Properties

Label 2070.2.bn
Level 20702070
Weight 22
Character orbit 2070.bn
Rep. character χ2070(49,)\chi_{2070}(49,\cdot)
Character field Q(ζ66)\Q(\zeta_{66})
Dimension 28802880
Sturm bound 864864

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2070=232523 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2070.bn (of order 6666 and degree 2020)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 1035 1035
Character field: Q(ζ66)\Q(\zeta_{66})
Sturm bound: 864864

Dimensions

The following table gives the dimensions of various subspaces of M2(2070,[χ])M_{2}(2070, [\chi]).

Total New Old
Modular forms 8800 2880 5920
Cusp forms 8480 2880 5600
Eisenstein series 320 0 320

Trace form

2880q144q4+4q58q6+4q98q11+20q1416q15+144q164q20+8q214q2412q25+4q29+36q30+24q31+8q3620q4116q44+120q99+O(q100) 2880 q - 144 q^{4} + 4 q^{5} - 8 q^{6} + 4 q^{9} - 8 q^{11} + 20 q^{14} - 16 q^{15} + 144 q^{16} - 4 q^{20} + 8 q^{21} - 4 q^{24} - 12 q^{25} + 4 q^{29} + 36 q^{30} + 24 q^{31} + 8 q^{36} - 20 q^{41} - 16 q^{44}+ \cdots - 120 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(2070,[χ])S_{2}^{\mathrm{new}}(2070, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(2070,[χ])S_{2}^{\mathrm{old}}(2070, [\chi]) into lower level spaces

S2old(2070,[χ]) S_{2}^{\mathrm{old}}(2070, [\chi]) \simeq S2new(1035,[χ])S_{2}^{\mathrm{new}}(1035, [\chi])2^{\oplus 2}