Properties

Label 208.10.a.f.1.2
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 12623x^{2} - 303924x + 1814436 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 52)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-31.2489\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-62.9670 q^{3} +1026.55 q^{5} +4497.03 q^{7} -15718.2 q^{9} +33526.0 q^{11} +28561.0 q^{13} -64638.9 q^{15} -309188. q^{17} -343515. q^{19} -283164. q^{21} +635205. q^{23} -899315. q^{25} +2.22910e6 q^{27} -819974. q^{29} -2.76467e6 q^{31} -2.11103e6 q^{33} +4.61644e6 q^{35} -1.71160e7 q^{37} -1.79840e6 q^{39} -1.04193e7 q^{41} +3.30301e7 q^{43} -1.61355e7 q^{45} +2.06974e7 q^{47} -2.01303e7 q^{49} +1.94686e7 q^{51} +8.67661e7 q^{53} +3.44162e7 q^{55} +2.16301e7 q^{57} +2.54505e7 q^{59} +2.17931e7 q^{61} -7.06850e7 q^{63} +2.93194e7 q^{65} +6.00246e7 q^{67} -3.99970e7 q^{69} -1.65751e8 q^{71} -3.19379e7 q^{73} +5.66271e7 q^{75} +1.50767e8 q^{77} -4.12771e8 q^{79} +1.69020e8 q^{81} -5.84636e8 q^{83} -3.17398e8 q^{85} +5.16313e7 q^{87} +1.09589e8 q^{89} +1.28440e8 q^{91} +1.74083e8 q^{93} -3.52636e8 q^{95} +1.08922e9 q^{97} -5.26967e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 147 q^{3} - 1947 q^{5} - 10251 q^{7} + 22199 q^{9} - 22038 q^{11} + 114244 q^{13} + 137363 q^{15} - 696135 q^{17} + 254502 q^{19} + 165205 q^{21} + 2038992 q^{23} + 16923 q^{25} + 9068877 q^{27} - 6437112 q^{29}+ \cdots - 1154490140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −62.9670 −0.448815 −0.224407 0.974495i \(-0.572045\pi\)
−0.224407 + 0.974495i \(0.572045\pi\)
\(4\) 0 0
\(5\) 1026.55 0.734541 0.367271 0.930114i \(-0.380292\pi\)
0.367271 + 0.930114i \(0.380292\pi\)
\(6\) 0 0
\(7\) 4497.03 0.707920 0.353960 0.935260i \(-0.384835\pi\)
0.353960 + 0.935260i \(0.384835\pi\)
\(8\) 0 0
\(9\) −15718.2 −0.798565
\(10\) 0 0
\(11\) 33526.0 0.690422 0.345211 0.938525i \(-0.387807\pi\)
0.345211 + 0.938525i \(0.387807\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) −64638.9 −0.329673
\(16\) 0 0
\(17\) −309188. −0.897847 −0.448924 0.893570i \(-0.648192\pi\)
−0.448924 + 0.893570i \(0.648192\pi\)
\(18\) 0 0
\(19\) −343515. −0.604720 −0.302360 0.953194i \(-0.597775\pi\)
−0.302360 + 0.953194i \(0.597775\pi\)
\(20\) 0 0
\(21\) −283164. −0.317725
\(22\) 0 0
\(23\) 635205. 0.473303 0.236651 0.971595i \(-0.423950\pi\)
0.236651 + 0.971595i \(0.423950\pi\)
\(24\) 0 0
\(25\) −899315. −0.460449
\(26\) 0 0
\(27\) 2.22910e6 0.807223
\(28\) 0 0
\(29\) −819974. −0.215283 −0.107641 0.994190i \(-0.534330\pi\)
−0.107641 + 0.994190i \(0.534330\pi\)
\(30\) 0 0
\(31\) −2.76467e6 −0.537669 −0.268835 0.963186i \(-0.586638\pi\)
−0.268835 + 0.963186i \(0.586638\pi\)
\(32\) 0 0
\(33\) −2.11103e6 −0.309872
\(34\) 0 0
\(35\) 4.61644e6 0.519997
\(36\) 0 0
\(37\) −1.71160e7 −1.50140 −0.750698 0.660645i \(-0.770283\pi\)
−0.750698 + 0.660645i \(0.770283\pi\)
\(38\) 0 0
\(39\) −1.79840e6 −0.124479
\(40\) 0 0
\(41\) −1.04193e7 −0.575854 −0.287927 0.957652i \(-0.592966\pi\)
−0.287927 + 0.957652i \(0.592966\pi\)
\(42\) 0 0
\(43\) 3.30301e7 1.47333 0.736667 0.676256i \(-0.236399\pi\)
0.736667 + 0.676256i \(0.236399\pi\)
\(44\) 0 0
\(45\) −1.61355e7 −0.586579
\(46\) 0 0
\(47\) 2.06974e7 0.618693 0.309347 0.950949i \(-0.399890\pi\)
0.309347 + 0.950949i \(0.399890\pi\)
\(48\) 0 0
\(49\) −2.01303e7 −0.498849
\(50\) 0 0
\(51\) 1.94686e7 0.402967
\(52\) 0 0
\(53\) 8.67661e7 1.51046 0.755229 0.655461i \(-0.227526\pi\)
0.755229 + 0.655461i \(0.227526\pi\)
\(54\) 0 0
\(55\) 3.44162e7 0.507144
\(56\) 0 0
\(57\) 2.16301e7 0.271408
\(58\) 0 0
\(59\) 2.54505e7 0.273440 0.136720 0.990610i \(-0.456344\pi\)
0.136720 + 0.990610i \(0.456344\pi\)
\(60\) 0 0
\(61\) 2.17931e7 0.201528 0.100764 0.994910i \(-0.467871\pi\)
0.100764 + 0.994910i \(0.467871\pi\)
\(62\) 0 0
\(63\) −7.06850e7 −0.565321
\(64\) 0 0
\(65\) 2.93194e7 0.203725
\(66\) 0 0
\(67\) 6.00246e7 0.363909 0.181954 0.983307i \(-0.441758\pi\)
0.181954 + 0.983307i \(0.441758\pi\)
\(68\) 0 0
\(69\) −3.99970e7 −0.212425
\(70\) 0 0
\(71\) −1.65751e8 −0.774094 −0.387047 0.922060i \(-0.626505\pi\)
−0.387047 + 0.922060i \(0.626505\pi\)
\(72\) 0 0
\(73\) −3.19379e7 −0.131630 −0.0658148 0.997832i \(-0.520965\pi\)
−0.0658148 + 0.997832i \(0.520965\pi\)
\(74\) 0 0
\(75\) 5.66271e7 0.206656
\(76\) 0 0
\(77\) 1.50767e8 0.488764
\(78\) 0 0
\(79\) −4.12771e8 −1.19231 −0.596153 0.802871i \(-0.703305\pi\)
−0.596153 + 0.802871i \(0.703305\pi\)
\(80\) 0 0
\(81\) 1.69020e8 0.436271
\(82\) 0 0
\(83\) −5.84636e8 −1.35218 −0.676089 0.736820i \(-0.736327\pi\)
−0.676089 + 0.736820i \(0.736327\pi\)
\(84\) 0 0
\(85\) −3.17398e8 −0.659506
\(86\) 0 0
\(87\) 5.16313e7 0.0966221
\(88\) 0 0
\(89\) 1.09589e8 0.185145 0.0925725 0.995706i \(-0.470491\pi\)
0.0925725 + 0.995706i \(0.470491\pi\)
\(90\) 0 0
\(91\) 1.28440e8 0.196342
\(92\) 0 0
\(93\) 1.74083e8 0.241314
\(94\) 0 0
\(95\) −3.52636e8 −0.444192
\(96\) 0 0
\(97\) 1.08922e9 1.24923 0.624617 0.780931i \(-0.285255\pi\)
0.624617 + 0.780931i \(0.285255\pi\)
\(98\) 0 0
\(99\) −5.26967e8 −0.551347
\(100\) 0 0
\(101\) −1.48654e9 −1.42145 −0.710725 0.703470i \(-0.751633\pi\)
−0.710725 + 0.703470i \(0.751633\pi\)
\(102\) 0 0
\(103\) −1.02890e9 −0.900752 −0.450376 0.892839i \(-0.648710\pi\)
−0.450376 + 0.892839i \(0.648710\pi\)
\(104\) 0 0
\(105\) −2.90683e8 −0.233382
\(106\) 0 0
\(107\) 1.04055e9 0.767423 0.383712 0.923453i \(-0.374646\pi\)
0.383712 + 0.923453i \(0.374646\pi\)
\(108\) 0 0
\(109\) −1.57399e9 −1.06803 −0.534016 0.845475i \(-0.679318\pi\)
−0.534016 + 0.845475i \(0.679318\pi\)
\(110\) 0 0
\(111\) 1.07775e9 0.673849
\(112\) 0 0
\(113\) −1.04518e9 −0.603030 −0.301515 0.953461i \(-0.597492\pi\)
−0.301515 + 0.953461i \(0.597492\pi\)
\(114\) 0 0
\(115\) 6.52072e8 0.347660
\(116\) 0 0
\(117\) −4.48926e8 −0.221482
\(118\) 0 0
\(119\) −1.39043e9 −0.635604
\(120\) 0 0
\(121\) −1.23395e9 −0.523317
\(122\) 0 0
\(123\) 6.56074e8 0.258452
\(124\) 0 0
\(125\) −2.92818e9 −1.07276
\(126\) 0 0
\(127\) −3.09838e9 −1.05686 −0.528430 0.848977i \(-0.677219\pi\)
−0.528430 + 0.848977i \(0.677219\pi\)
\(128\) 0 0
\(129\) −2.07980e9 −0.661254
\(130\) 0 0
\(131\) −2.06224e9 −0.611814 −0.305907 0.952061i \(-0.598960\pi\)
−0.305907 + 0.952061i \(0.598960\pi\)
\(132\) 0 0
\(133\) −1.54480e9 −0.428094
\(134\) 0 0
\(135\) 2.28829e9 0.592939
\(136\) 0 0
\(137\) −2.86422e9 −0.694647 −0.347323 0.937745i \(-0.612909\pi\)
−0.347323 + 0.937745i \(0.612909\pi\)
\(138\) 0 0
\(139\) 8.90327e8 0.202294 0.101147 0.994871i \(-0.467749\pi\)
0.101147 + 0.994871i \(0.467749\pi\)
\(140\) 0 0
\(141\) −1.30325e9 −0.277679
\(142\) 0 0
\(143\) 9.57536e8 0.191489
\(144\) 0 0
\(145\) −8.41747e8 −0.158134
\(146\) 0 0
\(147\) 1.26755e9 0.223891
\(148\) 0 0
\(149\) 5.73412e9 0.953079 0.476539 0.879153i \(-0.341891\pi\)
0.476539 + 0.879153i \(0.341891\pi\)
\(150\) 0 0
\(151\) −4.86470e9 −0.761483 −0.380741 0.924682i \(-0.624331\pi\)
−0.380741 + 0.924682i \(0.624331\pi\)
\(152\) 0 0
\(153\) 4.85986e9 0.716989
\(154\) 0 0
\(155\) −2.83808e9 −0.394940
\(156\) 0 0
\(157\) −1.16202e9 −0.152639 −0.0763194 0.997083i \(-0.524317\pi\)
−0.0763194 + 0.997083i \(0.524317\pi\)
\(158\) 0 0
\(159\) −5.46340e9 −0.677916
\(160\) 0 0
\(161\) 2.85654e9 0.335061
\(162\) 0 0
\(163\) −1.13760e10 −1.26225 −0.631124 0.775682i \(-0.717406\pi\)
−0.631124 + 0.775682i \(0.717406\pi\)
\(164\) 0 0
\(165\) −2.16709e9 −0.227614
\(166\) 0 0
\(167\) 3.27059e9 0.325388 0.162694 0.986677i \(-0.447982\pi\)
0.162694 + 0.986677i \(0.447982\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 5.39943e9 0.482909
\(172\) 0 0
\(173\) −3.11020e9 −0.263986 −0.131993 0.991251i \(-0.542138\pi\)
−0.131993 + 0.991251i \(0.542138\pi\)
\(174\) 0 0
\(175\) −4.04424e9 −0.325961
\(176\) 0 0
\(177\) −1.60254e9 −0.122724
\(178\) 0 0
\(179\) −1.52628e10 −1.11121 −0.555604 0.831447i \(-0.687513\pi\)
−0.555604 + 0.831447i \(0.687513\pi\)
\(180\) 0 0
\(181\) −2.29573e7 −0.00158989 −0.000794946 1.00000i \(-0.500253\pi\)
−0.000794946 1.00000i \(0.500253\pi\)
\(182\) 0 0
\(183\) −1.37225e9 −0.0904488
\(184\) 0 0
\(185\) −1.75705e10 −1.10284
\(186\) 0 0
\(187\) −1.03658e10 −0.619893
\(188\) 0 0
\(189\) 1.00243e10 0.571450
\(190\) 0 0
\(191\) −2.14494e10 −1.16618 −0.583090 0.812407i \(-0.698157\pi\)
−0.583090 + 0.812407i \(0.698157\pi\)
\(192\) 0 0
\(193\) −1.53540e9 −0.0796553 −0.0398276 0.999207i \(-0.512681\pi\)
−0.0398276 + 0.999207i \(0.512681\pi\)
\(194\) 0 0
\(195\) −1.84615e9 −0.0914349
\(196\) 0 0
\(197\) −2.28558e10 −1.08118 −0.540591 0.841286i \(-0.681799\pi\)
−0.540591 + 0.841286i \(0.681799\pi\)
\(198\) 0 0
\(199\) −2.46711e10 −1.11519 −0.557596 0.830112i \(-0.688276\pi\)
−0.557596 + 0.830112i \(0.688276\pi\)
\(200\) 0 0
\(201\) −3.77957e9 −0.163328
\(202\) 0 0
\(203\) −3.68745e9 −0.152403
\(204\) 0 0
\(205\) −1.06960e10 −0.422988
\(206\) 0 0
\(207\) −9.98426e9 −0.377963
\(208\) 0 0
\(209\) −1.15167e10 −0.417512
\(210\) 0 0
\(211\) 1.26469e10 0.439252 0.219626 0.975584i \(-0.429516\pi\)
0.219626 + 0.975584i \(0.429516\pi\)
\(212\) 0 0
\(213\) 1.04368e10 0.347425
\(214\) 0 0
\(215\) 3.39071e10 1.08222
\(216\) 0 0
\(217\) −1.24328e10 −0.380627
\(218\) 0 0
\(219\) 2.01103e9 0.0590773
\(220\) 0 0
\(221\) −8.83072e9 −0.249018
\(222\) 0 0
\(223\) 3.28365e10 0.889171 0.444585 0.895736i \(-0.353351\pi\)
0.444585 + 0.895736i \(0.353351\pi\)
\(224\) 0 0
\(225\) 1.41356e10 0.367699
\(226\) 0 0
\(227\) 4.31647e10 1.07898 0.539489 0.841993i \(-0.318617\pi\)
0.539489 + 0.841993i \(0.318617\pi\)
\(228\) 0 0
\(229\) −7.44836e10 −1.78979 −0.894893 0.446280i \(-0.852748\pi\)
−0.894893 + 0.446280i \(0.852748\pi\)
\(230\) 0 0
\(231\) −9.49337e9 −0.219365
\(232\) 0 0
\(233\) −7.32589e9 −0.162839 −0.0814196 0.996680i \(-0.525945\pi\)
−0.0814196 + 0.996680i \(0.525945\pi\)
\(234\) 0 0
\(235\) 2.12470e10 0.454456
\(236\) 0 0
\(237\) 2.59910e10 0.535125
\(238\) 0 0
\(239\) 3.65913e10 0.725416 0.362708 0.931903i \(-0.381852\pi\)
0.362708 + 0.931903i \(0.381852\pi\)
\(240\) 0 0
\(241\) −2.38135e9 −0.0454722 −0.0227361 0.999742i \(-0.507238\pi\)
−0.0227361 + 0.999742i \(0.507238\pi\)
\(242\) 0 0
\(243\) −5.45182e10 −1.00303
\(244\) 0 0
\(245\) −2.06649e10 −0.366425
\(246\) 0 0
\(247\) −9.81114e9 −0.167719
\(248\) 0 0
\(249\) 3.68128e10 0.606878
\(250\) 0 0
\(251\) 3.23994e10 0.515234 0.257617 0.966247i \(-0.417063\pi\)
0.257617 + 0.966247i \(0.417063\pi\)
\(252\) 0 0
\(253\) 2.12959e10 0.326779
\(254\) 0 0
\(255\) 1.99856e10 0.295996
\(256\) 0 0
\(257\) 1.32429e9 0.0189359 0.00946794 0.999955i \(-0.496986\pi\)
0.00946794 + 0.999955i \(0.496986\pi\)
\(258\) 0 0
\(259\) −7.69713e10 −1.06287
\(260\) 0 0
\(261\) 1.28885e10 0.171917
\(262\) 0 0
\(263\) −2.90518e10 −0.374432 −0.187216 0.982319i \(-0.559946\pi\)
−0.187216 + 0.982319i \(0.559946\pi\)
\(264\) 0 0
\(265\) 8.90700e10 1.10949
\(266\) 0 0
\(267\) −6.90049e9 −0.0830958
\(268\) 0 0
\(269\) −1.34615e11 −1.56750 −0.783751 0.621075i \(-0.786696\pi\)
−0.783751 + 0.621075i \(0.786696\pi\)
\(270\) 0 0
\(271\) 6.20930e10 0.699328 0.349664 0.936875i \(-0.386296\pi\)
0.349664 + 0.936875i \(0.386296\pi\)
\(272\) 0 0
\(273\) −8.08746e9 −0.0881211
\(274\) 0 0
\(275\) −3.01504e10 −0.317904
\(276\) 0 0
\(277\) 1.35421e11 1.38206 0.691028 0.722828i \(-0.257158\pi\)
0.691028 + 0.722828i \(0.257158\pi\)
\(278\) 0 0
\(279\) 4.34555e10 0.429364
\(280\) 0 0
\(281\) 1.25698e11 1.20268 0.601338 0.798995i \(-0.294635\pi\)
0.601338 + 0.798995i \(0.294635\pi\)
\(282\) 0 0
\(283\) −7.23802e10 −0.670781 −0.335390 0.942079i \(-0.608868\pi\)
−0.335390 + 0.942079i \(0.608868\pi\)
\(284\) 0 0
\(285\) 2.22045e10 0.199360
\(286\) 0 0
\(287\) −4.68560e10 −0.407659
\(288\) 0 0
\(289\) −2.29907e10 −0.193871
\(290\) 0 0
\(291\) −6.85851e10 −0.560675
\(292\) 0 0
\(293\) −8.33332e10 −0.660562 −0.330281 0.943883i \(-0.607144\pi\)
−0.330281 + 0.943883i \(0.607144\pi\)
\(294\) 0 0
\(295\) 2.61263e10 0.200853
\(296\) 0 0
\(297\) 7.47330e10 0.557325
\(298\) 0 0
\(299\) 1.81421e10 0.131271
\(300\) 0 0
\(301\) 1.48537e11 1.04300
\(302\) 0 0
\(303\) 9.36032e10 0.637968
\(304\) 0 0
\(305\) 2.23718e10 0.148031
\(306\) 0 0
\(307\) −3.49416e10 −0.224502 −0.112251 0.993680i \(-0.535806\pi\)
−0.112251 + 0.993680i \(0.535806\pi\)
\(308\) 0 0
\(309\) 6.47867e10 0.404271
\(310\) 0 0
\(311\) 2.70140e11 1.63744 0.818722 0.574190i \(-0.194683\pi\)
0.818722 + 0.574190i \(0.194683\pi\)
\(312\) 0 0
\(313\) 2.49404e11 1.46877 0.734385 0.678734i \(-0.237471\pi\)
0.734385 + 0.678734i \(0.237471\pi\)
\(314\) 0 0
\(315\) −7.25619e10 −0.415251
\(316\) 0 0
\(317\) −1.51758e10 −0.0844083 −0.0422041 0.999109i \(-0.513438\pi\)
−0.0422041 + 0.999109i \(0.513438\pi\)
\(318\) 0 0
\(319\) −2.74905e10 −0.148636
\(320\) 0 0
\(321\) −6.55202e10 −0.344431
\(322\) 0 0
\(323\) 1.06211e11 0.542946
\(324\) 0 0
\(325\) −2.56853e10 −0.127706
\(326\) 0 0
\(327\) 9.91097e10 0.479348
\(328\) 0 0
\(329\) 9.30768e10 0.437986
\(330\) 0 0
\(331\) 2.44364e11 1.11895 0.559476 0.828846i \(-0.311002\pi\)
0.559476 + 0.828846i \(0.311002\pi\)
\(332\) 0 0
\(333\) 2.69032e11 1.19896
\(334\) 0 0
\(335\) 6.16184e10 0.267306
\(336\) 0 0
\(337\) −1.88482e11 −0.796040 −0.398020 0.917377i \(-0.630303\pi\)
−0.398020 + 0.917377i \(0.630303\pi\)
\(338\) 0 0
\(339\) 6.58120e10 0.270649
\(340\) 0 0
\(341\) −9.26882e10 −0.371219
\(342\) 0 0
\(343\) −2.71998e11 −1.06107
\(344\) 0 0
\(345\) −4.10590e10 −0.156035
\(346\) 0 0
\(347\) 4.71900e11 1.74730 0.873650 0.486554i \(-0.161746\pi\)
0.873650 + 0.486554i \(0.161746\pi\)
\(348\) 0 0
\(349\) 1.56715e11 0.565454 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(350\) 0 0
\(351\) 6.36655e10 0.223883
\(352\) 0 0
\(353\) −2.24245e11 −0.768664 −0.384332 0.923195i \(-0.625568\pi\)
−0.384332 + 0.923195i \(0.625568\pi\)
\(354\) 0 0
\(355\) −1.70152e11 −0.568604
\(356\) 0 0
\(357\) 8.75510e10 0.285269
\(358\) 0 0
\(359\) 2.89494e11 0.919846 0.459923 0.887959i \(-0.347877\pi\)
0.459923 + 0.887959i \(0.347877\pi\)
\(360\) 0 0
\(361\) −2.04685e11 −0.634313
\(362\) 0 0
\(363\) 7.76984e10 0.234873
\(364\) 0 0
\(365\) −3.27859e10 −0.0966874
\(366\) 0 0
\(367\) −9.74321e10 −0.280353 −0.140176 0.990127i \(-0.544767\pi\)
−0.140176 + 0.990127i \(0.544767\pi\)
\(368\) 0 0
\(369\) 1.63773e11 0.459857
\(370\) 0 0
\(371\) 3.90190e11 1.06928
\(372\) 0 0
\(373\) −3.26746e11 −0.874019 −0.437010 0.899457i \(-0.643962\pi\)
−0.437010 + 0.899457i \(0.643962\pi\)
\(374\) 0 0
\(375\) 1.84379e11 0.481471
\(376\) 0 0
\(377\) −2.34193e10 −0.0597087
\(378\) 0 0
\(379\) −2.92912e11 −0.729223 −0.364611 0.931160i \(-0.618798\pi\)
−0.364611 + 0.931160i \(0.618798\pi\)
\(380\) 0 0
\(381\) 1.95095e11 0.474334
\(382\) 0 0
\(383\) 7.61159e11 1.80751 0.903755 0.428050i \(-0.140799\pi\)
0.903755 + 0.428050i \(0.140799\pi\)
\(384\) 0 0
\(385\) 1.54771e11 0.359017
\(386\) 0 0
\(387\) −5.19172e11 −1.17655
\(388\) 0 0
\(389\) 2.07102e11 0.458576 0.229288 0.973359i \(-0.426360\pi\)
0.229288 + 0.973359i \(0.426360\pi\)
\(390\) 0 0
\(391\) −1.96398e11 −0.424953
\(392\) 0 0
\(393\) 1.29853e11 0.274591
\(394\) 0 0
\(395\) −4.23732e11 −0.875798
\(396\) 0 0
\(397\) −3.70909e11 −0.749393 −0.374697 0.927147i \(-0.622253\pi\)
−0.374697 + 0.927147i \(0.622253\pi\)
\(398\) 0 0
\(399\) 9.72713e10 0.192135
\(400\) 0 0
\(401\) −7.34806e11 −1.41913 −0.709567 0.704638i \(-0.751109\pi\)
−0.709567 + 0.704638i \(0.751109\pi\)
\(402\) 0 0
\(403\) −7.89616e10 −0.149123
\(404\) 0 0
\(405\) 1.73508e11 0.320459
\(406\) 0 0
\(407\) −5.73832e11 −1.03660
\(408\) 0 0
\(409\) −6.21193e11 −1.09767 −0.548835 0.835931i \(-0.684928\pi\)
−0.548835 + 0.835931i \(0.684928\pi\)
\(410\) 0 0
\(411\) 1.80351e11 0.311768
\(412\) 0 0
\(413\) 1.14452e11 0.193574
\(414\) 0 0
\(415\) −6.00159e11 −0.993231
\(416\) 0 0
\(417\) −5.60612e10 −0.0907925
\(418\) 0 0
\(419\) −4.78555e11 −0.758523 −0.379261 0.925290i \(-0.623822\pi\)
−0.379261 + 0.925290i \(0.623822\pi\)
\(420\) 0 0
\(421\) 9.40501e11 1.45912 0.729558 0.683919i \(-0.239726\pi\)
0.729558 + 0.683919i \(0.239726\pi\)
\(422\) 0 0
\(423\) −3.25325e11 −0.494067
\(424\) 0 0
\(425\) 2.78057e11 0.413413
\(426\) 0 0
\(427\) 9.80044e10 0.142666
\(428\) 0 0
\(429\) −6.02932e10 −0.0859430
\(430\) 0 0
\(431\) −4.19824e10 −0.0586030 −0.0293015 0.999571i \(-0.509328\pi\)
−0.0293015 + 0.999571i \(0.509328\pi\)
\(432\) 0 0
\(433\) 1.05931e12 1.44820 0.724098 0.689698i \(-0.242256\pi\)
0.724098 + 0.689698i \(0.242256\pi\)
\(434\) 0 0
\(435\) 5.30023e10 0.0709729
\(436\) 0 0
\(437\) −2.18203e11 −0.286216
\(438\) 0 0
\(439\) −8.67785e11 −1.11512 −0.557560 0.830137i \(-0.688262\pi\)
−0.557560 + 0.830137i \(0.688262\pi\)
\(440\) 0 0
\(441\) 3.16412e11 0.398363
\(442\) 0 0
\(443\) −2.81834e11 −0.347677 −0.173839 0.984774i \(-0.555617\pi\)
−0.173839 + 0.984774i \(0.555617\pi\)
\(444\) 0 0
\(445\) 1.12499e11 0.135997
\(446\) 0 0
\(447\) −3.61060e11 −0.427756
\(448\) 0 0
\(449\) −5.32421e11 −0.618225 −0.309112 0.951026i \(-0.600032\pi\)
−0.309112 + 0.951026i \(0.600032\pi\)
\(450\) 0 0
\(451\) −3.49318e11 −0.397582
\(452\) 0 0
\(453\) 3.06316e11 0.341765
\(454\) 0 0
\(455\) 1.31850e11 0.144221
\(456\) 0 0
\(457\) −8.95427e11 −0.960300 −0.480150 0.877186i \(-0.659418\pi\)
−0.480150 + 0.877186i \(0.659418\pi\)
\(458\) 0 0
\(459\) −6.89212e11 −0.724763
\(460\) 0 0
\(461\) −1.39531e12 −1.43886 −0.719429 0.694566i \(-0.755597\pi\)
−0.719429 + 0.694566i \(0.755597\pi\)
\(462\) 0 0
\(463\) 1.38392e12 1.39957 0.699787 0.714352i \(-0.253278\pi\)
0.699787 + 0.714352i \(0.253278\pi\)
\(464\) 0 0
\(465\) 1.78705e11 0.177255
\(466\) 0 0
\(467\) 1.20010e12 1.16759 0.583797 0.811900i \(-0.301566\pi\)
0.583797 + 0.811900i \(0.301566\pi\)
\(468\) 0 0
\(469\) 2.69932e11 0.257619
\(470\) 0 0
\(471\) 7.31688e10 0.0685065
\(472\) 0 0
\(473\) 1.10737e12 1.01722
\(474\) 0 0
\(475\) 3.08928e11 0.278443
\(476\) 0 0
\(477\) −1.36380e12 −1.20620
\(478\) 0 0
\(479\) 1.32451e12 1.14960 0.574798 0.818295i \(-0.305081\pi\)
0.574798 + 0.818295i \(0.305081\pi\)
\(480\) 0 0
\(481\) −4.88851e11 −0.416412
\(482\) 0 0
\(483\) −1.79868e11 −0.150380
\(484\) 0 0
\(485\) 1.11814e12 0.917614
\(486\) 0 0
\(487\) 7.55891e11 0.608946 0.304473 0.952521i \(-0.401520\pi\)
0.304473 + 0.952521i \(0.401520\pi\)
\(488\) 0 0
\(489\) 7.16311e11 0.566515
\(490\) 0 0
\(491\) −2.32497e12 −1.80531 −0.902653 0.430369i \(-0.858384\pi\)
−0.902653 + 0.430369i \(0.858384\pi\)
\(492\) 0 0
\(493\) 2.53526e11 0.193291
\(494\) 0 0
\(495\) −5.40959e11 −0.404987
\(496\) 0 0
\(497\) −7.45387e11 −0.547997
\(498\) 0 0
\(499\) −2.47822e12 −1.78932 −0.894659 0.446749i \(-0.852582\pi\)
−0.894659 + 0.446749i \(0.852582\pi\)
\(500\) 0 0
\(501\) −2.05939e11 −0.146039
\(502\) 0 0
\(503\) 2.17502e12 1.51498 0.757490 0.652846i \(-0.226425\pi\)
0.757490 + 0.652846i \(0.226425\pi\)
\(504\) 0 0
\(505\) −1.52602e12 −1.04411
\(506\) 0 0
\(507\) −5.13641e10 −0.0345242
\(508\) 0 0
\(509\) −2.69953e12 −1.78262 −0.891308 0.453398i \(-0.850212\pi\)
−0.891308 + 0.453398i \(0.850212\pi\)
\(510\) 0 0
\(511\) −1.43626e11 −0.0931833
\(512\) 0 0
\(513\) −7.65731e11 −0.488144
\(514\) 0 0
\(515\) −1.05622e12 −0.661640
\(516\) 0 0
\(517\) 6.93901e11 0.427159
\(518\) 0 0
\(519\) 1.95840e11 0.118481
\(520\) 0 0
\(521\) −1.99567e12 −1.18664 −0.593320 0.804966i \(-0.702183\pi\)
−0.593320 + 0.804966i \(0.702183\pi\)
\(522\) 0 0
\(523\) 9.68879e11 0.566255 0.283128 0.959082i \(-0.408628\pi\)
0.283128 + 0.959082i \(0.408628\pi\)
\(524\) 0 0
\(525\) 2.54654e11 0.146296
\(526\) 0 0
\(527\) 8.54801e11 0.482745
\(528\) 0 0
\(529\) −1.39767e12 −0.775985
\(530\) 0 0
\(531\) −4.00035e11 −0.218360
\(532\) 0 0
\(533\) −2.97586e11 −0.159713
\(534\) 0 0
\(535\) 1.06818e12 0.563704
\(536\) 0 0
\(537\) 9.61053e11 0.498727
\(538\) 0 0
\(539\) −6.74890e11 −0.344416
\(540\) 0 0
\(541\) 1.23932e12 0.622008 0.311004 0.950409i \(-0.399335\pi\)
0.311004 + 0.950409i \(0.399335\pi\)
\(542\) 0 0
\(543\) 1.44555e9 0.000713567 0
\(544\) 0 0
\(545\) −1.61579e12 −0.784513
\(546\) 0 0
\(547\) −3.42271e12 −1.63466 −0.817329 0.576171i \(-0.804546\pi\)
−0.817329 + 0.576171i \(0.804546\pi\)
\(548\) 0 0
\(549\) −3.42548e11 −0.160933
\(550\) 0 0
\(551\) 2.81674e11 0.130186
\(552\) 0 0
\(553\) −1.85624e12 −0.844058
\(554\) 0 0
\(555\) 1.10636e12 0.494970
\(556\) 0 0
\(557\) −2.36878e12 −1.04274 −0.521371 0.853330i \(-0.674579\pi\)
−0.521371 + 0.853330i \(0.674579\pi\)
\(558\) 0 0
\(559\) 9.43371e11 0.408629
\(560\) 0 0
\(561\) 6.52705e11 0.278217
\(562\) 0 0
\(563\) −3.01556e12 −1.26497 −0.632485 0.774573i \(-0.717965\pi\)
−0.632485 + 0.774573i \(0.717965\pi\)
\(564\) 0 0
\(565\) −1.07293e12 −0.442951
\(566\) 0 0
\(567\) 7.60090e11 0.308845
\(568\) 0 0
\(569\) 4.53744e12 1.81470 0.907351 0.420374i \(-0.138101\pi\)
0.907351 + 0.420374i \(0.138101\pi\)
\(570\) 0 0
\(571\) −1.49980e12 −0.590432 −0.295216 0.955431i \(-0.595392\pi\)
−0.295216 + 0.955431i \(0.595392\pi\)
\(572\) 0 0
\(573\) 1.35061e12 0.523399
\(574\) 0 0
\(575\) −5.71249e11 −0.217932
\(576\) 0 0
\(577\) 4.72072e12 1.77303 0.886516 0.462697i \(-0.153118\pi\)
0.886516 + 0.462697i \(0.153118\pi\)
\(578\) 0 0
\(579\) 9.66797e10 0.0357505
\(580\) 0 0
\(581\) −2.62912e12 −0.957235
\(582\) 0 0
\(583\) 2.90892e12 1.04285
\(584\) 0 0
\(585\) −4.60846e11 −0.162688
\(586\) 0 0
\(587\) −4.21328e12 −1.46470 −0.732350 0.680928i \(-0.761577\pi\)
−0.732350 + 0.680928i \(0.761577\pi\)
\(588\) 0 0
\(589\) 9.49705e11 0.325140
\(590\) 0 0
\(591\) 1.43916e12 0.485250
\(592\) 0 0
\(593\) −2.20583e12 −0.732530 −0.366265 0.930511i \(-0.619364\pi\)
−0.366265 + 0.930511i \(0.619364\pi\)
\(594\) 0 0
\(595\) −1.42735e12 −0.466878
\(596\) 0 0
\(597\) 1.55347e12 0.500515
\(598\) 0 0
\(599\) −4.91855e12 −1.56105 −0.780525 0.625125i \(-0.785048\pi\)
−0.780525 + 0.625125i \(0.785048\pi\)
\(600\) 0 0
\(601\) 2.33329e12 0.729514 0.364757 0.931103i \(-0.381152\pi\)
0.364757 + 0.931103i \(0.381152\pi\)
\(602\) 0 0
\(603\) −9.43476e11 −0.290605
\(604\) 0 0
\(605\) −1.26672e12 −0.384398
\(606\) 0 0
\(607\) 1.21387e12 0.362930 0.181465 0.983397i \(-0.441916\pi\)
0.181465 + 0.983397i \(0.441916\pi\)
\(608\) 0 0
\(609\) 2.32188e11 0.0684008
\(610\) 0 0
\(611\) 5.91138e11 0.171595
\(612\) 0 0
\(613\) 1.95734e12 0.559878 0.279939 0.960018i \(-0.409686\pi\)
0.279939 + 0.960018i \(0.409686\pi\)
\(614\) 0 0
\(615\) 6.73494e11 0.189844
\(616\) 0 0
\(617\) 1.95450e12 0.542940 0.271470 0.962447i \(-0.412490\pi\)
0.271470 + 0.962447i \(0.412490\pi\)
\(618\) 0 0
\(619\) −3.53916e11 −0.0968929 −0.0484465 0.998826i \(-0.515427\pi\)
−0.0484465 + 0.998826i \(0.515427\pi\)
\(620\) 0 0
\(621\) 1.41594e12 0.382061
\(622\) 0 0
\(623\) 4.92825e11 0.131068
\(624\) 0 0
\(625\) −1.24946e12 −0.327538
\(626\) 0 0
\(627\) 7.25171e11 0.187386
\(628\) 0 0
\(629\) 5.29207e12 1.34802
\(630\) 0 0
\(631\) 5.84963e12 1.46891 0.734457 0.678655i \(-0.237437\pi\)
0.734457 + 0.678655i \(0.237437\pi\)
\(632\) 0 0
\(633\) −7.96339e11 −0.197143
\(634\) 0 0
\(635\) −3.18065e12 −0.776307
\(636\) 0 0
\(637\) −5.74943e11 −0.138356
\(638\) 0 0
\(639\) 2.60530e12 0.618165
\(640\) 0 0
\(641\) 7.50183e12 1.75512 0.877558 0.479470i \(-0.159171\pi\)
0.877558 + 0.479470i \(0.159171\pi\)
\(642\) 0 0
\(643\) 7.67238e12 1.77003 0.885015 0.465563i \(-0.154148\pi\)
0.885015 + 0.465563i \(0.154148\pi\)
\(644\) 0 0
\(645\) −2.13503e12 −0.485719
\(646\) 0 0
\(647\) 4.37688e10 0.00981963 0.00490981 0.999988i \(-0.498437\pi\)
0.00490981 + 0.999988i \(0.498437\pi\)
\(648\) 0 0
\(649\) 8.53254e11 0.188789
\(650\) 0 0
\(651\) 7.82855e11 0.170831
\(652\) 0 0
\(653\) 3.28232e12 0.706434 0.353217 0.935541i \(-0.385088\pi\)
0.353217 + 0.935541i \(0.385088\pi\)
\(654\) 0 0
\(655\) −2.11700e12 −0.449402
\(656\) 0 0
\(657\) 5.02005e11 0.105115
\(658\) 0 0
\(659\) 1.10753e12 0.228755 0.114378 0.993437i \(-0.463513\pi\)
0.114378 + 0.993437i \(0.463513\pi\)
\(660\) 0 0
\(661\) −4.63388e12 −0.944143 −0.472072 0.881560i \(-0.656494\pi\)
−0.472072 + 0.881560i \(0.656494\pi\)
\(662\) 0 0
\(663\) 5.56044e11 0.111763
\(664\) 0 0
\(665\) −1.58582e12 −0.314453
\(666\) 0 0
\(667\) −5.20852e11 −0.101894
\(668\) 0 0
\(669\) −2.06762e12 −0.399073
\(670\) 0 0
\(671\) 7.30637e11 0.139139
\(672\) 0 0
\(673\) −4.86961e12 −0.915011 −0.457506 0.889207i \(-0.651257\pi\)
−0.457506 + 0.889207i \(0.651257\pi\)
\(674\) 0 0
\(675\) −2.00467e12 −0.371685
\(676\) 0 0
\(677\) 2.76031e12 0.505021 0.252511 0.967594i \(-0.418744\pi\)
0.252511 + 0.967594i \(0.418744\pi\)
\(678\) 0 0
\(679\) 4.89827e12 0.884359
\(680\) 0 0
\(681\) −2.71795e12 −0.484262
\(682\) 0 0
\(683\) 8.09795e12 1.42391 0.711954 0.702226i \(-0.247810\pi\)
0.711954 + 0.702226i \(0.247810\pi\)
\(684\) 0 0
\(685\) −2.94027e12 −0.510247
\(686\) 0 0
\(687\) 4.69001e12 0.803283
\(688\) 0 0
\(689\) 2.47813e12 0.418926
\(690\) 0 0
\(691\) 1.46112e12 0.243800 0.121900 0.992542i \(-0.461101\pi\)
0.121900 + 0.992542i \(0.461101\pi\)
\(692\) 0 0
\(693\) −2.36979e12 −0.390310
\(694\) 0 0
\(695\) 9.13967e11 0.148593
\(696\) 0 0
\(697\) 3.22153e12 0.517029
\(698\) 0 0
\(699\) 4.61289e11 0.0730847
\(700\) 0 0
\(701\) 1.33493e12 0.208798 0.104399 0.994535i \(-0.466708\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(702\) 0 0
\(703\) 5.87962e12 0.907925
\(704\) 0 0
\(705\) −1.33786e12 −0.203967
\(706\) 0 0
\(707\) −6.68503e12 −1.00627
\(708\) 0 0
\(709\) 9.92029e12 1.47440 0.737202 0.675673i \(-0.236147\pi\)
0.737202 + 0.675673i \(0.236147\pi\)
\(710\) 0 0
\(711\) 6.48801e12 0.952134
\(712\) 0 0
\(713\) −1.75613e12 −0.254480
\(714\) 0 0
\(715\) 9.82961e11 0.140656
\(716\) 0 0
\(717\) −2.30404e12 −0.325577
\(718\) 0 0
\(719\) −6.63993e12 −0.926581 −0.463290 0.886207i \(-0.653331\pi\)
−0.463290 + 0.886207i \(0.653331\pi\)
\(720\) 0 0
\(721\) −4.62699e12 −0.637661
\(722\) 0 0
\(723\) 1.49946e11 0.0204086
\(724\) 0 0
\(725\) 7.37415e11 0.0991267
\(726\) 0 0
\(727\) 1.29834e13 1.72379 0.861896 0.507085i \(-0.169277\pi\)
0.861896 + 0.507085i \(0.169277\pi\)
\(728\) 0 0
\(729\) 1.06016e11 0.0139026
\(730\) 0 0
\(731\) −1.02125e13 −1.32283
\(732\) 0 0
\(733\) 5.25333e12 0.672151 0.336075 0.941835i \(-0.390900\pi\)
0.336075 + 0.941835i \(0.390900\pi\)
\(734\) 0 0
\(735\) 1.30120e12 0.164457
\(736\) 0 0
\(737\) 2.01238e12 0.251251
\(738\) 0 0
\(739\) −6.73695e12 −0.830928 −0.415464 0.909610i \(-0.636381\pi\)
−0.415464 + 0.909610i \(0.636381\pi\)
\(740\) 0 0
\(741\) 6.17778e11 0.0752749
\(742\) 0 0
\(743\) 1.08892e13 1.31084 0.655418 0.755267i \(-0.272493\pi\)
0.655418 + 0.755267i \(0.272493\pi\)
\(744\) 0 0
\(745\) 5.88638e12 0.700076
\(746\) 0 0
\(747\) 9.18940e12 1.07980
\(748\) 0 0
\(749\) 4.67937e12 0.543275
\(750\) 0 0
\(751\) −5.22656e12 −0.599565 −0.299783 0.954008i \(-0.596914\pi\)
−0.299783 + 0.954008i \(0.596914\pi\)
\(752\) 0 0
\(753\) −2.04009e12 −0.231245
\(754\) 0 0
\(755\) −4.99388e12 −0.559341
\(756\) 0 0
\(757\) −6.87850e12 −0.761312 −0.380656 0.924717i \(-0.624302\pi\)
−0.380656 + 0.924717i \(0.624302\pi\)
\(758\) 0 0
\(759\) −1.34094e12 −0.146663
\(760\) 0 0
\(761\) 1.67281e12 0.180807 0.0904033 0.995905i \(-0.471184\pi\)
0.0904033 + 0.995905i \(0.471184\pi\)
\(762\) 0 0
\(763\) −7.07830e12 −0.756081
\(764\) 0 0
\(765\) 4.98891e12 0.526658
\(766\) 0 0
\(767\) 7.26892e11 0.0758387
\(768\) 0 0
\(769\) 8.95428e12 0.923341 0.461670 0.887052i \(-0.347250\pi\)
0.461670 + 0.887052i \(0.347250\pi\)
\(770\) 0 0
\(771\) −8.33868e10 −0.00849870
\(772\) 0 0
\(773\) −3.60927e12 −0.363589 −0.181795 0.983337i \(-0.558191\pi\)
−0.181795 + 0.983337i \(0.558191\pi\)
\(774\) 0 0
\(775\) 2.48631e12 0.247569
\(776\) 0 0
\(777\) 4.84665e12 0.477032
\(778\) 0 0
\(779\) 3.57920e12 0.348231
\(780\) 0 0
\(781\) −5.55697e12 −0.534452
\(782\) 0 0
\(783\) −1.82781e12 −0.173781
\(784\) 0 0
\(785\) −1.19287e12 −0.112119
\(786\) 0 0
\(787\) −1.64130e13 −1.52511 −0.762554 0.646924i \(-0.776055\pi\)
−0.762554 + 0.646924i \(0.776055\pi\)
\(788\) 0 0
\(789\) 1.82931e12 0.168051
\(790\) 0 0
\(791\) −4.70021e12 −0.426897
\(792\) 0 0
\(793\) 6.22434e11 0.0558938
\(794\) 0 0
\(795\) −5.60847e12 −0.497957
\(796\) 0 0
\(797\) −1.25670e13 −1.10324 −0.551618 0.834097i \(-0.685989\pi\)
−0.551618 + 0.834097i \(0.685989\pi\)
\(798\) 0 0
\(799\) −6.39938e12 −0.555492
\(800\) 0 0
\(801\) −1.72254e12 −0.147850
\(802\) 0 0
\(803\) −1.07075e12 −0.0908800
\(804\) 0 0
\(805\) 2.93239e12 0.246116
\(806\) 0 0
\(807\) 8.47630e12 0.703519
\(808\) 0 0
\(809\) 1.35050e13 1.10848 0.554239 0.832358i \(-0.313009\pi\)
0.554239 + 0.832358i \(0.313009\pi\)
\(810\) 0 0
\(811\) 7.73437e12 0.627814 0.313907 0.949454i \(-0.398362\pi\)
0.313907 + 0.949454i \(0.398362\pi\)
\(812\) 0 0
\(813\) −3.90981e12 −0.313869
\(814\) 0 0
\(815\) −1.16780e13 −0.927173
\(816\) 0 0
\(817\) −1.13463e13 −0.890955
\(818\) 0 0
\(819\) −2.01883e12 −0.156792
\(820\) 0 0
\(821\) 1.58629e13 1.21853 0.609267 0.792965i \(-0.291464\pi\)
0.609267 + 0.792965i \(0.291464\pi\)
\(822\) 0 0
\(823\) 8.41508e12 0.639380 0.319690 0.947522i \(-0.396421\pi\)
0.319690 + 0.947522i \(0.396421\pi\)
\(824\) 0 0
\(825\) 1.89848e12 0.142680
\(826\) 0 0
\(827\) −1.58883e13 −1.18114 −0.590572 0.806985i \(-0.701098\pi\)
−0.590572 + 0.806985i \(0.701098\pi\)
\(828\) 0 0
\(829\) 5.92895e12 0.435996 0.217998 0.975949i \(-0.430047\pi\)
0.217998 + 0.975949i \(0.430047\pi\)
\(830\) 0 0
\(831\) −8.52703e12 −0.620288
\(832\) 0 0
\(833\) 6.22406e12 0.447890
\(834\) 0 0
\(835\) 3.35743e12 0.239011
\(836\) 0 0
\(837\) −6.16273e12 −0.434019
\(838\) 0 0
\(839\) 1.64277e10 0.00114459 0.000572294 1.00000i \(-0.499818\pi\)
0.000572294 1.00000i \(0.499818\pi\)
\(840\) 0 0
\(841\) −1.38348e13 −0.953653
\(842\) 0 0
\(843\) −7.91480e12 −0.539779
\(844\) 0 0
\(845\) 8.37391e11 0.0565032
\(846\) 0 0
\(847\) −5.54913e12 −0.370467
\(848\) 0 0
\(849\) 4.55756e12 0.301057
\(850\) 0 0
\(851\) −1.08722e13 −0.710615
\(852\) 0 0
\(853\) −9.54453e12 −0.617282 −0.308641 0.951179i \(-0.599874\pi\)
−0.308641 + 0.951179i \(0.599874\pi\)
\(854\) 0 0
\(855\) 5.54279e12 0.354716
\(856\) 0 0
\(857\) 2.04272e12 0.129358 0.0646791 0.997906i \(-0.479398\pi\)
0.0646791 + 0.997906i \(0.479398\pi\)
\(858\) 0 0
\(859\) 6.42844e11 0.0402844 0.0201422 0.999797i \(-0.493588\pi\)
0.0201422 + 0.999797i \(0.493588\pi\)
\(860\) 0 0
\(861\) 2.95038e12 0.182963
\(862\) 0 0
\(863\) 1.95507e13 1.19981 0.599906 0.800071i \(-0.295205\pi\)
0.599906 + 0.800071i \(0.295205\pi\)
\(864\) 0 0
\(865\) −3.19278e12 −0.193909
\(866\) 0 0
\(867\) 1.44766e12 0.0870121
\(868\) 0 0
\(869\) −1.38386e13 −0.823194
\(870\) 0 0
\(871\) 1.71436e12 0.100930
\(872\) 0 0
\(873\) −1.71206e13 −0.997595
\(874\) 0 0
\(875\) −1.31681e13 −0.759429
\(876\) 0 0
\(877\) 7.79769e10 0.00445110 0.00222555 0.999998i \(-0.499292\pi\)
0.00222555 + 0.999998i \(0.499292\pi\)
\(878\) 0 0
\(879\) 5.24724e12 0.296470
\(880\) 0 0
\(881\) −1.91901e13 −1.07321 −0.536605 0.843833i \(-0.680294\pi\)
−0.536605 + 0.843833i \(0.680294\pi\)
\(882\) 0 0
\(883\) 1.12577e13 0.623198 0.311599 0.950214i \(-0.399135\pi\)
0.311599 + 0.950214i \(0.399135\pi\)
\(884\) 0 0
\(885\) −1.64509e12 −0.0901459
\(886\) 0 0
\(887\) 1.53600e13 0.833171 0.416585 0.909097i \(-0.363227\pi\)
0.416585 + 0.909097i \(0.363227\pi\)
\(888\) 0 0
\(889\) −1.39335e13 −0.748173
\(890\) 0 0
\(891\) 5.66658e12 0.301211
\(892\) 0 0
\(893\) −7.10987e12 −0.374136
\(894\) 0 0
\(895\) −1.56681e13 −0.816229
\(896\) 0 0
\(897\) −1.14235e12 −0.0589162
\(898\) 0 0
\(899\) 2.26696e12 0.115751
\(900\) 0 0
\(901\) −2.68270e13 −1.35616
\(902\) 0 0
\(903\) −9.35293e12 −0.468115
\(904\) 0 0
\(905\) −2.35669e10 −0.00116784
\(906\) 0 0
\(907\) 2.80870e13 1.37807 0.689037 0.724726i \(-0.258034\pi\)
0.689037 + 0.724726i \(0.258034\pi\)
\(908\) 0 0
\(909\) 2.33657e13 1.13512
\(910\) 0 0
\(911\) 2.32769e13 1.11967 0.559837 0.828603i \(-0.310864\pi\)
0.559837 + 0.828603i \(0.310864\pi\)
\(912\) 0 0
\(913\) −1.96005e13 −0.933574
\(914\) 0 0
\(915\) −1.40869e12 −0.0664384
\(916\) 0 0
\(917\) −9.27397e12 −0.433115
\(918\) 0 0
\(919\) −2.70538e13 −1.25115 −0.625573 0.780166i \(-0.715135\pi\)
−0.625573 + 0.780166i \(0.715135\pi\)
\(920\) 0 0
\(921\) 2.20017e12 0.100760
\(922\) 0 0
\(923\) −4.73402e12 −0.214695
\(924\) 0 0
\(925\) 1.53927e13 0.691316
\(926\) 0 0
\(927\) 1.61724e13 0.719309
\(928\) 0 0
\(929\) 3.43871e13 1.51470 0.757348 0.653012i \(-0.226495\pi\)
0.757348 + 0.653012i \(0.226495\pi\)
\(930\) 0 0
\(931\) 6.91508e12 0.301664
\(932\) 0 0
\(933\) −1.70099e13 −0.734910
\(934\) 0 0
\(935\) −1.06411e13 −0.455337
\(936\) 0 0
\(937\) 1.33334e13 0.565086 0.282543 0.959255i \(-0.408822\pi\)
0.282543 + 0.959255i \(0.408822\pi\)
\(938\) 0 0
\(939\) −1.57042e13 −0.659206
\(940\) 0 0
\(941\) −2.40200e13 −0.998666 −0.499333 0.866410i \(-0.666421\pi\)
−0.499333 + 0.866410i \(0.666421\pi\)
\(942\) 0 0
\(943\) −6.61841e12 −0.272553
\(944\) 0 0
\(945\) 1.02905e13 0.419753
\(946\) 0 0
\(947\) −2.65641e13 −1.07330 −0.536649 0.843806i \(-0.680310\pi\)
−0.536649 + 0.843806i \(0.680310\pi\)
\(948\) 0 0
\(949\) −9.12178e11 −0.0365075
\(950\) 0 0
\(951\) 9.55575e11 0.0378837
\(952\) 0 0
\(953\) −3.67569e13 −1.44352 −0.721758 0.692146i \(-0.756665\pi\)
−0.721758 + 0.692146i \(0.756665\pi\)
\(954\) 0 0
\(955\) −2.20190e13 −0.856608
\(956\) 0 0
\(957\) 1.73099e12 0.0667100
\(958\) 0 0
\(959\) −1.28805e13 −0.491755
\(960\) 0 0
\(961\) −1.87962e13 −0.710912
\(962\) 0 0
\(963\) −1.63555e13 −0.612837
\(964\) 0 0
\(965\) −1.57617e12 −0.0585101
\(966\) 0 0
\(967\) −9.08923e12 −0.334278 −0.167139 0.985933i \(-0.553453\pi\)
−0.167139 + 0.985933i \(0.553453\pi\)
\(968\) 0 0
\(969\) −6.68777e12 −0.243683
\(970\) 0 0
\(971\) −1.45138e13 −0.523956 −0.261978 0.965074i \(-0.584375\pi\)
−0.261978 + 0.965074i \(0.584375\pi\)
\(972\) 0 0
\(973\) 4.00383e12 0.143208
\(974\) 0 0
\(975\) 1.61733e12 0.0573162
\(976\) 0 0
\(977\) −3.54653e13 −1.24531 −0.622656 0.782496i \(-0.713946\pi\)
−0.622656 + 0.782496i \(0.713946\pi\)
\(978\) 0 0
\(979\) 3.67408e12 0.127828
\(980\) 0 0
\(981\) 2.47403e13 0.852892
\(982\) 0 0
\(983\) 3.17386e13 1.08417 0.542084 0.840324i \(-0.317635\pi\)
0.542084 + 0.840324i \(0.317635\pi\)
\(984\) 0 0
\(985\) −2.34627e13 −0.794173
\(986\) 0 0
\(987\) −5.86076e12 −0.196574
\(988\) 0 0
\(989\) 2.09809e13 0.697333
\(990\) 0 0
\(991\) 3.73377e13 1.22975 0.614874 0.788626i \(-0.289207\pi\)
0.614874 + 0.788626i \(0.289207\pi\)
\(992\) 0 0
\(993\) −1.53869e13 −0.502203
\(994\) 0 0
\(995\) −2.53262e13 −0.819155
\(996\) 0 0
\(997\) 5.39988e13 1.73084 0.865418 0.501051i \(-0.167053\pi\)
0.865418 + 0.501051i \(0.167053\pi\)
\(998\) 0 0
\(999\) −3.81534e13 −1.21196
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.f.1.2 4
4.3 odd 2 52.10.a.a.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.10.a.a.1.3 4 4.3 odd 2
208.10.a.f.1.2 4 1.1 even 1 trivial