Properties

Label 2070.2.i
Level 20702070
Weight 22
Character orbit 2070.i
Rep. character χ2070(691,)\chi_{2070}(691,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 176176
Sturm bound 864864

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2070=232523 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2070.i (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 9 9
Character field: Q(ζ3)\Q(\zeta_{3})
Sturm bound: 864864

Dimensions

The following table gives the dimensions of various subspaces of M2(2070,[χ])M_{2}(2070, [\chi]).

Total New Old
Modular forms 880 176 704
Cusp forms 848 176 672
Eisenstein series 32 0 32

Trace form

176q4q24q388q44q68q7+8q8+12q9+12q11+8q128q138q1588q168q17+8q188q198q21+12q224q24+8q99+O(q100) 176 q - 4 q^{2} - 4 q^{3} - 88 q^{4} - 4 q^{6} - 8 q^{7} + 8 q^{8} + 12 q^{9} + 12 q^{11} + 8 q^{12} - 8 q^{13} - 8 q^{15} - 88 q^{16} - 8 q^{17} + 8 q^{18} - 8 q^{19} - 8 q^{21} + 12 q^{22} - 4 q^{24}+ \cdots - 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(2070,[χ])S_{2}^{\mathrm{new}}(2070, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(2070,[χ])S_{2}^{\mathrm{old}}(2070, [\chi]) into lower level spaces

S2old(2070,[χ]) S_{2}^{\mathrm{old}}(2070, [\chi]) \simeq S2new(18,[χ])S_{2}^{\mathrm{new}}(18, [\chi])4^{\oplus 4}\oplusS2new(45,[χ])S_{2}^{\mathrm{new}}(45, [\chi])4^{\oplus 4}\oplusS2new(90,[χ])S_{2}^{\mathrm{new}}(90, [\chi])2^{\oplus 2}\oplusS2new(207,[χ])S_{2}^{\mathrm{new}}(207, [\chi])4^{\oplus 4}\oplusS2new(414,[χ])S_{2}^{\mathrm{new}}(414, [\chi])2^{\oplus 2}\oplusS2new(1035,[χ])S_{2}^{\mathrm{new}}(1035, [\chi])2^{\oplus 2}