725042 Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less