Properties

Label 208.10.a.j.1.1
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 69754x^{4} - 2752492x^{3} + 1089377733x^{2} + 50183965132x - 2195812679340 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12}\cdot 3 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-162.332\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-172.332 q^{3} +107.467 q^{5} +615.682 q^{7} +10015.3 q^{9} +40196.2 q^{11} -28561.0 q^{13} -18520.0 q^{15} -489315. q^{17} -730371. q^{19} -106102. q^{21} +2.11920e6 q^{23} -1.94158e6 q^{25} +1.66605e6 q^{27} +5.06021e6 q^{29} +6.84851e6 q^{31} -6.92710e6 q^{33} +66165.5 q^{35} -8.66721e6 q^{37} +4.92197e6 q^{39} +3.24853e7 q^{41} -654425. q^{43} +1.07632e6 q^{45} -1.57092e7 q^{47} -3.99745e7 q^{49} +8.43247e7 q^{51} +2.50249e7 q^{53} +4.31977e6 q^{55} +1.25866e8 q^{57} +3.01805e7 q^{59} -1.22605e7 q^{61} +6.16626e6 q^{63} -3.06937e6 q^{65} -8.97056e7 q^{67} -3.65207e8 q^{69} +3.12230e8 q^{71} +6.69648e7 q^{73} +3.34596e8 q^{75} +2.47481e7 q^{77} +2.97738e8 q^{79} -4.84245e8 q^{81} +6.01224e8 q^{83} -5.25853e7 q^{85} -8.72037e8 q^{87} -9.77021e8 q^{89} -1.75845e7 q^{91} -1.18022e9 q^{93} -7.84908e7 q^{95} -1.04646e9 q^{97} +4.02578e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 60 q^{3} + 176 q^{5} - 3416 q^{7} + 22010 q^{9} + 101316 q^{11} - 171366 q^{13} - 257460 q^{15} - 170304 q^{17} + 92084 q^{19} - 424004 q^{21} - 2369944 q^{23} + 2043598 q^{25} + 6428196 q^{27} - 9021404 q^{29}+ \cdots - 282095980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −172.332 −1.22834 −0.614172 0.789172i \(-0.710510\pi\)
−0.614172 + 0.789172i \(0.710510\pi\)
\(4\) 0 0
\(5\) 107.467 0.0768971 0.0384486 0.999261i \(-0.487758\pi\)
0.0384486 + 0.999261i \(0.487758\pi\)
\(6\) 0 0
\(7\) 615.682 0.0969204 0.0484602 0.998825i \(-0.484569\pi\)
0.0484602 + 0.998825i \(0.484569\pi\)
\(8\) 0 0
\(9\) 10015.3 0.508831
\(10\) 0 0
\(11\) 40196.2 0.827786 0.413893 0.910326i \(-0.364169\pi\)
0.413893 + 0.910326i \(0.364169\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 0 0
\(15\) −18520.0 −0.0944562
\(16\) 0 0
\(17\) −489315. −1.42092 −0.710458 0.703739i \(-0.751512\pi\)
−0.710458 + 0.703739i \(0.751512\pi\)
\(18\) 0 0
\(19\) −730371. −1.28574 −0.642869 0.765976i \(-0.722256\pi\)
−0.642869 + 0.765976i \(0.722256\pi\)
\(20\) 0 0
\(21\) −106102. −0.119052
\(22\) 0 0
\(23\) 2.11920e6 1.57906 0.789528 0.613715i \(-0.210326\pi\)
0.789528 + 0.613715i \(0.210326\pi\)
\(24\) 0 0
\(25\) −1.94158e6 −0.994087
\(26\) 0 0
\(27\) 1.66605e6 0.603325
\(28\) 0 0
\(29\) 5.06021e6 1.32855 0.664275 0.747488i \(-0.268740\pi\)
0.664275 + 0.747488i \(0.268740\pi\)
\(30\) 0 0
\(31\) 6.84851e6 1.33189 0.665945 0.746001i \(-0.268029\pi\)
0.665945 + 0.746001i \(0.268029\pi\)
\(32\) 0 0
\(33\) −6.92710e6 −1.01681
\(34\) 0 0
\(35\) 66165.5 0.00745290
\(36\) 0 0
\(37\) −8.66721e6 −0.760276 −0.380138 0.924930i \(-0.624124\pi\)
−0.380138 + 0.924930i \(0.624124\pi\)
\(38\) 0 0
\(39\) 4.92197e6 0.340682
\(40\) 0 0
\(41\) 3.24853e7 1.79539 0.897697 0.440614i \(-0.145239\pi\)
0.897697 + 0.440614i \(0.145239\pi\)
\(42\) 0 0
\(43\) −654425. −0.0291912 −0.0145956 0.999893i \(-0.504646\pi\)
−0.0145956 + 0.999893i \(0.504646\pi\)
\(44\) 0 0
\(45\) 1.07632e6 0.0391277
\(46\) 0 0
\(47\) −1.57092e7 −0.469586 −0.234793 0.972045i \(-0.575441\pi\)
−0.234793 + 0.972045i \(0.575441\pi\)
\(48\) 0 0
\(49\) −3.99745e7 −0.990606
\(50\) 0 0
\(51\) 8.43247e7 1.74538
\(52\) 0 0
\(53\) 2.50249e7 0.435643 0.217822 0.975989i \(-0.430105\pi\)
0.217822 + 0.975989i \(0.430105\pi\)
\(54\) 0 0
\(55\) 4.31977e6 0.0636544
\(56\) 0 0
\(57\) 1.25866e8 1.57933
\(58\) 0 0
\(59\) 3.01805e7 0.324260 0.162130 0.986769i \(-0.448164\pi\)
0.162130 + 0.986769i \(0.448164\pi\)
\(60\) 0 0
\(61\) −1.22605e7 −0.113377 −0.0566885 0.998392i \(-0.518054\pi\)
−0.0566885 + 0.998392i \(0.518054\pi\)
\(62\) 0 0
\(63\) 6.16626e6 0.0493161
\(64\) 0 0
\(65\) −3.06937e6 −0.0213274
\(66\) 0 0
\(67\) −8.97056e7 −0.543855 −0.271927 0.962318i \(-0.587661\pi\)
−0.271927 + 0.962318i \(0.587661\pi\)
\(68\) 0 0
\(69\) −3.65207e8 −1.93962
\(70\) 0 0
\(71\) 3.12230e8 1.45818 0.729092 0.684415i \(-0.239942\pi\)
0.729092 + 0.684415i \(0.239942\pi\)
\(72\) 0 0
\(73\) 6.69648e7 0.275990 0.137995 0.990433i \(-0.455934\pi\)
0.137995 + 0.990433i \(0.455934\pi\)
\(74\) 0 0
\(75\) 3.34596e8 1.22108
\(76\) 0 0
\(77\) 2.47481e7 0.0802294
\(78\) 0 0
\(79\) 2.97738e8 0.860028 0.430014 0.902822i \(-0.358509\pi\)
0.430014 + 0.902822i \(0.358509\pi\)
\(80\) 0 0
\(81\) −4.84245e8 −1.24992
\(82\) 0 0
\(83\) 6.01224e8 1.39054 0.695272 0.718747i \(-0.255284\pi\)
0.695272 + 0.718747i \(0.255284\pi\)
\(84\) 0 0
\(85\) −5.25853e7 −0.109264
\(86\) 0 0
\(87\) −8.72037e8 −1.63192
\(88\) 0 0
\(89\) −9.77021e8 −1.65063 −0.825313 0.564675i \(-0.809002\pi\)
−0.825313 + 0.564675i \(0.809002\pi\)
\(90\) 0 0
\(91\) −1.75845e7 −0.0268809
\(92\) 0 0
\(93\) −1.18022e9 −1.63602
\(94\) 0 0
\(95\) −7.84908e7 −0.0988696
\(96\) 0 0
\(97\) −1.04646e9 −1.20019 −0.600093 0.799930i \(-0.704870\pi\)
−0.600093 + 0.799930i \(0.704870\pi\)
\(98\) 0 0
\(99\) 4.02578e8 0.421204
\(100\) 0 0
\(101\) 1.35004e9 1.29092 0.645460 0.763794i \(-0.276666\pi\)
0.645460 + 0.763794i \(0.276666\pi\)
\(102\) 0 0
\(103\) −4.91015e8 −0.429860 −0.214930 0.976629i \(-0.568952\pi\)
−0.214930 + 0.976629i \(0.568952\pi\)
\(104\) 0 0
\(105\) −1.14024e7 −0.00915474
\(106\) 0 0
\(107\) −2.50993e9 −1.85112 −0.925560 0.378600i \(-0.876406\pi\)
−0.925560 + 0.378600i \(0.876406\pi\)
\(108\) 0 0
\(109\) −2.02473e8 −0.137388 −0.0686939 0.997638i \(-0.521883\pi\)
−0.0686939 + 0.997638i \(0.521883\pi\)
\(110\) 0 0
\(111\) 1.49364e9 0.933881
\(112\) 0 0
\(113\) −1.76686e9 −1.01941 −0.509705 0.860349i \(-0.670246\pi\)
−0.509705 + 0.860349i \(0.670246\pi\)
\(114\) 0 0
\(115\) 2.27744e8 0.121425
\(116\) 0 0
\(117\) −2.86048e8 −0.141124
\(118\) 0 0
\(119\) −3.01263e8 −0.137716
\(120\) 0 0
\(121\) −7.42211e8 −0.314770
\(122\) 0 0
\(123\) −5.59826e9 −2.20536
\(124\) 0 0
\(125\) −4.18552e8 −0.153340
\(126\) 0 0
\(127\) −2.47555e9 −0.844413 −0.422207 0.906500i \(-0.638744\pi\)
−0.422207 + 0.906500i \(0.638744\pi\)
\(128\) 0 0
\(129\) 1.12778e8 0.0358569
\(130\) 0 0
\(131\) −1.70806e9 −0.506736 −0.253368 0.967370i \(-0.581538\pi\)
−0.253368 + 0.967370i \(0.581538\pi\)
\(132\) 0 0
\(133\) −4.49677e8 −0.124614
\(134\) 0 0
\(135\) 1.79045e8 0.0463939
\(136\) 0 0
\(137\) −1.05278e9 −0.255327 −0.127664 0.991818i \(-0.540748\pi\)
−0.127664 + 0.991818i \(0.540748\pi\)
\(138\) 0 0
\(139\) −3.23568e8 −0.0735189 −0.0367595 0.999324i \(-0.511704\pi\)
−0.0367595 + 0.999324i \(0.511704\pi\)
\(140\) 0 0
\(141\) 2.70721e9 0.576813
\(142\) 0 0
\(143\) −1.14804e9 −0.229587
\(144\) 0 0
\(145\) 5.43806e8 0.102162
\(146\) 0 0
\(147\) 6.88889e9 1.21681
\(148\) 0 0
\(149\) −6.20510e9 −1.03136 −0.515680 0.856781i \(-0.672461\pi\)
−0.515680 + 0.856781i \(0.672461\pi\)
\(150\) 0 0
\(151\) −4.68351e9 −0.733120 −0.366560 0.930394i \(-0.619465\pi\)
−0.366560 + 0.930394i \(0.619465\pi\)
\(152\) 0 0
\(153\) −4.90065e9 −0.723007
\(154\) 0 0
\(155\) 7.35988e8 0.102418
\(156\) 0 0
\(157\) 7.87350e9 1.03423 0.517117 0.855914i \(-0.327005\pi\)
0.517117 + 0.855914i \(0.327005\pi\)
\(158\) 0 0
\(159\) −4.31259e9 −0.535120
\(160\) 0 0
\(161\) 1.30476e9 0.153043
\(162\) 0 0
\(163\) −8.45414e9 −0.938048 −0.469024 0.883185i \(-0.655394\pi\)
−0.469024 + 0.883185i \(0.655394\pi\)
\(164\) 0 0
\(165\) −7.44434e8 −0.0781895
\(166\) 0 0
\(167\) −1.56518e9 −0.155719 −0.0778595 0.996964i \(-0.524809\pi\)
−0.0778595 + 0.996964i \(0.524809\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −7.31491e9 −0.654224
\(172\) 0 0
\(173\) 2.13868e10 1.81525 0.907627 0.419777i \(-0.137892\pi\)
0.907627 + 0.419777i \(0.137892\pi\)
\(174\) 0 0
\(175\) −1.19539e9 −0.0963473
\(176\) 0 0
\(177\) −5.20107e9 −0.398303
\(178\) 0 0
\(179\) 1.61808e9 0.117804 0.0589022 0.998264i \(-0.481240\pi\)
0.0589022 + 0.998264i \(0.481240\pi\)
\(180\) 0 0
\(181\) −6.97443e9 −0.483009 −0.241505 0.970400i \(-0.577641\pi\)
−0.241505 + 0.970400i \(0.577641\pi\)
\(182\) 0 0
\(183\) 2.11288e9 0.139266
\(184\) 0 0
\(185\) −9.31439e8 −0.0584631
\(186\) 0 0
\(187\) −1.96686e10 −1.17622
\(188\) 0 0
\(189\) 1.02576e9 0.0584745
\(190\) 0 0
\(191\) −2.28374e10 −1.24164 −0.620821 0.783953i \(-0.713200\pi\)
−0.620821 + 0.783953i \(0.713200\pi\)
\(192\) 0 0
\(193\) −2.79376e10 −1.44938 −0.724689 0.689077i \(-0.758016\pi\)
−0.724689 + 0.689077i \(0.758016\pi\)
\(194\) 0 0
\(195\) 5.28950e8 0.0261974
\(196\) 0 0
\(197\) 2.59082e10 1.22557 0.612786 0.790249i \(-0.290049\pi\)
0.612786 + 0.790249i \(0.290049\pi\)
\(198\) 0 0
\(199\) −3.75183e10 −1.69592 −0.847959 0.530062i \(-0.822168\pi\)
−0.847959 + 0.530062i \(0.822168\pi\)
\(200\) 0 0
\(201\) 1.54591e10 0.668041
\(202\) 0 0
\(203\) 3.11548e9 0.128764
\(204\) 0 0
\(205\) 3.49110e9 0.138061
\(206\) 0 0
\(207\) 2.12245e10 0.803473
\(208\) 0 0
\(209\) −2.93582e10 −1.06432
\(210\) 0 0
\(211\) 4.44170e9 0.154269 0.0771344 0.997021i \(-0.475423\pi\)
0.0771344 + 0.997021i \(0.475423\pi\)
\(212\) 0 0
\(213\) −5.38073e10 −1.79115
\(214\) 0 0
\(215\) −7.03291e7 −0.00224472
\(216\) 0 0
\(217\) 4.21650e9 0.129087
\(218\) 0 0
\(219\) −1.15402e10 −0.339011
\(220\) 0 0
\(221\) 1.39753e10 0.394091
\(222\) 0 0
\(223\) 5.79794e10 1.57001 0.785003 0.619491i \(-0.212661\pi\)
0.785003 + 0.619491i \(0.212661\pi\)
\(224\) 0 0
\(225\) −1.94455e10 −0.505823
\(226\) 0 0
\(227\) −2.97908e10 −0.744674 −0.372337 0.928098i \(-0.621443\pi\)
−0.372337 + 0.928098i \(0.621443\pi\)
\(228\) 0 0
\(229\) −5.33905e9 −0.128293 −0.0641467 0.997940i \(-0.520433\pi\)
−0.0641467 + 0.997940i \(0.520433\pi\)
\(230\) 0 0
\(231\) −4.26489e9 −0.0985494
\(232\) 0 0
\(233\) −6.03931e10 −1.34241 −0.671206 0.741271i \(-0.734223\pi\)
−0.671206 + 0.741271i \(0.734223\pi\)
\(234\) 0 0
\(235\) −1.68823e9 −0.0361098
\(236\) 0 0
\(237\) −5.13098e10 −1.05641
\(238\) 0 0
\(239\) −2.37510e10 −0.470859 −0.235429 0.971891i \(-0.575650\pi\)
−0.235429 + 0.971891i \(0.575650\pi\)
\(240\) 0 0
\(241\) −6.01204e10 −1.14801 −0.574005 0.818852i \(-0.694611\pi\)
−0.574005 + 0.818852i \(0.694611\pi\)
\(242\) 0 0
\(243\) 5.06581e10 0.932011
\(244\) 0 0
\(245\) −4.29594e9 −0.0761748
\(246\) 0 0
\(247\) 2.08601e10 0.356600
\(248\) 0 0
\(249\) −1.03610e11 −1.70807
\(250\) 0 0
\(251\) 6.69307e10 1.06437 0.532187 0.846627i \(-0.321370\pi\)
0.532187 + 0.846627i \(0.321370\pi\)
\(252\) 0 0
\(253\) 8.51840e10 1.30712
\(254\) 0 0
\(255\) 9.06212e9 0.134214
\(256\) 0 0
\(257\) −2.21737e10 −0.317058 −0.158529 0.987354i \(-0.550675\pi\)
−0.158529 + 0.987354i \(0.550675\pi\)
\(258\) 0 0
\(259\) −5.33624e9 −0.0736863
\(260\) 0 0
\(261\) 5.06797e10 0.676008
\(262\) 0 0
\(263\) −1.17621e11 −1.51595 −0.757974 0.652284i \(-0.773811\pi\)
−0.757974 + 0.652284i \(0.773811\pi\)
\(264\) 0 0
\(265\) 2.68935e9 0.0334997
\(266\) 0 0
\(267\) 1.68372e11 2.02754
\(268\) 0 0
\(269\) 2.02220e10 0.235472 0.117736 0.993045i \(-0.462436\pi\)
0.117736 + 0.993045i \(0.462436\pi\)
\(270\) 0 0
\(271\) 7.34249e10 0.826955 0.413477 0.910514i \(-0.364314\pi\)
0.413477 + 0.910514i \(0.364314\pi\)
\(272\) 0 0
\(273\) 3.03037e9 0.0330190
\(274\) 0 0
\(275\) −7.80440e10 −0.822891
\(276\) 0 0
\(277\) 1.34300e11 1.37062 0.685310 0.728252i \(-0.259667\pi\)
0.685310 + 0.728252i \(0.259667\pi\)
\(278\) 0 0
\(279\) 6.85900e10 0.677707
\(280\) 0 0
\(281\) 3.44336e10 0.329461 0.164730 0.986339i \(-0.447325\pi\)
0.164730 + 0.986339i \(0.447325\pi\)
\(282\) 0 0
\(283\) 1.61412e10 0.149588 0.0747939 0.997199i \(-0.476170\pi\)
0.0747939 + 0.997199i \(0.476170\pi\)
\(284\) 0 0
\(285\) 1.35265e10 0.121446
\(286\) 0 0
\(287\) 2.00006e10 0.174010
\(288\) 0 0
\(289\) 1.20842e11 1.01900
\(290\) 0 0
\(291\) 1.80338e11 1.47424
\(292\) 0 0
\(293\) 1.74179e10 0.138067 0.0690336 0.997614i \(-0.478008\pi\)
0.0690336 + 0.997614i \(0.478008\pi\)
\(294\) 0 0
\(295\) 3.24341e9 0.0249346
\(296\) 0 0
\(297\) 6.69689e10 0.499424
\(298\) 0 0
\(299\) −6.05266e10 −0.437951
\(300\) 0 0
\(301\) −4.02918e8 −0.00282922
\(302\) 0 0
\(303\) −2.32654e11 −1.58569
\(304\) 0 0
\(305\) −1.31760e9 −0.00871837
\(306\) 0 0
\(307\) −1.82501e11 −1.17258 −0.586290 0.810101i \(-0.699412\pi\)
−0.586290 + 0.810101i \(0.699412\pi\)
\(308\) 0 0
\(309\) 8.46176e10 0.528017
\(310\) 0 0
\(311\) 2.24624e11 1.36155 0.680776 0.732492i \(-0.261643\pi\)
0.680776 + 0.732492i \(0.261643\pi\)
\(312\) 0 0
\(313\) 9.70945e10 0.571801 0.285901 0.958259i \(-0.407707\pi\)
0.285901 + 0.958259i \(0.407707\pi\)
\(314\) 0 0
\(315\) 6.62669e8 0.00379227
\(316\) 0 0
\(317\) 4.71097e10 0.262025 0.131013 0.991381i \(-0.458177\pi\)
0.131013 + 0.991381i \(0.458177\pi\)
\(318\) 0 0
\(319\) 2.03401e11 1.09976
\(320\) 0 0
\(321\) 4.32542e11 2.27382
\(322\) 0 0
\(323\) 3.57382e11 1.82693
\(324\) 0 0
\(325\) 5.54533e10 0.275710
\(326\) 0 0
\(327\) 3.48926e10 0.168760
\(328\) 0 0
\(329\) −9.67190e9 −0.0455125
\(330\) 0 0
\(331\) −2.08345e11 −0.954017 −0.477009 0.878899i \(-0.658279\pi\)
−0.477009 + 0.878899i \(0.658279\pi\)
\(332\) 0 0
\(333\) −8.68049e10 −0.386852
\(334\) 0 0
\(335\) −9.64039e9 −0.0418209
\(336\) 0 0
\(337\) −3.96693e11 −1.67540 −0.837702 0.546128i \(-0.816101\pi\)
−0.837702 + 0.546128i \(0.816101\pi\)
\(338\) 0 0
\(339\) 3.04487e11 1.25219
\(340\) 0 0
\(341\) 2.75284e11 1.10252
\(342\) 0 0
\(343\) −4.94566e10 −0.192930
\(344\) 0 0
\(345\) −3.92477e10 −0.149152
\(346\) 0 0
\(347\) −5.09902e11 −1.88801 −0.944005 0.329931i \(-0.892974\pi\)
−0.944005 + 0.329931i \(0.892974\pi\)
\(348\) 0 0
\(349\) −5.23208e10 −0.188782 −0.0943908 0.995535i \(-0.530090\pi\)
−0.0943908 + 0.995535i \(0.530090\pi\)
\(350\) 0 0
\(351\) −4.75840e10 −0.167332
\(352\) 0 0
\(353\) 4.58793e11 1.57264 0.786322 0.617817i \(-0.211983\pi\)
0.786322 + 0.617817i \(0.211983\pi\)
\(354\) 0 0
\(355\) 3.35545e10 0.112130
\(356\) 0 0
\(357\) 5.19172e10 0.169163
\(358\) 0 0
\(359\) 1.07780e11 0.342464 0.171232 0.985231i \(-0.445225\pi\)
0.171232 + 0.985231i \(0.445225\pi\)
\(360\) 0 0
\(361\) 2.10755e11 0.653123
\(362\) 0 0
\(363\) 1.27907e11 0.386646
\(364\) 0 0
\(365\) 7.19650e9 0.0212228
\(366\) 0 0
\(367\) 7.18381e10 0.206708 0.103354 0.994645i \(-0.467043\pi\)
0.103354 + 0.994645i \(0.467043\pi\)
\(368\) 0 0
\(369\) 3.25351e11 0.913552
\(370\) 0 0
\(371\) 1.54074e10 0.0422227
\(372\) 0 0
\(373\) −6.20721e11 −1.66038 −0.830189 0.557482i \(-0.811767\pi\)
−0.830189 + 0.557482i \(0.811767\pi\)
\(374\) 0 0
\(375\) 7.21299e10 0.188354
\(376\) 0 0
\(377\) −1.44525e11 −0.368473
\(378\) 0 0
\(379\) 3.52045e11 0.876438 0.438219 0.898868i \(-0.355609\pi\)
0.438219 + 0.898868i \(0.355609\pi\)
\(380\) 0 0
\(381\) 4.26617e11 1.03723
\(382\) 0 0
\(383\) −8.06536e11 −1.91527 −0.957633 0.287991i \(-0.907013\pi\)
−0.957633 + 0.287991i \(0.907013\pi\)
\(384\) 0 0
\(385\) 2.65960e9 0.00616941
\(386\) 0 0
\(387\) −6.55428e9 −0.0148534
\(388\) 0 0
\(389\) 5.94530e10 0.131644 0.0658219 0.997831i \(-0.479033\pi\)
0.0658219 + 0.997831i \(0.479033\pi\)
\(390\) 0 0
\(391\) −1.03696e12 −2.24371
\(392\) 0 0
\(393\) 2.94353e11 0.622447
\(394\) 0 0
\(395\) 3.19970e10 0.0661337
\(396\) 0 0
\(397\) −5.50704e11 −1.11266 −0.556328 0.830963i \(-0.687790\pi\)
−0.556328 + 0.830963i \(0.687790\pi\)
\(398\) 0 0
\(399\) 7.74937e10 0.153069
\(400\) 0 0
\(401\) −7.13647e11 −1.37827 −0.689134 0.724634i \(-0.742009\pi\)
−0.689134 + 0.724634i \(0.742009\pi\)
\(402\) 0 0
\(403\) −1.95600e11 −0.369400
\(404\) 0 0
\(405\) −5.20404e10 −0.0961154
\(406\) 0 0
\(407\) −3.48389e11 −0.629346
\(408\) 0 0
\(409\) 4.00062e11 0.706924 0.353462 0.935449i \(-0.385004\pi\)
0.353462 + 0.935449i \(0.385004\pi\)
\(410\) 0 0
\(411\) 1.81429e11 0.313630
\(412\) 0 0
\(413\) 1.85816e10 0.0314274
\(414\) 0 0
\(415\) 6.46117e10 0.106929
\(416\) 0 0
\(417\) 5.57612e10 0.0903066
\(418\) 0 0
\(419\) 2.27169e11 0.360070 0.180035 0.983660i \(-0.442379\pi\)
0.180035 + 0.983660i \(0.442379\pi\)
\(420\) 0 0
\(421\) −9.80089e11 −1.52053 −0.760267 0.649611i \(-0.774932\pi\)
−0.760267 + 0.649611i \(0.774932\pi\)
\(422\) 0 0
\(423\) −1.57333e11 −0.238940
\(424\) 0 0
\(425\) 9.50043e11 1.41251
\(426\) 0 0
\(427\) −7.54859e9 −0.0109886
\(428\) 0 0
\(429\) 1.97845e11 0.282012
\(430\) 0 0
\(431\) −4.10189e11 −0.572580 −0.286290 0.958143i \(-0.592422\pi\)
−0.286290 + 0.958143i \(0.592422\pi\)
\(432\) 0 0
\(433\) 2.86127e11 0.391168 0.195584 0.980687i \(-0.437340\pi\)
0.195584 + 0.980687i \(0.437340\pi\)
\(434\) 0 0
\(435\) −9.37152e10 −0.125490
\(436\) 0 0
\(437\) −1.54781e12 −2.03025
\(438\) 0 0
\(439\) 7.89980e11 1.01514 0.507570 0.861611i \(-0.330544\pi\)
0.507570 + 0.861611i \(0.330544\pi\)
\(440\) 0 0
\(441\) −4.00358e11 −0.504052
\(442\) 0 0
\(443\) 1.25006e12 1.54210 0.771050 0.636774i \(-0.219732\pi\)
0.771050 + 0.636774i \(0.219732\pi\)
\(444\) 0 0
\(445\) −1.04998e11 −0.126928
\(446\) 0 0
\(447\) 1.06934e12 1.26687
\(448\) 0 0
\(449\) −1.34799e12 −1.56524 −0.782618 0.622503i \(-0.786116\pi\)
−0.782618 + 0.622503i \(0.786116\pi\)
\(450\) 0 0
\(451\) 1.30579e12 1.48620
\(452\) 0 0
\(453\) 8.07118e11 0.900524
\(454\) 0 0
\(455\) −1.88975e9 −0.00206706
\(456\) 0 0
\(457\) −1.45228e12 −1.55750 −0.778750 0.627334i \(-0.784146\pi\)
−0.778750 + 0.627334i \(0.784146\pi\)
\(458\) 0 0
\(459\) −8.15224e11 −0.857274
\(460\) 0 0
\(461\) −5.81071e9 −0.00599204 −0.00299602 0.999996i \(-0.500954\pi\)
−0.00299602 + 0.999996i \(0.500954\pi\)
\(462\) 0 0
\(463\) −7.63830e11 −0.772471 −0.386236 0.922400i \(-0.626225\pi\)
−0.386236 + 0.922400i \(0.626225\pi\)
\(464\) 0 0
\(465\) −1.26834e11 −0.125805
\(466\) 0 0
\(467\) 5.64623e11 0.549329 0.274664 0.961540i \(-0.411433\pi\)
0.274664 + 0.961540i \(0.411433\pi\)
\(468\) 0 0
\(469\) −5.52301e10 −0.0527106
\(470\) 0 0
\(471\) −1.35686e12 −1.27040
\(472\) 0 0
\(473\) −2.63054e10 −0.0241641
\(474\) 0 0
\(475\) 1.41807e12 1.27814
\(476\) 0 0
\(477\) 2.50633e11 0.221669
\(478\) 0 0
\(479\) 1.20508e12 1.04594 0.522970 0.852351i \(-0.324824\pi\)
0.522970 + 0.852351i \(0.324824\pi\)
\(480\) 0 0
\(481\) 2.47544e11 0.210863
\(482\) 0 0
\(483\) −2.24851e11 −0.187989
\(484\) 0 0
\(485\) −1.12460e11 −0.0922909
\(486\) 0 0
\(487\) 1.32287e12 1.06570 0.532852 0.846208i \(-0.321120\pi\)
0.532852 + 0.846208i \(0.321120\pi\)
\(488\) 0 0
\(489\) 1.45692e12 1.15225
\(490\) 0 0
\(491\) −2.32552e11 −0.180573 −0.0902865 0.995916i \(-0.528778\pi\)
−0.0902865 + 0.995916i \(0.528778\pi\)
\(492\) 0 0
\(493\) −2.47604e12 −1.88776
\(494\) 0 0
\(495\) 4.32639e10 0.0323893
\(496\) 0 0
\(497\) 1.92235e11 0.141328
\(498\) 0 0
\(499\) −2.38399e12 −1.72128 −0.860641 0.509211i \(-0.829937\pi\)
−0.860641 + 0.509211i \(0.829937\pi\)
\(500\) 0 0
\(501\) 2.69731e11 0.191277
\(502\) 0 0
\(503\) −7.19053e11 −0.500847 −0.250424 0.968136i \(-0.580570\pi\)
−0.250424 + 0.968136i \(0.580570\pi\)
\(504\) 0 0
\(505\) 1.45084e11 0.0992680
\(506\) 0 0
\(507\) −1.40577e11 −0.0944881
\(508\) 0 0
\(509\) −1.30257e12 −0.860146 −0.430073 0.902794i \(-0.641512\pi\)
−0.430073 + 0.902794i \(0.641512\pi\)
\(510\) 0 0
\(511\) 4.12290e10 0.0267491
\(512\) 0 0
\(513\) −1.21684e12 −0.775717
\(514\) 0 0
\(515\) −5.27679e10 −0.0330550
\(516\) 0 0
\(517\) −6.31452e11 −0.388717
\(518\) 0 0
\(519\) −3.68562e12 −2.22976
\(520\) 0 0
\(521\) 7.91136e11 0.470415 0.235208 0.971945i \(-0.424423\pi\)
0.235208 + 0.971945i \(0.424423\pi\)
\(522\) 0 0
\(523\) 1.57891e12 0.922783 0.461392 0.887197i \(-0.347350\pi\)
0.461392 + 0.887197i \(0.347350\pi\)
\(524\) 0 0
\(525\) 2.06005e11 0.118348
\(526\) 0 0
\(527\) −3.35108e12 −1.89250
\(528\) 0 0
\(529\) 2.68987e12 1.49342
\(530\) 0 0
\(531\) 3.02268e11 0.164994
\(532\) 0 0
\(533\) −9.27813e11 −0.497952
\(534\) 0 0
\(535\) −2.69735e11 −0.142346
\(536\) 0 0
\(537\) −2.78847e11 −0.144705
\(538\) 0 0
\(539\) −1.60683e12 −0.820010
\(540\) 0 0
\(541\) −7.58135e11 −0.380503 −0.190252 0.981735i \(-0.560930\pi\)
−0.190252 + 0.981735i \(0.560930\pi\)
\(542\) 0 0
\(543\) 1.20192e12 0.593302
\(544\) 0 0
\(545\) −2.17592e10 −0.0105647
\(546\) 0 0
\(547\) 1.24661e12 0.595373 0.297687 0.954664i \(-0.403785\pi\)
0.297687 + 0.954664i \(0.403785\pi\)
\(548\) 0 0
\(549\) −1.22793e11 −0.0576898
\(550\) 0 0
\(551\) −3.69584e12 −1.70817
\(552\) 0 0
\(553\) 1.83312e11 0.0833543
\(554\) 0 0
\(555\) 1.60517e11 0.0718128
\(556\) 0 0
\(557\) 3.10874e12 1.36847 0.684236 0.729261i \(-0.260136\pi\)
0.684236 + 0.729261i \(0.260136\pi\)
\(558\) 0 0
\(559\) 1.86910e10 0.00809618
\(560\) 0 0
\(561\) 3.38953e12 1.44480
\(562\) 0 0
\(563\) −3.78920e11 −0.158950 −0.0794749 0.996837i \(-0.525324\pi\)
−0.0794749 + 0.996837i \(0.525324\pi\)
\(564\) 0 0
\(565\) −1.89879e11 −0.0783898
\(566\) 0 0
\(567\) −2.98141e11 −0.121143
\(568\) 0 0
\(569\) −2.66220e12 −1.06472 −0.532359 0.846518i \(-0.678695\pi\)
−0.532359 + 0.846518i \(0.678695\pi\)
\(570\) 0 0
\(571\) −1.91714e12 −0.754730 −0.377365 0.926065i \(-0.623170\pi\)
−0.377365 + 0.926065i \(0.623170\pi\)
\(572\) 0 0
\(573\) 3.93561e12 1.52516
\(574\) 0 0
\(575\) −4.11459e12 −1.56972
\(576\) 0 0
\(577\) −3.21629e12 −1.20799 −0.603996 0.796987i \(-0.706426\pi\)
−0.603996 + 0.796987i \(0.706426\pi\)
\(578\) 0 0
\(579\) 4.81455e12 1.78033
\(580\) 0 0
\(581\) 3.70163e11 0.134772
\(582\) 0 0
\(583\) 1.00591e12 0.360620
\(584\) 0 0
\(585\) −3.07407e10 −0.0108521
\(586\) 0 0
\(587\) 6.43183e11 0.223595 0.111798 0.993731i \(-0.464339\pi\)
0.111798 + 0.993731i \(0.464339\pi\)
\(588\) 0 0
\(589\) −5.00195e12 −1.71246
\(590\) 0 0
\(591\) −4.46481e12 −1.50542
\(592\) 0 0
\(593\) −3.55490e12 −1.18054 −0.590270 0.807206i \(-0.700979\pi\)
−0.590270 + 0.807206i \(0.700979\pi\)
\(594\) 0 0
\(595\) −3.23758e10 −0.0105900
\(596\) 0 0
\(597\) 6.46561e12 2.08317
\(598\) 0 0
\(599\) 1.12210e12 0.356131 0.178066 0.984019i \(-0.443016\pi\)
0.178066 + 0.984019i \(0.443016\pi\)
\(600\) 0 0
\(601\) −5.71984e12 −1.78834 −0.894168 0.447732i \(-0.852232\pi\)
−0.894168 + 0.447732i \(0.852232\pi\)
\(602\) 0 0
\(603\) −8.98431e11 −0.276730
\(604\) 0 0
\(605\) −7.97632e10 −0.0242049
\(606\) 0 0
\(607\) −5.37924e11 −0.160832 −0.0804158 0.996761i \(-0.525625\pi\)
−0.0804158 + 0.996761i \(0.525625\pi\)
\(608\) 0 0
\(609\) −5.36897e11 −0.158166
\(610\) 0 0
\(611\) 4.48672e11 0.130240
\(612\) 0 0
\(613\) −9.62972e11 −0.275449 −0.137725 0.990471i \(-0.543979\pi\)
−0.137725 + 0.990471i \(0.543979\pi\)
\(614\) 0 0
\(615\) −6.01628e11 −0.169586
\(616\) 0 0
\(617\) −2.70351e12 −0.751008 −0.375504 0.926821i \(-0.622530\pi\)
−0.375504 + 0.926821i \(0.622530\pi\)
\(618\) 0 0
\(619\) −2.10442e11 −0.0576136 −0.0288068 0.999585i \(-0.509171\pi\)
−0.0288068 + 0.999585i \(0.509171\pi\)
\(620\) 0 0
\(621\) 3.53070e12 0.952683
\(622\) 0 0
\(623\) −6.01534e11 −0.159979
\(624\) 0 0
\(625\) 3.74716e12 0.982295
\(626\) 0 0
\(627\) 5.05935e12 1.30735
\(628\) 0 0
\(629\) 4.24100e12 1.08029
\(630\) 0 0
\(631\) −3.07558e12 −0.772315 −0.386157 0.922433i \(-0.626198\pi\)
−0.386157 + 0.922433i \(0.626198\pi\)
\(632\) 0 0
\(633\) −7.65447e11 −0.189495
\(634\) 0 0
\(635\) −2.66040e11 −0.0649330
\(636\) 0 0
\(637\) 1.14171e12 0.274745
\(638\) 0 0
\(639\) 3.12709e12 0.741970
\(640\) 0 0
\(641\) 5.94034e12 1.38979 0.694897 0.719110i \(-0.255450\pi\)
0.694897 + 0.719110i \(0.255450\pi\)
\(642\) 0 0
\(643\) 5.38874e12 1.24319 0.621595 0.783339i \(-0.286485\pi\)
0.621595 + 0.783339i \(0.286485\pi\)
\(644\) 0 0
\(645\) 1.21200e10 0.00275729
\(646\) 0 0
\(647\) 1.71794e12 0.385423 0.192712 0.981255i \(-0.438272\pi\)
0.192712 + 0.981255i \(0.438272\pi\)
\(648\) 0 0
\(649\) 1.21314e12 0.268418
\(650\) 0 0
\(651\) −7.26638e11 −0.158564
\(652\) 0 0
\(653\) 4.25971e12 0.916793 0.458396 0.888748i \(-0.348424\pi\)
0.458396 + 0.888748i \(0.348424\pi\)
\(654\) 0 0
\(655\) −1.83560e11 −0.0389665
\(656\) 0 0
\(657\) 6.70674e11 0.140432
\(658\) 0 0
\(659\) 6.15003e12 1.27026 0.635130 0.772405i \(-0.280946\pi\)
0.635130 + 0.772405i \(0.280946\pi\)
\(660\) 0 0
\(661\) 7.53625e12 1.53550 0.767748 0.640752i \(-0.221377\pi\)
0.767748 + 0.640752i \(0.221377\pi\)
\(662\) 0 0
\(663\) −2.40840e12 −0.484080
\(664\) 0 0
\(665\) −4.83254e10 −0.00958248
\(666\) 0 0
\(667\) 1.07236e13 2.09785
\(668\) 0 0
\(669\) −9.99170e12 −1.92851
\(670\) 0 0
\(671\) −4.92827e11 −0.0938520
\(672\) 0 0
\(673\) 1.99916e12 0.375646 0.187823 0.982203i \(-0.439857\pi\)
0.187823 + 0.982203i \(0.439857\pi\)
\(674\) 0 0
\(675\) −3.23476e12 −0.599757
\(676\) 0 0
\(677\) 5.28289e11 0.0966546 0.0483273 0.998832i \(-0.484611\pi\)
0.0483273 + 0.998832i \(0.484611\pi\)
\(678\) 0 0
\(679\) −6.44285e11 −0.116323
\(680\) 0 0
\(681\) 5.13391e12 0.914717
\(682\) 0 0
\(683\) −6.54886e12 −1.15152 −0.575761 0.817618i \(-0.695294\pi\)
−0.575761 + 0.817618i \(0.695294\pi\)
\(684\) 0 0
\(685\) −1.13140e11 −0.0196339
\(686\) 0 0
\(687\) 9.20090e11 0.157589
\(688\) 0 0
\(689\) −7.14736e11 −0.120826
\(690\) 0 0
\(691\) 4.45526e12 0.743400 0.371700 0.928353i \(-0.378775\pi\)
0.371700 + 0.928353i \(0.378775\pi\)
\(692\) 0 0
\(693\) 2.47860e11 0.0408232
\(694\) 0 0
\(695\) −3.47729e10 −0.00565340
\(696\) 0 0
\(697\) −1.58956e13 −2.55110
\(698\) 0 0
\(699\) 1.04077e13 1.64894
\(700\) 0 0
\(701\) 7.20107e12 1.12633 0.563166 0.826344i \(-0.309583\pi\)
0.563166 + 0.826344i \(0.309583\pi\)
\(702\) 0 0
\(703\) 6.33028e12 0.977516
\(704\) 0 0
\(705\) 2.90935e11 0.0443553
\(706\) 0 0
\(707\) 8.31193e11 0.125116
\(708\) 0 0
\(709\) 5.87074e12 0.872538 0.436269 0.899816i \(-0.356300\pi\)
0.436269 + 0.899816i \(0.356300\pi\)
\(710\) 0 0
\(711\) 2.98194e12 0.437609
\(712\) 0 0
\(713\) 1.45134e13 2.10313
\(714\) 0 0
\(715\) −1.23377e11 −0.0176546
\(716\) 0 0
\(717\) 4.09305e12 0.578377
\(718\) 0 0
\(719\) 7.39696e12 1.03222 0.516111 0.856522i \(-0.327379\pi\)
0.516111 + 0.856522i \(0.327379\pi\)
\(720\) 0 0
\(721\) −3.02309e11 −0.0416622
\(722\) 0 0
\(723\) 1.03607e13 1.41015
\(724\) 0 0
\(725\) −9.82479e12 −1.32069
\(726\) 0 0
\(727\) −1.15600e13 −1.53481 −0.767404 0.641163i \(-0.778452\pi\)
−0.767404 + 0.641163i \(0.778452\pi\)
\(728\) 0 0
\(729\) 8.01383e11 0.105091
\(730\) 0 0
\(731\) 3.20220e11 0.0414783
\(732\) 0 0
\(733\) 2.14718e12 0.274726 0.137363 0.990521i \(-0.456137\pi\)
0.137363 + 0.990521i \(0.456137\pi\)
\(734\) 0 0
\(735\) 7.40329e11 0.0935689
\(736\) 0 0
\(737\) −3.60582e12 −0.450195
\(738\) 0 0
\(739\) 1.24299e13 1.53310 0.766548 0.642187i \(-0.221973\pi\)
0.766548 + 0.642187i \(0.221973\pi\)
\(740\) 0 0
\(741\) −3.59487e12 −0.438027
\(742\) 0 0
\(743\) −7.19308e12 −0.865896 −0.432948 0.901419i \(-0.642527\pi\)
−0.432948 + 0.901419i \(0.642527\pi\)
\(744\) 0 0
\(745\) −6.66844e11 −0.0793087
\(746\) 0 0
\(747\) 6.02145e12 0.707552
\(748\) 0 0
\(749\) −1.54532e12 −0.179411
\(750\) 0 0
\(751\) 1.64354e13 1.88539 0.942694 0.333660i \(-0.108284\pi\)
0.942694 + 0.333660i \(0.108284\pi\)
\(752\) 0 0
\(753\) −1.15343e13 −1.30742
\(754\) 0 0
\(755\) −5.03323e11 −0.0563748
\(756\) 0 0
\(757\) −1.72629e13 −1.91066 −0.955329 0.295545i \(-0.904499\pi\)
−0.955329 + 0.295545i \(0.904499\pi\)
\(758\) 0 0
\(759\) −1.46799e13 −1.60559
\(760\) 0 0
\(761\) −7.28511e12 −0.787417 −0.393709 0.919235i \(-0.628808\pi\)
−0.393709 + 0.919235i \(0.628808\pi\)
\(762\) 0 0
\(763\) −1.24659e11 −0.0133157
\(764\) 0 0
\(765\) −5.26658e11 −0.0555972
\(766\) 0 0
\(767\) −8.61986e11 −0.0899335
\(768\) 0 0
\(769\) −6.42531e12 −0.662561 −0.331280 0.943532i \(-0.607481\pi\)
−0.331280 + 0.943532i \(0.607481\pi\)
\(770\) 0 0
\(771\) 3.82124e12 0.389457
\(772\) 0 0
\(773\) −1.16581e12 −0.117441 −0.0587205 0.998274i \(-0.518702\pi\)
−0.0587205 + 0.998274i \(0.518702\pi\)
\(774\) 0 0
\(775\) −1.32969e13 −1.32401
\(776\) 0 0
\(777\) 9.19606e11 0.0905122
\(778\) 0 0
\(779\) −2.37263e13 −2.30841
\(780\) 0 0
\(781\) 1.25505e13 1.20706
\(782\) 0 0
\(783\) 8.43057e12 0.801547
\(784\) 0 0
\(785\) 8.46141e11 0.0795297
\(786\) 0 0
\(787\) 1.34999e13 1.25442 0.627212 0.778849i \(-0.284196\pi\)
0.627212 + 0.778849i \(0.284196\pi\)
\(788\) 0 0
\(789\) 2.02699e13 1.86211
\(790\) 0 0
\(791\) −1.08782e12 −0.0988017
\(792\) 0 0
\(793\) 3.50173e11 0.0314451
\(794\) 0 0
\(795\) −4.63462e11 −0.0411492
\(796\) 0 0
\(797\) −5.19207e12 −0.455804 −0.227902 0.973684i \(-0.573187\pi\)
−0.227902 + 0.973684i \(0.573187\pi\)
\(798\) 0 0
\(799\) 7.68678e12 0.667242
\(800\) 0 0
\(801\) −9.78519e12 −0.839891
\(802\) 0 0
\(803\) 2.69173e12 0.228461
\(804\) 0 0
\(805\) 1.40218e11 0.0117685
\(806\) 0 0
\(807\) −3.48490e12 −0.289241
\(808\) 0 0
\(809\) 1.10307e13 0.905392 0.452696 0.891665i \(-0.350462\pi\)
0.452696 + 0.891665i \(0.350462\pi\)
\(810\) 0 0
\(811\) −8.42266e12 −0.683684 −0.341842 0.939757i \(-0.611051\pi\)
−0.341842 + 0.939757i \(0.611051\pi\)
\(812\) 0 0
\(813\) −1.26535e13 −1.01579
\(814\) 0 0
\(815\) −9.08541e11 −0.0721332
\(816\) 0 0
\(817\) 4.77974e11 0.0375322
\(818\) 0 0
\(819\) −1.76114e11 −0.0136778
\(820\) 0 0
\(821\) −1.08676e13 −0.834815 −0.417408 0.908719i \(-0.637061\pi\)
−0.417408 + 0.908719i \(0.637061\pi\)
\(822\) 0 0
\(823\) −2.46796e13 −1.87516 −0.937579 0.347771i \(-0.886939\pi\)
−0.937579 + 0.347771i \(0.886939\pi\)
\(824\) 0 0
\(825\) 1.34495e13 1.01079
\(826\) 0 0
\(827\) −4.08610e12 −0.303763 −0.151881 0.988399i \(-0.548533\pi\)
−0.151881 + 0.988399i \(0.548533\pi\)
\(828\) 0 0
\(829\) −2.36893e12 −0.174203 −0.0871016 0.996199i \(-0.527760\pi\)
−0.0871016 + 0.996199i \(0.527760\pi\)
\(830\) 0 0
\(831\) −2.31442e13 −1.68359
\(832\) 0 0
\(833\) 1.95602e13 1.40757
\(834\) 0 0
\(835\) −1.68206e11 −0.0119743
\(836\) 0 0
\(837\) 1.14100e13 0.803562
\(838\) 0 0
\(839\) −7.06718e12 −0.492399 −0.246200 0.969219i \(-0.579182\pi\)
−0.246200 + 0.969219i \(0.579182\pi\)
\(840\) 0 0
\(841\) 1.10986e13 0.765045
\(842\) 0 0
\(843\) −5.93400e12 −0.404691
\(844\) 0 0
\(845\) 8.76641e10 0.00591516
\(846\) 0 0
\(847\) −4.56966e11 −0.0305076
\(848\) 0 0
\(849\) −2.78164e12 −0.183745
\(850\) 0 0
\(851\) −1.83676e13 −1.20052
\(852\) 0 0
\(853\) −1.40710e13 −0.910026 −0.455013 0.890485i \(-0.650365\pi\)
−0.455013 + 0.890485i \(0.650365\pi\)
\(854\) 0 0
\(855\) −7.86111e11 −0.0503079
\(856\) 0 0
\(857\) 6.14374e12 0.389062 0.194531 0.980896i \(-0.437681\pi\)
0.194531 + 0.980896i \(0.437681\pi\)
\(858\) 0 0
\(859\) 1.52610e13 0.956346 0.478173 0.878266i \(-0.341299\pi\)
0.478173 + 0.878266i \(0.341299\pi\)
\(860\) 0 0
\(861\) −3.44675e12 −0.213745
\(862\) 0 0
\(863\) −9.38994e12 −0.576255 −0.288127 0.957592i \(-0.593033\pi\)
−0.288127 + 0.957592i \(0.593033\pi\)
\(864\) 0 0
\(865\) 2.29837e12 0.139588
\(866\) 0 0
\(867\) −2.08249e13 −1.25169
\(868\) 0 0
\(869\) 1.19679e13 0.711919
\(870\) 0 0
\(871\) 2.56208e12 0.150838
\(872\) 0 0
\(873\) −1.04806e13 −0.610692
\(874\) 0 0
\(875\) −2.57695e11 −0.0148617
\(876\) 0 0
\(877\) −2.11533e13 −1.20748 −0.603739 0.797182i \(-0.706323\pi\)
−0.603739 + 0.797182i \(0.706323\pi\)
\(878\) 0 0
\(879\) −3.00165e12 −0.169594
\(880\) 0 0
\(881\) −1.72011e13 −0.961975 −0.480988 0.876727i \(-0.659722\pi\)
−0.480988 + 0.876727i \(0.659722\pi\)
\(882\) 0 0
\(883\) −1.16188e12 −0.0643188 −0.0321594 0.999483i \(-0.510238\pi\)
−0.0321594 + 0.999483i \(0.510238\pi\)
\(884\) 0 0
\(885\) −5.58944e11 −0.0306283
\(886\) 0 0
\(887\) −1.29934e13 −0.704802 −0.352401 0.935849i \(-0.614635\pi\)
−0.352401 + 0.935849i \(0.614635\pi\)
\(888\) 0 0
\(889\) −1.52415e12 −0.0818409
\(890\) 0 0
\(891\) −1.94648e13 −1.03467
\(892\) 0 0
\(893\) 1.14736e13 0.603765
\(894\) 0 0
\(895\) 1.73890e11 0.00905883
\(896\) 0 0
\(897\) 1.04307e13 0.537955
\(898\) 0 0
\(899\) 3.46549e13 1.76948
\(900\) 0 0
\(901\) −1.22451e13 −0.619013
\(902\) 0 0
\(903\) 6.94357e10 0.00347526
\(904\) 0 0
\(905\) −7.49522e11 −0.0371420
\(906\) 0 0
\(907\) 1.30249e13 0.639059 0.319530 0.947576i \(-0.396475\pi\)
0.319530 + 0.947576i \(0.396475\pi\)
\(908\) 0 0
\(909\) 1.35210e13 0.656860
\(910\) 0 0
\(911\) −3.46653e13 −1.66749 −0.833744 0.552151i \(-0.813807\pi\)
−0.833744 + 0.552151i \(0.813807\pi\)
\(912\) 0 0
\(913\) 2.41669e13 1.15107
\(914\) 0 0
\(915\) 2.27065e11 0.0107092
\(916\) 0 0
\(917\) −1.05162e12 −0.0491131
\(918\) 0 0
\(919\) 2.36645e13 1.09440 0.547201 0.837001i \(-0.315693\pi\)
0.547201 + 0.837001i \(0.315693\pi\)
\(920\) 0 0
\(921\) 3.14507e13 1.44033
\(922\) 0 0
\(923\) −8.91761e12 −0.404428
\(924\) 0 0
\(925\) 1.68280e13 0.755781
\(926\) 0 0
\(927\) −4.91768e12 −0.218726
\(928\) 0 0
\(929\) −1.42085e13 −0.625860 −0.312930 0.949776i \(-0.601311\pi\)
−0.312930 + 0.949776i \(0.601311\pi\)
\(930\) 0 0
\(931\) 2.91963e13 1.27366
\(932\) 0 0
\(933\) −3.87099e13 −1.67246
\(934\) 0 0
\(935\) −2.11373e12 −0.0904476
\(936\) 0 0
\(937\) −3.78343e13 −1.60346 −0.801729 0.597688i \(-0.796086\pi\)
−0.801729 + 0.597688i \(0.796086\pi\)
\(938\) 0 0
\(939\) −1.67325e13 −0.702369
\(940\) 0 0
\(941\) −1.21944e13 −0.507000 −0.253500 0.967335i \(-0.581582\pi\)
−0.253500 + 0.967335i \(0.581582\pi\)
\(942\) 0 0
\(943\) 6.88430e13 2.83502
\(944\) 0 0
\(945\) 1.10235e11 0.00449652
\(946\) 0 0
\(947\) 4.76626e13 1.92576 0.962882 0.269922i \(-0.0869979\pi\)
0.962882 + 0.269922i \(0.0869979\pi\)
\(948\) 0 0
\(949\) −1.91258e12 −0.0765459
\(950\) 0 0
\(951\) −8.11850e12 −0.321857
\(952\) 0 0
\(953\) 3.32853e13 1.30718 0.653589 0.756850i \(-0.273263\pi\)
0.653589 + 0.756850i \(0.273263\pi\)
\(954\) 0 0
\(955\) −2.45427e12 −0.0954787
\(956\) 0 0
\(957\) −3.50526e13 −1.35088
\(958\) 0 0
\(959\) −6.48181e11 −0.0247464
\(960\) 0 0
\(961\) 2.04624e13 0.773930
\(962\) 0 0
\(963\) −2.51378e13 −0.941908
\(964\) 0 0
\(965\) −3.00237e12 −0.111453
\(966\) 0 0
\(967\) −3.78192e13 −1.39089 −0.695445 0.718579i \(-0.744793\pi\)
−0.695445 + 0.718579i \(0.744793\pi\)
\(968\) 0 0
\(969\) −6.15883e13 −2.24410
\(970\) 0 0
\(971\) −3.76386e12 −0.135877 −0.0679387 0.997689i \(-0.521642\pi\)
−0.0679387 + 0.997689i \(0.521642\pi\)
\(972\) 0 0
\(973\) −1.99215e11 −0.00712549
\(974\) 0 0
\(975\) −9.55639e12 −0.338667
\(976\) 0 0
\(977\) −1.30991e13 −0.459956 −0.229978 0.973196i \(-0.573865\pi\)
−0.229978 + 0.973196i \(0.573865\pi\)
\(978\) 0 0
\(979\) −3.92726e13 −1.36637
\(980\) 0 0
\(981\) −2.02783e12 −0.0699072
\(982\) 0 0
\(983\) 3.20632e13 1.09526 0.547628 0.836722i \(-0.315531\pi\)
0.547628 + 0.836722i \(0.315531\pi\)
\(984\) 0 0
\(985\) 2.78427e12 0.0942429
\(986\) 0 0
\(987\) 1.66678e12 0.0559050
\(988\) 0 0
\(989\) −1.38686e12 −0.0460945
\(990\) 0 0
\(991\) −1.21061e13 −0.398725 −0.199363 0.979926i \(-0.563887\pi\)
−0.199363 + 0.979926i \(0.563887\pi\)
\(992\) 0 0
\(993\) 3.59044e13 1.17186
\(994\) 0 0
\(995\) −4.03198e12 −0.130411
\(996\) 0 0
\(997\) 2.24835e13 0.720669 0.360335 0.932823i \(-0.382663\pi\)
0.360335 + 0.932823i \(0.382663\pi\)
\(998\) 0 0
\(999\) −1.44400e13 −0.458693
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.j.1.1 6
4.3 odd 2 104.10.a.b.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.b.1.6 6 4.3 odd 2
208.10.a.j.1.1 6 1.1 even 1 trivial