Properties

Label 2070.2.i
Level $2070$
Weight $2$
Character orbit 2070.i
Rep. character $\chi_{2070}(691,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $176$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2070.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2070, [\chi])\).

Total New Old
Modular forms 880 176 704
Cusp forms 848 176 672
Eisenstein series 32 0 32

Trace form

\( 176 q - 4 q^{2} - 4 q^{3} - 88 q^{4} - 4 q^{6} - 8 q^{7} + 8 q^{8} + 12 q^{9} + 12 q^{11} + 8 q^{12} - 8 q^{13} - 8 q^{15} - 88 q^{16} - 8 q^{17} + 8 q^{18} - 8 q^{19} - 8 q^{21} + 12 q^{22} - 4 q^{24}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2070, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2070, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2070, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(414, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1035, [\chi])\)\(^{\oplus 2}\)