Properties

Label 208.10.a.e.1.1
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6144x - 66096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-10.9937\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-159.509 q^{3} +1767.44 q^{5} -6243.46 q^{7} +5760.16 q^{9} +41072.0 q^{11} +28561.0 q^{13} -281924. q^{15} +98274.9 q^{17} -507054. q^{19} +995890. q^{21} -1.89860e6 q^{23} +1.17074e6 q^{25} +2.22082e6 q^{27} -321475. q^{29} +6.09551e6 q^{31} -6.55136e6 q^{33} -1.10350e7 q^{35} +1.77236e7 q^{37} -4.55574e6 q^{39} -1.79328e7 q^{41} +1.22817e7 q^{43} +1.01808e7 q^{45} -4.23821e7 q^{47} -1.37275e6 q^{49} -1.56757e7 q^{51} +3.92537e6 q^{53} +7.25925e7 q^{55} +8.08798e7 q^{57} +1.72026e8 q^{59} +1.36776e8 q^{61} -3.59633e7 q^{63} +5.04800e7 q^{65} -1.21248e8 q^{67} +3.02844e8 q^{69} +3.66817e8 q^{71} -1.13266e8 q^{73} -1.86743e8 q^{75} -2.56432e8 q^{77} -2.79788e8 q^{79} -4.67618e8 q^{81} +7.50041e8 q^{83} +1.73695e8 q^{85} +5.12782e7 q^{87} -7.04433e8 q^{89} -1.78320e8 q^{91} -9.72289e8 q^{93} -8.96190e8 q^{95} -1.21751e9 q^{97} +2.36581e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 248 q^{5} + 2956 q^{7} - 20863 q^{9} + 31324 q^{11} + 85683 q^{13} - 392140 q^{15} + 905228 q^{17} - 1726316 q^{19} + 1771246 q^{21} - 2135256 q^{23} + 4074295 q^{25} - 3038724 q^{27} + 372426 q^{29}+ \cdots + 304026580 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −159.509 −1.13695 −0.568473 0.822702i \(-0.692466\pi\)
−0.568473 + 0.822702i \(0.692466\pi\)
\(4\) 0 0
\(5\) 1767.44 1.26468 0.632340 0.774691i \(-0.282095\pi\)
0.632340 + 0.774691i \(0.282095\pi\)
\(6\) 0 0
\(7\) −6243.46 −0.982844 −0.491422 0.870922i \(-0.663523\pi\)
−0.491422 + 0.870922i \(0.663523\pi\)
\(8\) 0 0
\(9\) 5760.16 0.292646
\(10\) 0 0
\(11\) 41072.0 0.845821 0.422911 0.906171i \(-0.361008\pi\)
0.422911 + 0.906171i \(0.361008\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) −281924. −1.43787
\(16\) 0 0
\(17\) 98274.9 0.285379 0.142690 0.989767i \(-0.454425\pi\)
0.142690 + 0.989767i \(0.454425\pi\)
\(18\) 0 0
\(19\) −507054. −0.892613 −0.446307 0.894880i \(-0.647261\pi\)
−0.446307 + 0.894880i \(0.647261\pi\)
\(20\) 0 0
\(21\) 995890. 1.11744
\(22\) 0 0
\(23\) −1.89860e6 −1.41468 −0.707340 0.706874i \(-0.750105\pi\)
−0.707340 + 0.706874i \(0.750105\pi\)
\(24\) 0 0
\(25\) 1.17074e6 0.599416
\(26\) 0 0
\(27\) 2.22082e6 0.804223
\(28\) 0 0
\(29\) −321475. −0.0844027 −0.0422013 0.999109i \(-0.513437\pi\)
−0.0422013 + 0.999109i \(0.513437\pi\)
\(30\) 0 0
\(31\) 6.09551e6 1.18545 0.592724 0.805406i \(-0.298053\pi\)
0.592724 + 0.805406i \(0.298053\pi\)
\(32\) 0 0
\(33\) −6.55136e6 −0.961653
\(34\) 0 0
\(35\) −1.10350e7 −1.24298
\(36\) 0 0
\(37\) 1.77236e7 1.55469 0.777344 0.629076i \(-0.216566\pi\)
0.777344 + 0.629076i \(0.216566\pi\)
\(38\) 0 0
\(39\) −4.55574e6 −0.315332
\(40\) 0 0
\(41\) −1.79328e7 −0.991110 −0.495555 0.868577i \(-0.665035\pi\)
−0.495555 + 0.868577i \(0.665035\pi\)
\(42\) 0 0
\(43\) 1.22817e7 0.547834 0.273917 0.961753i \(-0.411681\pi\)
0.273917 + 0.961753i \(0.411681\pi\)
\(44\) 0 0
\(45\) 1.01808e7 0.370104
\(46\) 0 0
\(47\) −4.23821e7 −1.26690 −0.633449 0.773784i \(-0.718361\pi\)
−0.633449 + 0.773784i \(0.718361\pi\)
\(48\) 0 0
\(49\) −1.37275e6 −0.0340181
\(50\) 0 0
\(51\) −1.56757e7 −0.324461
\(52\) 0 0
\(53\) 3.92537e6 0.0683344 0.0341672 0.999416i \(-0.489122\pi\)
0.0341672 + 0.999416i \(0.489122\pi\)
\(54\) 0 0
\(55\) 7.25925e7 1.06969
\(56\) 0 0
\(57\) 8.08798e7 1.01485
\(58\) 0 0
\(59\) 1.72026e8 1.84824 0.924122 0.382098i \(-0.124798\pi\)
0.924122 + 0.382098i \(0.124798\pi\)
\(60\) 0 0
\(61\) 1.36776e8 1.26481 0.632407 0.774636i \(-0.282067\pi\)
0.632407 + 0.774636i \(0.282067\pi\)
\(62\) 0 0
\(63\) −3.59633e7 −0.287626
\(64\) 0 0
\(65\) 5.04800e7 0.350759
\(66\) 0 0
\(67\) −1.21248e8 −0.735086 −0.367543 0.930006i \(-0.619801\pi\)
−0.367543 + 0.930006i \(0.619801\pi\)
\(68\) 0 0
\(69\) 3.02844e8 1.60841
\(70\) 0 0
\(71\) 3.66817e8 1.71311 0.856557 0.516052i \(-0.172599\pi\)
0.856557 + 0.516052i \(0.172599\pi\)
\(72\) 0 0
\(73\) −1.13266e8 −0.466816 −0.233408 0.972379i \(-0.574988\pi\)
−0.233408 + 0.972379i \(0.574988\pi\)
\(74\) 0 0
\(75\) −1.86743e8 −0.681504
\(76\) 0 0
\(77\) −2.56432e8 −0.831310
\(78\) 0 0
\(79\) −2.79788e8 −0.808179 −0.404089 0.914720i \(-0.632412\pi\)
−0.404089 + 0.914720i \(0.632412\pi\)
\(80\) 0 0
\(81\) −4.67618e8 −1.20700
\(82\) 0 0
\(83\) 7.50041e8 1.73474 0.867368 0.497667i \(-0.165810\pi\)
0.867368 + 0.497667i \(0.165810\pi\)
\(84\) 0 0
\(85\) 1.73695e8 0.360914
\(86\) 0 0
\(87\) 5.12782e7 0.0959613
\(88\) 0 0
\(89\) −7.04433e8 −1.19010 −0.595052 0.803688i \(-0.702868\pi\)
−0.595052 + 0.803688i \(0.702868\pi\)
\(90\) 0 0
\(91\) −1.78320e8 −0.272592
\(92\) 0 0
\(93\) −9.72289e8 −1.34779
\(94\) 0 0
\(95\) −8.96190e8 −1.12887
\(96\) 0 0
\(97\) −1.21751e9 −1.39637 −0.698183 0.715920i \(-0.746008\pi\)
−0.698183 + 0.715920i \(0.746008\pi\)
\(98\) 0 0
\(99\) 2.36581e8 0.247527
\(100\) 0 0
\(101\) −9.52618e8 −0.910904 −0.455452 0.890260i \(-0.650522\pi\)
−0.455452 + 0.890260i \(0.650522\pi\)
\(102\) 0 0
\(103\) −1.27341e9 −1.11481 −0.557405 0.830240i \(-0.688203\pi\)
−0.557405 + 0.830240i \(0.688203\pi\)
\(104\) 0 0
\(105\) 1.76018e9 1.41320
\(106\) 0 0
\(107\) −9.71126e8 −0.716223 −0.358112 0.933679i \(-0.616579\pi\)
−0.358112 + 0.933679i \(0.616579\pi\)
\(108\) 0 0
\(109\) −1.35575e9 −0.919940 −0.459970 0.887935i \(-0.652140\pi\)
−0.459970 + 0.887935i \(0.652140\pi\)
\(110\) 0 0
\(111\) −2.82707e9 −1.76760
\(112\) 0 0
\(113\) 2.19491e9 1.26638 0.633189 0.773997i \(-0.281746\pi\)
0.633189 + 0.773997i \(0.281746\pi\)
\(114\) 0 0
\(115\) −3.35567e9 −1.78912
\(116\) 0 0
\(117\) 1.64516e8 0.0811655
\(118\) 0 0
\(119\) −6.13576e8 −0.280483
\(120\) 0 0
\(121\) −6.71039e8 −0.284586
\(122\) 0 0
\(123\) 2.86045e9 1.12684
\(124\) 0 0
\(125\) −1.38283e9 −0.506610
\(126\) 0 0
\(127\) −2.77758e9 −0.947437 −0.473718 0.880676i \(-0.657089\pi\)
−0.473718 + 0.880676i \(0.657089\pi\)
\(128\) 0 0
\(129\) −1.95904e9 −0.622858
\(130\) 0 0
\(131\) 5.91870e8 0.175592 0.0877961 0.996138i \(-0.472018\pi\)
0.0877961 + 0.996138i \(0.472018\pi\)
\(132\) 0 0
\(133\) 3.16578e9 0.877299
\(134\) 0 0
\(135\) 3.92518e9 1.01708
\(136\) 0 0
\(137\) −4.78496e9 −1.16048 −0.580238 0.814447i \(-0.697040\pi\)
−0.580238 + 0.814447i \(0.697040\pi\)
\(138\) 0 0
\(139\) 9.91846e8 0.225360 0.112680 0.993631i \(-0.464056\pi\)
0.112680 + 0.993631i \(0.464056\pi\)
\(140\) 0 0
\(141\) 6.76033e9 1.44039
\(142\) 0 0
\(143\) 1.17306e9 0.234589
\(144\) 0 0
\(145\) −5.68189e8 −0.106742
\(146\) 0 0
\(147\) 2.18967e8 0.0386767
\(148\) 0 0
\(149\) −7.40400e9 −1.23063 −0.615316 0.788280i \(-0.710972\pi\)
−0.615316 + 0.788280i \(0.710972\pi\)
\(150\) 0 0
\(151\) −8.11389e9 −1.27009 −0.635043 0.772477i \(-0.719017\pi\)
−0.635043 + 0.772477i \(0.719017\pi\)
\(152\) 0 0
\(153\) 5.66079e8 0.0835152
\(154\) 0 0
\(155\) 1.07735e10 1.49921
\(156\) 0 0
\(157\) −1.10905e10 −1.45681 −0.728407 0.685145i \(-0.759739\pi\)
−0.728407 + 0.685145i \(0.759739\pi\)
\(158\) 0 0
\(159\) −6.26132e8 −0.0776925
\(160\) 0 0
\(161\) 1.18538e10 1.39041
\(162\) 0 0
\(163\) −7.83983e8 −0.0869886 −0.0434943 0.999054i \(-0.513849\pi\)
−0.0434943 + 0.999054i \(0.513849\pi\)
\(164\) 0 0
\(165\) −1.15792e10 −1.21618
\(166\) 0 0
\(167\) −1.26374e10 −1.25729 −0.628643 0.777694i \(-0.716389\pi\)
−0.628643 + 0.777694i \(0.716389\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −2.92071e9 −0.261220
\(172\) 0 0
\(173\) −3.65563e9 −0.310281 −0.155140 0.987892i \(-0.549583\pi\)
−0.155140 + 0.987892i \(0.549583\pi\)
\(174\) 0 0
\(175\) −7.30944e9 −0.589133
\(176\) 0 0
\(177\) −2.74397e10 −2.10135
\(178\) 0 0
\(179\) −1.00526e10 −0.731879 −0.365939 0.930639i \(-0.619252\pi\)
−0.365939 + 0.930639i \(0.619252\pi\)
\(180\) 0 0
\(181\) −6.35857e9 −0.440358 −0.220179 0.975459i \(-0.570664\pi\)
−0.220179 + 0.975459i \(0.570664\pi\)
\(182\) 0 0
\(183\) −2.18171e10 −1.43803
\(184\) 0 0
\(185\) 3.13254e10 1.96618
\(186\) 0 0
\(187\) 4.03635e9 0.241380
\(188\) 0 0
\(189\) −1.38656e10 −0.790426
\(190\) 0 0
\(191\) 2.56451e10 1.39429 0.697146 0.716929i \(-0.254453\pi\)
0.697146 + 0.716929i \(0.254453\pi\)
\(192\) 0 0
\(193\) 3.05861e10 1.58678 0.793389 0.608715i \(-0.208315\pi\)
0.793389 + 0.608715i \(0.208315\pi\)
\(194\) 0 0
\(195\) −8.05202e9 −0.398794
\(196\) 0 0
\(197\) −1.73305e10 −0.819811 −0.409905 0.912128i \(-0.634438\pi\)
−0.409905 + 0.912128i \(0.634438\pi\)
\(198\) 0 0
\(199\) 1.44467e10 0.653025 0.326512 0.945193i \(-0.394126\pi\)
0.326512 + 0.945193i \(0.394126\pi\)
\(200\) 0 0
\(201\) 1.93402e10 0.835753
\(202\) 0 0
\(203\) 2.00712e9 0.0829546
\(204\) 0 0
\(205\) −3.16953e10 −1.25344
\(206\) 0 0
\(207\) −1.09362e10 −0.414001
\(208\) 0 0
\(209\) −2.08257e10 −0.754991
\(210\) 0 0
\(211\) −5.08715e10 −1.76686 −0.883432 0.468559i \(-0.844774\pi\)
−0.883432 + 0.468559i \(0.844774\pi\)
\(212\) 0 0
\(213\) −5.85106e10 −1.94772
\(214\) 0 0
\(215\) 2.17072e10 0.692835
\(216\) 0 0
\(217\) −3.80571e10 −1.16511
\(218\) 0 0
\(219\) 1.80669e10 0.530745
\(220\) 0 0
\(221\) 2.80683e9 0.0791500
\(222\) 0 0
\(223\) −2.27613e10 −0.616347 −0.308174 0.951330i \(-0.599718\pi\)
−0.308174 + 0.951330i \(0.599718\pi\)
\(224\) 0 0
\(225\) 6.74362e9 0.175417
\(226\) 0 0
\(227\) −2.24918e10 −0.562222 −0.281111 0.959675i \(-0.590703\pi\)
−0.281111 + 0.959675i \(0.590703\pi\)
\(228\) 0 0
\(229\) 7.10153e10 1.70644 0.853222 0.521548i \(-0.174645\pi\)
0.853222 + 0.521548i \(0.174645\pi\)
\(230\) 0 0
\(231\) 4.09032e10 0.945155
\(232\) 0 0
\(233\) 5.11111e10 1.13609 0.568046 0.822997i \(-0.307699\pi\)
0.568046 + 0.822997i \(0.307699\pi\)
\(234\) 0 0
\(235\) −7.49079e10 −1.60222
\(236\) 0 0
\(237\) 4.46288e10 0.918856
\(238\) 0 0
\(239\) 2.14909e10 0.426054 0.213027 0.977046i \(-0.431668\pi\)
0.213027 + 0.977046i \(0.431668\pi\)
\(240\) 0 0
\(241\) 5.08676e10 0.971326 0.485663 0.874146i \(-0.338578\pi\)
0.485663 + 0.874146i \(0.338578\pi\)
\(242\) 0 0
\(243\) 3.08770e10 0.568076
\(244\) 0 0
\(245\) −2.42626e9 −0.0430220
\(246\) 0 0
\(247\) −1.44820e10 −0.247566
\(248\) 0 0
\(249\) −1.19638e11 −1.97230
\(250\) 0 0
\(251\) −4.23328e10 −0.673201 −0.336601 0.941647i \(-0.609277\pi\)
−0.336601 + 0.941647i \(0.609277\pi\)
\(252\) 0 0
\(253\) −7.79792e10 −1.19657
\(254\) 0 0
\(255\) −2.77060e10 −0.410339
\(256\) 0 0
\(257\) 6.92463e10 0.990142 0.495071 0.868852i \(-0.335142\pi\)
0.495071 + 0.868852i \(0.335142\pi\)
\(258\) 0 0
\(259\) −1.10656e11 −1.52802
\(260\) 0 0
\(261\) −1.85175e9 −0.0247001
\(262\) 0 0
\(263\) 4.17509e10 0.538102 0.269051 0.963126i \(-0.413290\pi\)
0.269051 + 0.963126i \(0.413290\pi\)
\(264\) 0 0
\(265\) 6.93787e9 0.0864211
\(266\) 0 0
\(267\) 1.12363e11 1.35308
\(268\) 0 0
\(269\) −6.76023e10 −0.787184 −0.393592 0.919285i \(-0.628768\pi\)
−0.393592 + 0.919285i \(0.628768\pi\)
\(270\) 0 0
\(271\) −7.29675e10 −0.821803 −0.410902 0.911680i \(-0.634786\pi\)
−0.410902 + 0.911680i \(0.634786\pi\)
\(272\) 0 0
\(273\) 2.84436e10 0.309922
\(274\) 0 0
\(275\) 4.80844e10 0.506999
\(276\) 0 0
\(277\) −1.13424e10 −0.115757 −0.0578785 0.998324i \(-0.518434\pi\)
−0.0578785 + 0.998324i \(0.518434\pi\)
\(278\) 0 0
\(279\) 3.51111e10 0.346917
\(280\) 0 0
\(281\) 9.00245e10 0.861355 0.430678 0.902506i \(-0.358275\pi\)
0.430678 + 0.902506i \(0.358275\pi\)
\(282\) 0 0
\(283\) −4.33672e10 −0.401904 −0.200952 0.979601i \(-0.564404\pi\)
−0.200952 + 0.979601i \(0.564404\pi\)
\(284\) 0 0
\(285\) 1.42951e11 1.28346
\(286\) 0 0
\(287\) 1.11963e11 0.974106
\(288\) 0 0
\(289\) −1.08930e11 −0.918559
\(290\) 0 0
\(291\) 1.94204e11 1.58759
\(292\) 0 0
\(293\) −4.06751e10 −0.322422 −0.161211 0.986920i \(-0.551540\pi\)
−0.161211 + 0.986920i \(0.551540\pi\)
\(294\) 0 0
\(295\) 3.04046e11 2.33744
\(296\) 0 0
\(297\) 9.12135e10 0.680229
\(298\) 0 0
\(299\) −5.42259e10 −0.392361
\(300\) 0 0
\(301\) −7.66801e10 −0.538435
\(302\) 0 0
\(303\) 1.51951e11 1.03565
\(304\) 0 0
\(305\) 2.41745e11 1.59959
\(306\) 0 0
\(307\) 2.35037e11 1.51013 0.755063 0.655652i \(-0.227606\pi\)
0.755063 + 0.655652i \(0.227606\pi\)
\(308\) 0 0
\(309\) 2.03121e11 1.26748
\(310\) 0 0
\(311\) −1.60150e11 −0.970745 −0.485373 0.874307i \(-0.661316\pi\)
−0.485373 + 0.874307i \(0.661316\pi\)
\(312\) 0 0
\(313\) −2.82360e11 −1.66285 −0.831426 0.555635i \(-0.812475\pi\)
−0.831426 + 0.555635i \(0.812475\pi\)
\(314\) 0 0
\(315\) −6.35632e10 −0.363754
\(316\) 0 0
\(317\) −1.27999e11 −0.711936 −0.355968 0.934498i \(-0.615849\pi\)
−0.355968 + 0.934498i \(0.615849\pi\)
\(318\) 0 0
\(319\) −1.32036e10 −0.0713896
\(320\) 0 0
\(321\) 1.54903e11 0.814307
\(322\) 0 0
\(323\) −4.98307e10 −0.254733
\(324\) 0 0
\(325\) 3.34374e10 0.166248
\(326\) 0 0
\(327\) 2.16254e11 1.04592
\(328\) 0 0
\(329\) 2.64611e11 1.24516
\(330\) 0 0
\(331\) −8.41594e10 −0.385369 −0.192684 0.981261i \(-0.561719\pi\)
−0.192684 + 0.981261i \(0.561719\pi\)
\(332\) 0 0
\(333\) 1.02091e11 0.454974
\(334\) 0 0
\(335\) −2.14299e11 −0.929649
\(336\) 0 0
\(337\) −3.35056e11 −1.41509 −0.707543 0.706671i \(-0.750196\pi\)
−0.707543 + 0.706671i \(0.750196\pi\)
\(338\) 0 0
\(339\) −3.50108e11 −1.43980
\(340\) 0 0
\(341\) 2.50355e11 1.00268
\(342\) 0 0
\(343\) 2.60517e11 1.01628
\(344\) 0 0
\(345\) 5.35260e11 2.03413
\(346\) 0 0
\(347\) −1.52065e11 −0.563050 −0.281525 0.959554i \(-0.590840\pi\)
−0.281525 + 0.959554i \(0.590840\pi\)
\(348\) 0 0
\(349\) 3.54508e11 1.27912 0.639561 0.768741i \(-0.279116\pi\)
0.639561 + 0.768741i \(0.279116\pi\)
\(350\) 0 0
\(351\) 6.34288e10 0.223051
\(352\) 0 0
\(353\) −2.46472e11 −0.844852 −0.422426 0.906397i \(-0.638821\pi\)
−0.422426 + 0.906397i \(0.638821\pi\)
\(354\) 0 0
\(355\) 6.48328e11 2.16654
\(356\) 0 0
\(357\) 9.78710e10 0.318894
\(358\) 0 0
\(359\) 2.29573e11 0.729451 0.364726 0.931115i \(-0.381163\pi\)
0.364726 + 0.931115i \(0.381163\pi\)
\(360\) 0 0
\(361\) −6.55836e10 −0.203242
\(362\) 0 0
\(363\) 1.07037e11 0.323559
\(364\) 0 0
\(365\) −2.00191e11 −0.590374
\(366\) 0 0
\(367\) −5.22127e11 −1.50238 −0.751189 0.660087i \(-0.770519\pi\)
−0.751189 + 0.660087i \(0.770519\pi\)
\(368\) 0 0
\(369\) −1.03296e11 −0.290045
\(370\) 0 0
\(371\) −2.45079e10 −0.0671620
\(372\) 0 0
\(373\) 2.20771e11 0.590543 0.295272 0.955413i \(-0.404590\pi\)
0.295272 + 0.955413i \(0.404590\pi\)
\(374\) 0 0
\(375\) 2.20574e11 0.575989
\(376\) 0 0
\(377\) −9.18165e9 −0.0234091
\(378\) 0 0
\(379\) −1.87709e11 −0.467314 −0.233657 0.972319i \(-0.575069\pi\)
−0.233657 + 0.972319i \(0.575069\pi\)
\(380\) 0 0
\(381\) 4.43050e11 1.07718
\(382\) 0 0
\(383\) −6.27959e11 −1.49120 −0.745601 0.666392i \(-0.767838\pi\)
−0.745601 + 0.666392i \(0.767838\pi\)
\(384\) 0 0
\(385\) −4.53229e11 −1.05134
\(386\) 0 0
\(387\) 7.07443e10 0.160322
\(388\) 0 0
\(389\) 8.24996e11 1.82675 0.913374 0.407122i \(-0.133467\pi\)
0.913374 + 0.407122i \(0.133467\pi\)
\(390\) 0 0
\(391\) −1.86585e11 −0.403720
\(392\) 0 0
\(393\) −9.44086e10 −0.199639
\(394\) 0 0
\(395\) −4.94510e11 −1.02209
\(396\) 0 0
\(397\) −8.55547e11 −1.72857 −0.864284 0.503005i \(-0.832228\pi\)
−0.864284 + 0.503005i \(0.832228\pi\)
\(398\) 0 0
\(399\) −5.04970e11 −0.997442
\(400\) 0 0
\(401\) −2.36025e11 −0.455835 −0.227917 0.973680i \(-0.573192\pi\)
−0.227917 + 0.973680i \(0.573192\pi\)
\(402\) 0 0
\(403\) 1.74094e11 0.328784
\(404\) 0 0
\(405\) −8.26489e11 −1.52647
\(406\) 0 0
\(407\) 7.27942e11 1.31499
\(408\) 0 0
\(409\) −2.21041e11 −0.390587 −0.195293 0.980745i \(-0.562566\pi\)
−0.195293 + 0.980745i \(0.562566\pi\)
\(410\) 0 0
\(411\) 7.63245e11 1.31940
\(412\) 0 0
\(413\) −1.07404e12 −1.81653
\(414\) 0 0
\(415\) 1.32566e12 2.19389
\(416\) 0 0
\(417\) −1.58208e11 −0.256223
\(418\) 0 0
\(419\) 6.43251e10 0.101957 0.0509786 0.998700i \(-0.483766\pi\)
0.0509786 + 0.998700i \(0.483766\pi\)
\(420\) 0 0
\(421\) −4.06630e11 −0.630855 −0.315428 0.948950i \(-0.602148\pi\)
−0.315428 + 0.948950i \(0.602148\pi\)
\(422\) 0 0
\(423\) −2.44127e11 −0.370753
\(424\) 0 0
\(425\) 1.15054e11 0.171061
\(426\) 0 0
\(427\) −8.53958e11 −1.24311
\(428\) 0 0
\(429\) −1.87113e11 −0.266715
\(430\) 0 0
\(431\) −1.07838e12 −1.50530 −0.752651 0.658420i \(-0.771225\pi\)
−0.752651 + 0.658420i \(0.771225\pi\)
\(432\) 0 0
\(433\) 2.02656e11 0.277053 0.138527 0.990359i \(-0.455763\pi\)
0.138527 + 0.990359i \(0.455763\pi\)
\(434\) 0 0
\(435\) 9.06314e10 0.121360
\(436\) 0 0
\(437\) 9.62693e11 1.26276
\(438\) 0 0
\(439\) −9.26805e11 −1.19096 −0.595481 0.803369i \(-0.703039\pi\)
−0.595481 + 0.803369i \(0.703039\pi\)
\(440\) 0 0
\(441\) −7.90727e9 −0.00995527
\(442\) 0 0
\(443\) −3.93461e11 −0.485383 −0.242692 0.970103i \(-0.578030\pi\)
−0.242692 + 0.970103i \(0.578030\pi\)
\(444\) 0 0
\(445\) −1.24505e12 −1.50510
\(446\) 0 0
\(447\) 1.18101e12 1.39916
\(448\) 0 0
\(449\) 6.50584e10 0.0755431 0.0377716 0.999286i \(-0.487974\pi\)
0.0377716 + 0.999286i \(0.487974\pi\)
\(450\) 0 0
\(451\) −7.36538e11 −0.838302
\(452\) 0 0
\(453\) 1.29424e12 1.44402
\(454\) 0 0
\(455\) −3.15170e11 −0.344742
\(456\) 0 0
\(457\) 1.01701e12 1.09069 0.545344 0.838213i \(-0.316399\pi\)
0.545344 + 0.838213i \(0.316399\pi\)
\(458\) 0 0
\(459\) 2.18251e11 0.229509
\(460\) 0 0
\(461\) 1.74309e12 1.79748 0.898741 0.438480i \(-0.144483\pi\)
0.898741 + 0.438480i \(0.144483\pi\)
\(462\) 0 0
\(463\) −3.39417e11 −0.343257 −0.171629 0.985162i \(-0.554903\pi\)
−0.171629 + 0.985162i \(0.554903\pi\)
\(464\) 0 0
\(465\) −1.71847e12 −1.70452
\(466\) 0 0
\(467\) −4.76376e11 −0.463473 −0.231736 0.972779i \(-0.574441\pi\)
−0.231736 + 0.972779i \(0.574441\pi\)
\(468\) 0 0
\(469\) 7.57008e11 0.722475
\(470\) 0 0
\(471\) 1.76904e12 1.65632
\(472\) 0 0
\(473\) 5.04432e11 0.463370
\(474\) 0 0
\(475\) −5.93626e11 −0.535047
\(476\) 0 0
\(477\) 2.26107e10 0.0199978
\(478\) 0 0
\(479\) 7.63824e11 0.662954 0.331477 0.943463i \(-0.392453\pi\)
0.331477 + 0.943463i \(0.392453\pi\)
\(480\) 0 0
\(481\) 5.06203e11 0.431193
\(482\) 0 0
\(483\) −1.89079e12 −1.58082
\(484\) 0 0
\(485\) −2.15188e12 −1.76596
\(486\) 0 0
\(487\) 1.59493e12 1.28488 0.642440 0.766336i \(-0.277922\pi\)
0.642440 + 0.766336i \(0.277922\pi\)
\(488\) 0 0
\(489\) 1.25052e11 0.0989013
\(490\) 0 0
\(491\) 9.38889e11 0.729034 0.364517 0.931197i \(-0.381234\pi\)
0.364517 + 0.931197i \(0.381234\pi\)
\(492\) 0 0
\(493\) −3.15929e10 −0.0240868
\(494\) 0 0
\(495\) 4.18144e11 0.313042
\(496\) 0 0
\(497\) −2.29021e12 −1.68372
\(498\) 0 0
\(499\) 8.21282e11 0.592979 0.296490 0.955036i \(-0.404184\pi\)
0.296490 + 0.955036i \(0.404184\pi\)
\(500\) 0 0
\(501\) 2.01578e12 1.42947
\(502\) 0 0
\(503\) −2.06643e12 −1.43934 −0.719671 0.694315i \(-0.755707\pi\)
−0.719671 + 0.694315i \(0.755707\pi\)
\(504\) 0 0
\(505\) −1.68370e12 −1.15200
\(506\) 0 0
\(507\) −1.30116e11 −0.0874574
\(508\) 0 0
\(509\) 1.63442e12 1.07928 0.539638 0.841897i \(-0.318561\pi\)
0.539638 + 0.841897i \(0.318561\pi\)
\(510\) 0 0
\(511\) 7.07171e11 0.458808
\(512\) 0 0
\(513\) −1.12608e12 −0.717860
\(514\) 0 0
\(515\) −2.25068e12 −1.40988
\(516\) 0 0
\(517\) −1.74072e12 −1.07157
\(518\) 0 0
\(519\) 5.83107e11 0.352773
\(520\) 0 0
\(521\) −2.99302e12 −1.77967 −0.889835 0.456283i \(-0.849180\pi\)
−0.889835 + 0.456283i \(0.849180\pi\)
\(522\) 0 0
\(523\) −1.24516e12 −0.727723 −0.363862 0.931453i \(-0.618542\pi\)
−0.363862 + 0.931453i \(0.618542\pi\)
\(524\) 0 0
\(525\) 1.16592e12 0.669812
\(526\) 0 0
\(527\) 5.99036e11 0.338302
\(528\) 0 0
\(529\) 1.80353e12 1.00132
\(530\) 0 0
\(531\) 9.90895e11 0.540882
\(532\) 0 0
\(533\) −5.12180e11 −0.274884
\(534\) 0 0
\(535\) −1.71641e12 −0.905793
\(536\) 0 0
\(537\) 1.60348e12 0.832107
\(538\) 0 0
\(539\) −5.63817e10 −0.0287732
\(540\) 0 0
\(541\) 2.83767e12 1.42421 0.712104 0.702074i \(-0.247742\pi\)
0.712104 + 0.702074i \(0.247742\pi\)
\(542\) 0 0
\(543\) 1.01425e12 0.500663
\(544\) 0 0
\(545\) −2.39621e12 −1.16343
\(546\) 0 0
\(547\) −2.73600e12 −1.30669 −0.653345 0.757060i \(-0.726635\pi\)
−0.653345 + 0.757060i \(0.726635\pi\)
\(548\) 0 0
\(549\) 7.87853e11 0.370143
\(550\) 0 0
\(551\) 1.63005e11 0.0753389
\(552\) 0 0
\(553\) 1.74685e12 0.794313
\(554\) 0 0
\(555\) −4.99669e12 −2.23544
\(556\) 0 0
\(557\) −3.63597e12 −1.60056 −0.800279 0.599627i \(-0.795315\pi\)
−0.800279 + 0.599627i \(0.795315\pi\)
\(558\) 0 0
\(559\) 3.50777e11 0.151942
\(560\) 0 0
\(561\) −6.43834e11 −0.274436
\(562\) 0 0
\(563\) −1.81268e12 −0.760385 −0.380192 0.924907i \(-0.624142\pi\)
−0.380192 + 0.924907i \(0.624142\pi\)
\(564\) 0 0
\(565\) 3.87938e12 1.60156
\(566\) 0 0
\(567\) 2.91956e12 1.18630
\(568\) 0 0
\(569\) −2.53400e12 −1.01345 −0.506723 0.862109i \(-0.669143\pi\)
−0.506723 + 0.862109i \(0.669143\pi\)
\(570\) 0 0
\(571\) −1.44649e12 −0.569446 −0.284723 0.958610i \(-0.591902\pi\)
−0.284723 + 0.958610i \(0.591902\pi\)
\(572\) 0 0
\(573\) −4.09062e12 −1.58523
\(574\) 0 0
\(575\) −2.22276e12 −0.847982
\(576\) 0 0
\(577\) −1.45725e12 −0.547321 −0.273661 0.961826i \(-0.588234\pi\)
−0.273661 + 0.961826i \(0.588234\pi\)
\(578\) 0 0
\(579\) −4.87876e12 −1.80408
\(580\) 0 0
\(581\) −4.68285e12 −1.70498
\(582\) 0 0
\(583\) 1.61223e11 0.0577987
\(584\) 0 0
\(585\) 2.90773e11 0.102648
\(586\) 0 0
\(587\) 1.98221e12 0.689095 0.344547 0.938769i \(-0.388032\pi\)
0.344547 + 0.938769i \(0.388032\pi\)
\(588\) 0 0
\(589\) −3.09075e12 −1.05815
\(590\) 0 0
\(591\) 2.76438e12 0.932081
\(592\) 0 0
\(593\) 5.30729e12 1.76249 0.881246 0.472658i \(-0.156705\pi\)
0.881246 + 0.472658i \(0.156705\pi\)
\(594\) 0 0
\(595\) −1.08446e12 −0.354722
\(596\) 0 0
\(597\) −2.30438e12 −0.742454
\(598\) 0 0
\(599\) 2.54920e12 0.809064 0.404532 0.914524i \(-0.367434\pi\)
0.404532 + 0.914524i \(0.367434\pi\)
\(600\) 0 0
\(601\) 1.77817e12 0.555952 0.277976 0.960588i \(-0.410336\pi\)
0.277976 + 0.960588i \(0.410336\pi\)
\(602\) 0 0
\(603\) −6.98408e11 −0.215120
\(604\) 0 0
\(605\) −1.18602e12 −0.359910
\(606\) 0 0
\(607\) 6.45909e11 0.193118 0.0965588 0.995327i \(-0.469216\pi\)
0.0965588 + 0.995327i \(0.469216\pi\)
\(608\) 0 0
\(609\) −3.20154e11 −0.0943150
\(610\) 0 0
\(611\) −1.21047e12 −0.351374
\(612\) 0 0
\(613\) 2.63173e12 0.752782 0.376391 0.926461i \(-0.377165\pi\)
0.376391 + 0.926461i \(0.377165\pi\)
\(614\) 0 0
\(615\) 5.05569e12 1.42509
\(616\) 0 0
\(617\) 3.85338e12 1.07043 0.535216 0.844716i \(-0.320230\pi\)
0.535216 + 0.844716i \(0.320230\pi\)
\(618\) 0 0
\(619\) 6.18414e12 1.69306 0.846529 0.532343i \(-0.178688\pi\)
0.846529 + 0.532343i \(0.178688\pi\)
\(620\) 0 0
\(621\) −4.21645e12 −1.13772
\(622\) 0 0
\(623\) 4.39810e12 1.16969
\(624\) 0 0
\(625\) −4.73067e12 −1.24012
\(626\) 0 0
\(627\) 3.32189e12 0.858384
\(628\) 0 0
\(629\) 1.74178e12 0.443676
\(630\) 0 0
\(631\) −1.63522e8 −4.10623e−5 0 −2.05311e−5 1.00000i \(-0.500007\pi\)
−2.05311e−5 1.00000i \(0.500007\pi\)
\(632\) 0 0
\(633\) 8.11447e12 2.00883
\(634\) 0 0
\(635\) −4.90922e12 −1.19820
\(636\) 0 0
\(637\) −3.92072e10 −0.00943492
\(638\) 0 0
\(639\) 2.11292e12 0.501337
\(640\) 0 0
\(641\) 2.70983e11 0.0633988 0.0316994 0.999497i \(-0.489908\pi\)
0.0316994 + 0.999497i \(0.489908\pi\)
\(642\) 0 0
\(643\) −1.80868e12 −0.417265 −0.208632 0.977994i \(-0.566901\pi\)
−0.208632 + 0.977994i \(0.566901\pi\)
\(644\) 0 0
\(645\) −3.46249e12 −0.787716
\(646\) 0 0
\(647\) 4.85979e12 1.09031 0.545153 0.838337i \(-0.316472\pi\)
0.545153 + 0.838337i \(0.316472\pi\)
\(648\) 0 0
\(649\) 7.06544e12 1.56328
\(650\) 0 0
\(651\) 6.07045e12 1.32467
\(652\) 0 0
\(653\) −5.49983e10 −0.0118369 −0.00591847 0.999982i \(-0.501884\pi\)
−0.00591847 + 0.999982i \(0.501884\pi\)
\(654\) 0 0
\(655\) 1.04610e12 0.222068
\(656\) 0 0
\(657\) −6.52429e11 −0.136612
\(658\) 0 0
\(659\) −5.88872e12 −1.21629 −0.608144 0.793827i \(-0.708086\pi\)
−0.608144 + 0.793827i \(0.708086\pi\)
\(660\) 0 0
\(661\) 5.52398e12 1.12550 0.562750 0.826627i \(-0.309743\pi\)
0.562750 + 0.826627i \(0.309743\pi\)
\(662\) 0 0
\(663\) −4.47715e11 −0.0899893
\(664\) 0 0
\(665\) 5.59533e12 1.10950
\(666\) 0 0
\(667\) 6.10352e11 0.119403
\(668\) 0 0
\(669\) 3.63064e12 0.700754
\(670\) 0 0
\(671\) 5.61768e12 1.06981
\(672\) 0 0
\(673\) 6.15531e12 1.15660 0.578298 0.815825i \(-0.303717\pi\)
0.578298 + 0.815825i \(0.303717\pi\)
\(674\) 0 0
\(675\) 2.59999e12 0.482064
\(676\) 0 0
\(677\) 5.73319e12 1.04893 0.524466 0.851432i \(-0.324265\pi\)
0.524466 + 0.851432i \(0.324265\pi\)
\(678\) 0 0
\(679\) 7.60147e12 1.37241
\(680\) 0 0
\(681\) 3.58765e12 0.639216
\(682\) 0 0
\(683\) 3.72368e12 0.654756 0.327378 0.944894i \(-0.393835\pi\)
0.327378 + 0.944894i \(0.393835\pi\)
\(684\) 0 0
\(685\) −8.45715e12 −1.46763
\(686\) 0 0
\(687\) −1.13276e13 −1.94013
\(688\) 0 0
\(689\) 1.12112e11 0.0189525
\(690\) 0 0
\(691\) 1.21804e11 0.0203240 0.0101620 0.999948i \(-0.496765\pi\)
0.0101620 + 0.999948i \(0.496765\pi\)
\(692\) 0 0
\(693\) −1.47709e12 −0.243280
\(694\) 0 0
\(695\) 1.75303e12 0.285009
\(696\) 0 0
\(697\) −1.76235e12 −0.282842
\(698\) 0 0
\(699\) −8.15269e12 −1.29168
\(700\) 0 0
\(701\) 7.48411e12 1.17060 0.585300 0.810816i \(-0.300977\pi\)
0.585300 + 0.810816i \(0.300977\pi\)
\(702\) 0 0
\(703\) −8.98681e12 −1.38774
\(704\) 0 0
\(705\) 1.19485e13 1.82164
\(706\) 0 0
\(707\) 5.94764e12 0.895277
\(708\) 0 0
\(709\) 2.03611e12 0.302616 0.151308 0.988487i \(-0.451651\pi\)
0.151308 + 0.988487i \(0.451651\pi\)
\(710\) 0 0
\(711\) −1.61162e12 −0.236511
\(712\) 0 0
\(713\) −1.15729e13 −1.67703
\(714\) 0 0
\(715\) 2.07331e12 0.296680
\(716\) 0 0
\(717\) −3.42800e12 −0.484400
\(718\) 0 0
\(719\) −1.45945e12 −0.203661 −0.101831 0.994802i \(-0.532470\pi\)
−0.101831 + 0.994802i \(0.532470\pi\)
\(720\) 0 0
\(721\) 7.95050e12 1.09569
\(722\) 0 0
\(723\) −8.11385e12 −1.10435
\(724\) 0 0
\(725\) −3.76362e11 −0.0505923
\(726\) 0 0
\(727\) 8.61854e10 0.0114427 0.00572135 0.999984i \(-0.498179\pi\)
0.00572135 + 0.999984i \(0.498179\pi\)
\(728\) 0 0
\(729\) 4.27897e12 0.561133
\(730\) 0 0
\(731\) 1.20698e12 0.156341
\(732\) 0 0
\(733\) −6.94903e12 −0.889111 −0.444556 0.895751i \(-0.646638\pi\)
−0.444556 + 0.895751i \(0.646638\pi\)
\(734\) 0 0
\(735\) 3.87011e11 0.0489137
\(736\) 0 0
\(737\) −4.97990e12 −0.621752
\(738\) 0 0
\(739\) −2.94805e12 −0.363609 −0.181804 0.983335i \(-0.558194\pi\)
−0.181804 + 0.983335i \(0.558194\pi\)
\(740\) 0 0
\(741\) 2.31001e12 0.281470
\(742\) 0 0
\(743\) 1.30043e13 1.56544 0.782719 0.622375i \(-0.213832\pi\)
0.782719 + 0.622375i \(0.213832\pi\)
\(744\) 0 0
\(745\) −1.30862e13 −1.55636
\(746\) 0 0
\(747\) 4.32035e12 0.507664
\(748\) 0 0
\(749\) 6.06319e12 0.703936
\(750\) 0 0
\(751\) 1.57055e12 0.180166 0.0900829 0.995934i \(-0.471287\pi\)
0.0900829 + 0.995934i \(0.471287\pi\)
\(752\) 0 0
\(753\) 6.75246e12 0.765394
\(754\) 0 0
\(755\) −1.43408e13 −1.60625
\(756\) 0 0
\(757\) −9.58378e12 −1.06073 −0.530366 0.847769i \(-0.677945\pi\)
−0.530366 + 0.847769i \(0.677945\pi\)
\(758\) 0 0
\(759\) 1.24384e13 1.36043
\(760\) 0 0
\(761\) −7.11276e12 −0.768789 −0.384395 0.923169i \(-0.625590\pi\)
−0.384395 + 0.923169i \(0.625590\pi\)
\(762\) 0 0
\(763\) 8.46456e12 0.904157
\(764\) 0 0
\(765\) 1.00051e12 0.105620
\(766\) 0 0
\(767\) 4.91322e12 0.512611
\(768\) 0 0
\(769\) −1.73274e13 −1.78676 −0.893379 0.449304i \(-0.851672\pi\)
−0.893379 + 0.449304i \(0.851672\pi\)
\(770\) 0 0
\(771\) −1.10454e13 −1.12574
\(772\) 0 0
\(773\) −9.87303e12 −0.994587 −0.497294 0.867582i \(-0.665673\pi\)
−0.497294 + 0.867582i \(0.665673\pi\)
\(774\) 0 0
\(775\) 7.13623e12 0.710577
\(776\) 0 0
\(777\) 1.76507e13 1.73727
\(778\) 0 0
\(779\) 9.09293e12 0.884678
\(780\) 0 0
\(781\) 1.50659e13 1.44899
\(782\) 0 0
\(783\) −7.13938e11 −0.0678786
\(784\) 0 0
\(785\) −1.96019e13 −1.84240
\(786\) 0 0
\(787\) 6.54652e12 0.608309 0.304155 0.952623i \(-0.401626\pi\)
0.304155 + 0.952623i \(0.401626\pi\)
\(788\) 0 0
\(789\) −6.65964e12 −0.611793
\(790\) 0 0
\(791\) −1.37038e13 −1.24465
\(792\) 0 0
\(793\) 3.90647e12 0.350796
\(794\) 0 0
\(795\) −1.10665e12 −0.0982562
\(796\) 0 0
\(797\) 4.91818e12 0.431760 0.215880 0.976420i \(-0.430738\pi\)
0.215880 + 0.976420i \(0.430738\pi\)
\(798\) 0 0
\(799\) −4.16509e12 −0.361547
\(800\) 0 0
\(801\) −4.05764e12 −0.348279
\(802\) 0 0
\(803\) −4.65205e12 −0.394843
\(804\) 0 0
\(805\) 2.09510e13 1.75842
\(806\) 0 0
\(807\) 1.07832e13 0.894986
\(808\) 0 0
\(809\) 8.28568e12 0.680080 0.340040 0.940411i \(-0.389559\pi\)
0.340040 + 0.940411i \(0.389559\pi\)
\(810\) 0 0
\(811\) 2.06397e13 1.67537 0.837684 0.546155i \(-0.183909\pi\)
0.837684 + 0.546155i \(0.183909\pi\)
\(812\) 0 0
\(813\) 1.16390e13 0.934346
\(814\) 0 0
\(815\) −1.38565e12 −0.110013
\(816\) 0 0
\(817\) −6.22747e12 −0.489004
\(818\) 0 0
\(819\) −1.02715e12 −0.0797730
\(820\) 0 0
\(821\) −1.24767e9 −9.58422e−5 0 −4.79211e−5 1.00000i \(-0.500015\pi\)
−4.79211e−5 1.00000i \(0.500015\pi\)
\(822\) 0 0
\(823\) −1.23070e13 −0.935090 −0.467545 0.883969i \(-0.654861\pi\)
−0.467545 + 0.883969i \(0.654861\pi\)
\(824\) 0 0
\(825\) −7.66990e12 −0.576431
\(826\) 0 0
\(827\) −5.07786e12 −0.377490 −0.188745 0.982026i \(-0.560442\pi\)
−0.188745 + 0.982026i \(0.560442\pi\)
\(828\) 0 0
\(829\) −1.95629e13 −1.43859 −0.719295 0.694705i \(-0.755535\pi\)
−0.719295 + 0.694705i \(0.755535\pi\)
\(830\) 0 0
\(831\) 1.80922e12 0.131610
\(832\) 0 0
\(833\) −1.34907e11 −0.00970806
\(834\) 0 0
\(835\) −2.23359e13 −1.59006
\(836\) 0 0
\(837\) 1.35370e13 0.953364
\(838\) 0 0
\(839\) 1.50732e13 1.05021 0.525107 0.851036i \(-0.324025\pi\)
0.525107 + 0.851036i \(0.324025\pi\)
\(840\) 0 0
\(841\) −1.44038e13 −0.992876
\(842\) 0 0
\(843\) −1.43597e13 −0.979315
\(844\) 0 0
\(845\) 1.44176e12 0.0972831
\(846\) 0 0
\(847\) 4.18961e12 0.279704
\(848\) 0 0
\(849\) 6.91747e12 0.456944
\(850\) 0 0
\(851\) −3.36499e13 −2.19939
\(852\) 0 0
\(853\) 5.33191e12 0.344835 0.172418 0.985024i \(-0.444842\pi\)
0.172418 + 0.985024i \(0.444842\pi\)
\(854\) 0 0
\(855\) −5.16220e12 −0.330360
\(856\) 0 0
\(857\) −7.95292e12 −0.503631 −0.251816 0.967775i \(-0.581028\pi\)
−0.251816 + 0.967775i \(0.581028\pi\)
\(858\) 0 0
\(859\) −4.62716e12 −0.289965 −0.144982 0.989434i \(-0.546313\pi\)
−0.144982 + 0.989434i \(0.546313\pi\)
\(860\) 0 0
\(861\) −1.78591e13 −1.10751
\(862\) 0 0
\(863\) −6.60844e12 −0.405556 −0.202778 0.979225i \(-0.564997\pi\)
−0.202778 + 0.979225i \(0.564997\pi\)
\(864\) 0 0
\(865\) −6.46113e12 −0.392406
\(866\) 0 0
\(867\) 1.73753e13 1.04435
\(868\) 0 0
\(869\) −1.14915e13 −0.683575
\(870\) 0 0
\(871\) −3.46297e12 −0.203876
\(872\) 0 0
\(873\) −7.01304e12 −0.408641
\(874\) 0 0
\(875\) 8.63366e12 0.497919
\(876\) 0 0
\(877\) 3.39068e12 0.193548 0.0967739 0.995306i \(-0.469148\pi\)
0.0967739 + 0.995306i \(0.469148\pi\)
\(878\) 0 0
\(879\) 6.48805e12 0.366576
\(880\) 0 0
\(881\) 1.20785e13 0.675495 0.337748 0.941237i \(-0.390335\pi\)
0.337748 + 0.941237i \(0.390335\pi\)
\(882\) 0 0
\(883\) −5.33631e12 −0.295405 −0.147702 0.989032i \(-0.547188\pi\)
−0.147702 + 0.989032i \(0.547188\pi\)
\(884\) 0 0
\(885\) −4.84981e13 −2.65754
\(886\) 0 0
\(887\) −1.35083e13 −0.732731 −0.366366 0.930471i \(-0.619398\pi\)
−0.366366 + 0.930471i \(0.619398\pi\)
\(888\) 0 0
\(889\) 1.73417e13 0.931182
\(890\) 0 0
\(891\) −1.92060e13 −1.02091
\(892\) 0 0
\(893\) 2.14900e13 1.13085
\(894\) 0 0
\(895\) −1.77674e13 −0.925593
\(896\) 0 0
\(897\) 8.64952e12 0.446094
\(898\) 0 0
\(899\) −1.95955e12 −0.100055
\(900\) 0 0
\(901\) 3.85765e11 0.0195012
\(902\) 0 0
\(903\) 1.22312e13 0.612172
\(904\) 0 0
\(905\) −1.12384e13 −0.556912
\(906\) 0 0
\(907\) −2.95151e13 −1.44814 −0.724071 0.689726i \(-0.757731\pi\)
−0.724071 + 0.689726i \(0.757731\pi\)
\(908\) 0 0
\(909\) −5.48723e12 −0.266573
\(910\) 0 0
\(911\) 2.98046e12 0.143368 0.0716838 0.997427i \(-0.477163\pi\)
0.0716838 + 0.997427i \(0.477163\pi\)
\(912\) 0 0
\(913\) 3.08057e13 1.46728
\(914\) 0 0
\(915\) −3.85605e13 −1.81864
\(916\) 0 0
\(917\) −3.69532e12 −0.172580
\(918\) 0 0
\(919\) 3.51732e13 1.62664 0.813321 0.581815i \(-0.197657\pi\)
0.813321 + 0.581815i \(0.197657\pi\)
\(920\) 0 0
\(921\) −3.74905e13 −1.71693
\(922\) 0 0
\(923\) 1.04766e13 0.475132
\(924\) 0 0
\(925\) 2.07496e13 0.931906
\(926\) 0 0
\(927\) −7.33505e12 −0.326245
\(928\) 0 0
\(929\) −2.56701e13 −1.13072 −0.565361 0.824843i \(-0.691263\pi\)
−0.565361 + 0.824843i \(0.691263\pi\)
\(930\) 0 0
\(931\) 6.96060e11 0.0303650
\(932\) 0 0
\(933\) 2.55454e13 1.10368
\(934\) 0 0
\(935\) 7.13402e12 0.305268
\(936\) 0 0
\(937\) 3.44586e11 0.0146039 0.00730197 0.999973i \(-0.497676\pi\)
0.00730197 + 0.999973i \(0.497676\pi\)
\(938\) 0 0
\(939\) 4.50390e13 1.89057
\(940\) 0 0
\(941\) 1.04276e13 0.433542 0.216771 0.976223i \(-0.430448\pi\)
0.216771 + 0.976223i \(0.430448\pi\)
\(942\) 0 0
\(943\) 3.40473e13 1.40210
\(944\) 0 0
\(945\) −2.45067e13 −0.999636
\(946\) 0 0
\(947\) −3.05879e13 −1.23588 −0.617939 0.786226i \(-0.712032\pi\)
−0.617939 + 0.786226i \(0.712032\pi\)
\(948\) 0 0
\(949\) −3.23499e12 −0.129472
\(950\) 0 0
\(951\) 2.04171e13 0.809433
\(952\) 0 0
\(953\) −3.43552e13 −1.34919 −0.674596 0.738187i \(-0.735682\pi\)
−0.674596 + 0.738187i \(0.735682\pi\)
\(954\) 0 0
\(955\) 4.53262e13 1.76333
\(956\) 0 0
\(957\) 2.10610e12 0.0811661
\(958\) 0 0
\(959\) 2.98747e13 1.14057
\(960\) 0 0
\(961\) 1.07156e13 0.405286
\(962\) 0 0
\(963\) −5.59384e12 −0.209600
\(964\) 0 0
\(965\) 5.40592e13 2.00677
\(966\) 0 0
\(967\) −5.29016e13 −1.94558 −0.972791 0.231685i \(-0.925576\pi\)
−0.972791 + 0.231685i \(0.925576\pi\)
\(968\) 0 0
\(969\) 7.94845e12 0.289618
\(970\) 0 0
\(971\) −3.46593e13 −1.25122 −0.625610 0.780136i \(-0.715150\pi\)
−0.625610 + 0.780136i \(0.715150\pi\)
\(972\) 0 0
\(973\) −6.19255e12 −0.221494
\(974\) 0 0
\(975\) −5.33356e12 −0.189015
\(976\) 0 0
\(977\) 1.48680e13 0.522069 0.261035 0.965329i \(-0.415936\pi\)
0.261035 + 0.965329i \(0.415936\pi\)
\(978\) 0 0
\(979\) −2.89325e13 −1.00661
\(980\) 0 0
\(981\) −7.80932e12 −0.269217
\(982\) 0 0
\(983\) −1.71439e13 −0.585624 −0.292812 0.956170i \(-0.594591\pi\)
−0.292812 + 0.956170i \(0.594591\pi\)
\(984\) 0 0
\(985\) −3.06307e13 −1.03680
\(986\) 0 0
\(987\) −4.22079e13 −1.41568
\(988\) 0 0
\(989\) −2.33180e13 −0.775010
\(990\) 0 0
\(991\) −3.48129e13 −1.14659 −0.573296 0.819348i \(-0.694336\pi\)
−0.573296 + 0.819348i \(0.694336\pi\)
\(992\) 0 0
\(993\) 1.34242e13 0.438144
\(994\) 0 0
\(995\) 2.55337e13 0.825868
\(996\) 0 0
\(997\) −3.63962e13 −1.16662 −0.583308 0.812251i \(-0.698242\pi\)
−0.583308 + 0.812251i \(0.698242\pi\)
\(998\) 0 0
\(999\) 3.93609e13 1.25032
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.e.1.1 3
4.3 odd 2 26.10.a.d.1.3 3
12.11 even 2 234.10.a.l.1.1 3
52.51 odd 2 338.10.a.f.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.10.a.d.1.3 3 4.3 odd 2
208.10.a.e.1.1 3 1.1 even 1 trivial
234.10.a.l.1.1 3 12.11 even 2
338.10.a.f.1.3 3 52.51 odd 2