Properties

Label 208.10.a.l.1.3
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 112810 x^{5} + 1645934 x^{4} + 3493976849 x^{3} - 83049726457 x^{2} + \cdots + 864293655586764 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{19}\cdot 3 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-98.0566\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-100.057 q^{3} -2398.21 q^{5} +1546.37 q^{7} -9671.67 q^{9} +12896.0 q^{11} -28561.0 q^{13} +239957. q^{15} -34811.6 q^{17} -29588.5 q^{19} -154724. q^{21} +87242.5 q^{23} +3.79831e6 q^{25} +2.93713e6 q^{27} +4.69746e6 q^{29} -5.76563e6 q^{31} -1.29033e6 q^{33} -3.70853e6 q^{35} +1.47970e7 q^{37} +2.85772e6 q^{39} +9.93166e6 q^{41} +2.28205e7 q^{43} +2.31947e7 q^{45} +4.36131e7 q^{47} -3.79623e7 q^{49} +3.48313e6 q^{51} -2.13528e7 q^{53} -3.09273e7 q^{55} +2.96053e6 q^{57} -1.23658e8 q^{59} +5.30891e7 q^{61} -1.49560e7 q^{63} +6.84954e7 q^{65} -1.85043e7 q^{67} -8.72919e6 q^{69} -3.09090e8 q^{71} +3.60772e8 q^{73} -3.80046e8 q^{75} +1.99420e7 q^{77} -4.18302e8 q^{79} -1.03512e8 q^{81} +4.97861e8 q^{83} +8.34856e7 q^{85} -4.70012e8 q^{87} +3.35112e8 q^{89} -4.41659e7 q^{91} +5.76890e8 q^{93} +7.09596e7 q^{95} -5.37441e8 q^{97} -1.24726e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 13 q^{3} - 801 q^{5} + 1091 q^{7} + 87864 q^{9} - 32218 q^{11} - 199927 q^{13} - 58323 q^{15} - 870531 q^{17} + 128950 q^{19} - 719663 q^{21} - 2198844 q^{23} + 992010 q^{25} - 5441383 q^{27} + 6327710 q^{29}+ \cdots - 5204667600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −100.057 −0.713182 −0.356591 0.934261i \(-0.616061\pi\)
−0.356591 + 0.934261i \(0.616061\pi\)
\(4\) 0 0
\(5\) −2398.21 −1.71602 −0.858011 0.513631i \(-0.828300\pi\)
−0.858011 + 0.513631i \(0.828300\pi\)
\(6\) 0 0
\(7\) 1546.37 0.243429 0.121714 0.992565i \(-0.461161\pi\)
0.121714 + 0.992565i \(0.461161\pi\)
\(8\) 0 0
\(9\) −9671.67 −0.491372
\(10\) 0 0
\(11\) 12896.0 0.265575 0.132788 0.991145i \(-0.457607\pi\)
0.132788 + 0.991145i \(0.457607\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 0 0
\(15\) 239957. 1.22384
\(16\) 0 0
\(17\) −34811.6 −0.101089 −0.0505445 0.998722i \(-0.516096\pi\)
−0.0505445 + 0.998722i \(0.516096\pi\)
\(18\) 0 0
\(19\) −29588.5 −0.0520873 −0.0260437 0.999661i \(-0.508291\pi\)
−0.0260437 + 0.999661i \(0.508291\pi\)
\(20\) 0 0
\(21\) −154724. −0.173609
\(22\) 0 0
\(23\) 87242.5 0.0650059 0.0325029 0.999472i \(-0.489652\pi\)
0.0325029 + 0.999472i \(0.489652\pi\)
\(24\) 0 0
\(25\) 3.79831e6 1.94473
\(26\) 0 0
\(27\) 2.93713e6 1.06362
\(28\) 0 0
\(29\) 4.69746e6 1.23331 0.616655 0.787234i \(-0.288487\pi\)
0.616655 + 0.787234i \(0.288487\pi\)
\(30\) 0 0
\(31\) −5.76563e6 −1.12129 −0.560647 0.828055i \(-0.689448\pi\)
−0.560647 + 0.828055i \(0.689448\pi\)
\(32\) 0 0
\(33\) −1.29033e6 −0.189403
\(34\) 0 0
\(35\) −3.70853e6 −0.417729
\(36\) 0 0
\(37\) 1.47970e7 1.29797 0.648985 0.760801i \(-0.275194\pi\)
0.648985 + 0.760801i \(0.275194\pi\)
\(38\) 0 0
\(39\) 2.85772e6 0.197801
\(40\) 0 0
\(41\) 9.93166e6 0.548901 0.274451 0.961601i \(-0.411504\pi\)
0.274451 + 0.961601i \(0.411504\pi\)
\(42\) 0 0
\(43\) 2.28205e7 1.01793 0.508963 0.860788i \(-0.330029\pi\)
0.508963 + 0.860788i \(0.330029\pi\)
\(44\) 0 0
\(45\) 2.31947e7 0.843205
\(46\) 0 0
\(47\) 4.36131e7 1.30370 0.651849 0.758349i \(-0.273994\pi\)
0.651849 + 0.758349i \(0.273994\pi\)
\(48\) 0 0
\(49\) −3.79623e7 −0.940742
\(50\) 0 0
\(51\) 3.48313e6 0.0720948
\(52\) 0 0
\(53\) −2.13528e7 −0.371718 −0.185859 0.982576i \(-0.559507\pi\)
−0.185859 + 0.982576i \(0.559507\pi\)
\(54\) 0 0
\(55\) −3.09273e7 −0.455733
\(56\) 0 0
\(57\) 2.96053e6 0.0371477
\(58\) 0 0
\(59\) −1.23658e8 −1.32858 −0.664290 0.747475i \(-0.731266\pi\)
−0.664290 + 0.747475i \(0.731266\pi\)
\(60\) 0 0
\(61\) 5.30891e7 0.490932 0.245466 0.969405i \(-0.421059\pi\)
0.245466 + 0.969405i \(0.421059\pi\)
\(62\) 0 0
\(63\) −1.49560e7 −0.119614
\(64\) 0 0
\(65\) 6.84954e7 0.475939
\(66\) 0 0
\(67\) −1.85043e7 −0.112185 −0.0560927 0.998426i \(-0.517864\pi\)
−0.0560927 + 0.998426i \(0.517864\pi\)
\(68\) 0 0
\(69\) −8.72919e6 −0.0463610
\(70\) 0 0
\(71\) −3.09090e8 −1.44352 −0.721759 0.692145i \(-0.756666\pi\)
−0.721759 + 0.692145i \(0.756666\pi\)
\(72\) 0 0
\(73\) 3.60772e8 1.48690 0.743448 0.668794i \(-0.233189\pi\)
0.743448 + 0.668794i \(0.233189\pi\)
\(74\) 0 0
\(75\) −3.80046e8 −1.38695
\(76\) 0 0
\(77\) 1.99420e7 0.0646486
\(78\) 0 0
\(79\) −4.18302e8 −1.20828 −0.604140 0.796878i \(-0.706483\pi\)
−0.604140 + 0.796878i \(0.706483\pi\)
\(80\) 0 0
\(81\) −1.03512e8 −0.267182
\(82\) 0 0
\(83\) 4.97861e8 1.15148 0.575740 0.817633i \(-0.304714\pi\)
0.575740 + 0.817633i \(0.304714\pi\)
\(84\) 0 0
\(85\) 8.34856e7 0.173471
\(86\) 0 0
\(87\) −4.70012e8 −0.879574
\(88\) 0 0
\(89\) 3.35112e8 0.566154 0.283077 0.959097i \(-0.408645\pi\)
0.283077 + 0.959097i \(0.408645\pi\)
\(90\) 0 0
\(91\) −4.41659e7 −0.0675150
\(92\) 0 0
\(93\) 5.76890e8 0.799686
\(94\) 0 0
\(95\) 7.09596e7 0.0893830
\(96\) 0 0
\(97\) −5.37441e8 −0.616394 −0.308197 0.951323i \(-0.599726\pi\)
−0.308197 + 0.951323i \(0.599726\pi\)
\(98\) 0 0
\(99\) −1.24726e8 −0.130496
\(100\) 0 0
\(101\) −5.76680e8 −0.551428 −0.275714 0.961240i \(-0.588914\pi\)
−0.275714 + 0.961240i \(0.588914\pi\)
\(102\) 0 0
\(103\) −4.70346e8 −0.411766 −0.205883 0.978577i \(-0.566007\pi\)
−0.205883 + 0.978577i \(0.566007\pi\)
\(104\) 0 0
\(105\) 3.71063e8 0.297917
\(106\) 0 0
\(107\) 1.43636e8 0.105935 0.0529673 0.998596i \(-0.483132\pi\)
0.0529673 + 0.998596i \(0.483132\pi\)
\(108\) 0 0
\(109\) 1.92524e9 1.30637 0.653186 0.757198i \(-0.273432\pi\)
0.653186 + 0.757198i \(0.273432\pi\)
\(110\) 0 0
\(111\) −1.48053e9 −0.925688
\(112\) 0 0
\(113\) −6.17526e8 −0.356289 −0.178145 0.984004i \(-0.557009\pi\)
−0.178145 + 0.984004i \(0.557009\pi\)
\(114\) 0 0
\(115\) −2.09226e8 −0.111552
\(116\) 0 0
\(117\) 2.76233e8 0.136282
\(118\) 0 0
\(119\) −5.38316e7 −0.0246080
\(120\) 0 0
\(121\) −2.19164e9 −0.929470
\(122\) 0 0
\(123\) −9.93728e8 −0.391466
\(124\) 0 0
\(125\) −4.42514e9 −1.62118
\(126\) 0 0
\(127\) −3.20743e9 −1.09406 −0.547029 0.837114i \(-0.684241\pi\)
−0.547029 + 0.837114i \(0.684241\pi\)
\(128\) 0 0
\(129\) −2.28334e9 −0.725966
\(130\) 0 0
\(131\) −4.61577e8 −0.136938 −0.0684688 0.997653i \(-0.521811\pi\)
−0.0684688 + 0.997653i \(0.521811\pi\)
\(132\) 0 0
\(133\) −4.57548e7 −0.0126796
\(134\) 0 0
\(135\) −7.04387e9 −1.82519
\(136\) 0 0
\(137\) −2.72394e9 −0.660626 −0.330313 0.943871i \(-0.607154\pi\)
−0.330313 + 0.943871i \(0.607154\pi\)
\(138\) 0 0
\(139\) 5.18624e9 1.17838 0.589191 0.807994i \(-0.299447\pi\)
0.589191 + 0.807994i \(0.299447\pi\)
\(140\) 0 0
\(141\) −4.36378e9 −0.929773
\(142\) 0 0
\(143\) −3.68322e8 −0.0736573
\(144\) 0 0
\(145\) −1.12655e10 −2.11639
\(146\) 0 0
\(147\) 3.79838e9 0.670920
\(148\) 0 0
\(149\) −4.06533e9 −0.675706 −0.337853 0.941199i \(-0.609701\pi\)
−0.337853 + 0.941199i \(0.609701\pi\)
\(150\) 0 0
\(151\) −9.37428e9 −1.46738 −0.733688 0.679486i \(-0.762203\pi\)
−0.733688 + 0.679486i \(0.762203\pi\)
\(152\) 0 0
\(153\) 3.36686e8 0.0496723
\(154\) 0 0
\(155\) 1.38272e10 1.92417
\(156\) 0 0
\(157\) 8.39317e9 1.10250 0.551249 0.834341i \(-0.314152\pi\)
0.551249 + 0.834341i \(0.314152\pi\)
\(158\) 0 0
\(159\) 2.13649e9 0.265103
\(160\) 0 0
\(161\) 1.34909e8 0.0158243
\(162\) 0 0
\(163\) −3.92613e9 −0.435633 −0.217817 0.975990i \(-0.569893\pi\)
−0.217817 + 0.975990i \(0.569893\pi\)
\(164\) 0 0
\(165\) 3.09448e9 0.325020
\(166\) 0 0
\(167\) −1.04162e9 −0.103630 −0.0518150 0.998657i \(-0.516501\pi\)
−0.0518150 + 0.998657i \(0.516501\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 2.86170e8 0.0255942
\(172\) 0 0
\(173\) −9.91250e9 −0.841348 −0.420674 0.907212i \(-0.638206\pi\)
−0.420674 + 0.907212i \(0.638206\pi\)
\(174\) 0 0
\(175\) 5.87359e9 0.473404
\(176\) 0 0
\(177\) 1.23728e10 0.947519
\(178\) 0 0
\(179\) −4.10530e9 −0.298887 −0.149443 0.988770i \(-0.547748\pi\)
−0.149443 + 0.988770i \(0.547748\pi\)
\(180\) 0 0
\(181\) −2.62132e8 −0.0181538 −0.00907689 0.999959i \(-0.502889\pi\)
−0.00907689 + 0.999959i \(0.502889\pi\)
\(182\) 0 0
\(183\) −5.31192e9 −0.350124
\(184\) 0 0
\(185\) −3.54863e10 −2.22735
\(186\) 0 0
\(187\) −4.48930e8 −0.0268467
\(188\) 0 0
\(189\) 4.54189e9 0.258916
\(190\) 0 0
\(191\) 4.98229e9 0.270881 0.135441 0.990785i \(-0.456755\pi\)
0.135441 + 0.990785i \(0.456755\pi\)
\(192\) 0 0
\(193\) 4.89338e9 0.253864 0.126932 0.991911i \(-0.459487\pi\)
0.126932 + 0.991911i \(0.459487\pi\)
\(194\) 0 0
\(195\) −6.85342e9 −0.339431
\(196\) 0 0
\(197\) −3.92552e10 −1.85695 −0.928473 0.371401i \(-0.878877\pi\)
−0.928473 + 0.371401i \(0.878877\pi\)
\(198\) 0 0
\(199\) 2.90641e10 1.31376 0.656882 0.753993i \(-0.271875\pi\)
0.656882 + 0.753993i \(0.271875\pi\)
\(200\) 0 0
\(201\) 1.85148e9 0.0800086
\(202\) 0 0
\(203\) 7.26401e9 0.300223
\(204\) 0 0
\(205\) −2.38182e10 −0.941927
\(206\) 0 0
\(207\) −8.43780e8 −0.0319421
\(208\) 0 0
\(209\) −3.81573e8 −0.0138331
\(210\) 0 0
\(211\) −1.12125e9 −0.0389432 −0.0194716 0.999810i \(-0.506198\pi\)
−0.0194716 + 0.999810i \(0.506198\pi\)
\(212\) 0 0
\(213\) 3.09265e10 1.02949
\(214\) 0 0
\(215\) −5.47284e10 −1.74678
\(216\) 0 0
\(217\) −8.91580e9 −0.272955
\(218\) 0 0
\(219\) −3.60977e10 −1.06043
\(220\) 0 0
\(221\) 9.94254e8 0.0280370
\(222\) 0 0
\(223\) 3.12395e10 0.845926 0.422963 0.906147i \(-0.360990\pi\)
0.422963 + 0.906147i \(0.360990\pi\)
\(224\) 0 0
\(225\) −3.67360e10 −0.955587
\(226\) 0 0
\(227\) −4.59052e10 −1.14748 −0.573740 0.819037i \(-0.694508\pi\)
−0.573740 + 0.819037i \(0.694508\pi\)
\(228\) 0 0
\(229\) 5.14797e10 1.23702 0.618510 0.785777i \(-0.287737\pi\)
0.618510 + 0.785777i \(0.287737\pi\)
\(230\) 0 0
\(231\) −1.99532e9 −0.0461062
\(232\) 0 0
\(233\) −5.21911e10 −1.16010 −0.580049 0.814582i \(-0.696967\pi\)
−0.580049 + 0.814582i \(0.696967\pi\)
\(234\) 0 0
\(235\) −1.04594e11 −2.23717
\(236\) 0 0
\(237\) 4.18539e10 0.861723
\(238\) 0 0
\(239\) −9.76347e10 −1.93559 −0.967795 0.251739i \(-0.918998\pi\)
−0.967795 + 0.251739i \(0.918998\pi\)
\(240\) 0 0
\(241\) 4.66786e10 0.891335 0.445667 0.895199i \(-0.352966\pi\)
0.445667 + 0.895199i \(0.352966\pi\)
\(242\) 0 0
\(243\) −4.74545e10 −0.873070
\(244\) 0 0
\(245\) 9.10419e10 1.61434
\(246\) 0 0
\(247\) 8.45078e8 0.0144464
\(248\) 0 0
\(249\) −4.98142e10 −0.821214
\(250\) 0 0
\(251\) 4.78831e10 0.761466 0.380733 0.924685i \(-0.375672\pi\)
0.380733 + 0.924685i \(0.375672\pi\)
\(252\) 0 0
\(253\) 1.12508e9 0.0172639
\(254\) 0 0
\(255\) −8.35329e9 −0.123716
\(256\) 0 0
\(257\) 1.95101e10 0.278972 0.139486 0.990224i \(-0.455455\pi\)
0.139486 + 0.990224i \(0.455455\pi\)
\(258\) 0 0
\(259\) 2.28816e10 0.315963
\(260\) 0 0
\(261\) −4.54323e10 −0.606014
\(262\) 0 0
\(263\) 6.50217e10 0.838025 0.419013 0.907980i \(-0.362376\pi\)
0.419013 + 0.907980i \(0.362376\pi\)
\(264\) 0 0
\(265\) 5.12087e10 0.637877
\(266\) 0 0
\(267\) −3.35302e10 −0.403771
\(268\) 0 0
\(269\) −2.04324e9 −0.0237922 −0.0118961 0.999929i \(-0.503787\pi\)
−0.0118961 + 0.999929i \(0.503787\pi\)
\(270\) 0 0
\(271\) 1.24125e11 1.39797 0.698987 0.715135i \(-0.253635\pi\)
0.698987 + 0.715135i \(0.253635\pi\)
\(272\) 0 0
\(273\) 4.41909e9 0.0481505
\(274\) 0 0
\(275\) 4.89829e10 0.516473
\(276\) 0 0
\(277\) 7.05115e10 0.719617 0.359808 0.933026i \(-0.382842\pi\)
0.359808 + 0.933026i \(0.382842\pi\)
\(278\) 0 0
\(279\) 5.57633e10 0.550972
\(280\) 0 0
\(281\) 1.60133e11 1.53215 0.766076 0.642750i \(-0.222206\pi\)
0.766076 + 0.642750i \(0.222206\pi\)
\(282\) 0 0
\(283\) −1.61246e10 −0.149434 −0.0747169 0.997205i \(-0.523805\pi\)
−0.0747169 + 0.997205i \(0.523805\pi\)
\(284\) 0 0
\(285\) −7.09998e9 −0.0637463
\(286\) 0 0
\(287\) 1.53580e10 0.133618
\(288\) 0 0
\(289\) −1.17376e11 −0.989781
\(290\) 0 0
\(291\) 5.37746e10 0.439601
\(292\) 0 0
\(293\) 1.61823e11 1.28273 0.641364 0.767237i \(-0.278369\pi\)
0.641364 + 0.767237i \(0.278369\pi\)
\(294\) 0 0
\(295\) 2.96558e11 2.27987
\(296\) 0 0
\(297\) 3.78772e10 0.282471
\(298\) 0 0
\(299\) −2.49173e9 −0.0180294
\(300\) 0 0
\(301\) 3.52889e10 0.247793
\(302\) 0 0
\(303\) 5.77007e10 0.393269
\(304\) 0 0
\(305\) −1.27319e11 −0.842450
\(306\) 0 0
\(307\) 2.09189e11 1.34405 0.672025 0.740528i \(-0.265425\pi\)
0.672025 + 0.740528i \(0.265425\pi\)
\(308\) 0 0
\(309\) 4.70612e10 0.293664
\(310\) 0 0
\(311\) −2.58404e11 −1.56631 −0.783153 0.621829i \(-0.786390\pi\)
−0.783153 + 0.621829i \(0.786390\pi\)
\(312\) 0 0
\(313\) 2.73691e11 1.61180 0.805901 0.592051i \(-0.201681\pi\)
0.805901 + 0.592051i \(0.201681\pi\)
\(314\) 0 0
\(315\) 3.58676e10 0.205260
\(316\) 0 0
\(317\) −3.02680e10 −0.168352 −0.0841759 0.996451i \(-0.526826\pi\)
−0.0841759 + 0.996451i \(0.526826\pi\)
\(318\) 0 0
\(319\) 6.05784e10 0.327536
\(320\) 0 0
\(321\) −1.43718e10 −0.0755506
\(322\) 0 0
\(323\) 1.03002e9 0.00526545
\(324\) 0 0
\(325\) −1.08483e11 −0.539372
\(326\) 0 0
\(327\) −1.92633e11 −0.931680
\(328\) 0 0
\(329\) 6.74420e10 0.317358
\(330\) 0 0
\(331\) 3.04175e11 1.39283 0.696414 0.717640i \(-0.254778\pi\)
0.696414 + 0.717640i \(0.254778\pi\)
\(332\) 0 0
\(333\) −1.43111e11 −0.637786
\(334\) 0 0
\(335\) 4.43773e10 0.192513
\(336\) 0 0
\(337\) 2.17056e11 0.916719 0.458360 0.888767i \(-0.348437\pi\)
0.458360 + 0.888767i \(0.348437\pi\)
\(338\) 0 0
\(339\) 6.17876e10 0.254099
\(340\) 0 0
\(341\) −7.43535e10 −0.297788
\(342\) 0 0
\(343\) −1.21105e11 −0.472433
\(344\) 0 0
\(345\) 2.09345e10 0.0795565
\(346\) 0 0
\(347\) −6.29807e10 −0.233198 −0.116599 0.993179i \(-0.537199\pi\)
−0.116599 + 0.993179i \(0.537199\pi\)
\(348\) 0 0
\(349\) 2.13921e11 0.771860 0.385930 0.922528i \(-0.373881\pi\)
0.385930 + 0.922528i \(0.373881\pi\)
\(350\) 0 0
\(351\) −8.38874e10 −0.294995
\(352\) 0 0
\(353\) −3.21280e11 −1.10128 −0.550639 0.834744i \(-0.685616\pi\)
−0.550639 + 0.834744i \(0.685616\pi\)
\(354\) 0 0
\(355\) 7.41263e11 2.47711
\(356\) 0 0
\(357\) 5.38620e9 0.0175499
\(358\) 0 0
\(359\) 1.30411e11 0.414371 0.207186 0.978302i \(-0.433570\pi\)
0.207186 + 0.978302i \(0.433570\pi\)
\(360\) 0 0
\(361\) −3.21812e11 −0.997287
\(362\) 0 0
\(363\) 2.19288e11 0.662881
\(364\) 0 0
\(365\) −8.65209e11 −2.55155
\(366\) 0 0
\(367\) −3.75855e11 −1.08149 −0.540746 0.841186i \(-0.681858\pi\)
−0.540746 + 0.841186i \(0.681858\pi\)
\(368\) 0 0
\(369\) −9.60557e10 −0.269715
\(370\) 0 0
\(371\) −3.30194e10 −0.0904870
\(372\) 0 0
\(373\) 4.46005e10 0.119303 0.0596513 0.998219i \(-0.481001\pi\)
0.0596513 + 0.998219i \(0.481001\pi\)
\(374\) 0 0
\(375\) 4.42765e11 1.15620
\(376\) 0 0
\(377\) −1.34164e11 −0.342059
\(378\) 0 0
\(379\) −7.91117e11 −1.96954 −0.984768 0.173872i \(-0.944372\pi\)
−0.984768 + 0.173872i \(0.944372\pi\)
\(380\) 0 0
\(381\) 3.20925e11 0.780262
\(382\) 0 0
\(383\) 3.98733e10 0.0946863 0.0473432 0.998879i \(-0.484925\pi\)
0.0473432 + 0.998879i \(0.484925\pi\)
\(384\) 0 0
\(385\) −4.78251e10 −0.110939
\(386\) 0 0
\(387\) −2.20712e11 −0.500180
\(388\) 0 0
\(389\) 4.45502e11 0.986453 0.493227 0.869901i \(-0.335817\pi\)
0.493227 + 0.869901i \(0.335817\pi\)
\(390\) 0 0
\(391\) −3.03705e9 −0.00657137
\(392\) 0 0
\(393\) 4.61838e10 0.0976614
\(394\) 0 0
\(395\) 1.00318e12 2.07344
\(396\) 0 0
\(397\) −1.41918e11 −0.286735 −0.143367 0.989670i \(-0.545793\pi\)
−0.143367 + 0.989670i \(0.545793\pi\)
\(398\) 0 0
\(399\) 4.57807e9 0.00904283
\(400\) 0 0
\(401\) 7.91193e11 1.52803 0.764016 0.645197i \(-0.223225\pi\)
0.764016 + 0.645197i \(0.223225\pi\)
\(402\) 0 0
\(403\) 1.64672e11 0.310991
\(404\) 0 0
\(405\) 2.48243e11 0.458490
\(406\) 0 0
\(407\) 1.90821e11 0.344708
\(408\) 0 0
\(409\) 7.35512e11 1.29968 0.649838 0.760073i \(-0.274837\pi\)
0.649838 + 0.760073i \(0.274837\pi\)
\(410\) 0 0
\(411\) 2.72549e11 0.471146
\(412\) 0 0
\(413\) −1.91221e11 −0.323415
\(414\) 0 0
\(415\) −1.19398e12 −1.97597
\(416\) 0 0
\(417\) −5.18918e11 −0.840400
\(418\) 0 0
\(419\) 6.46595e10 0.102487 0.0512436 0.998686i \(-0.483682\pi\)
0.0512436 + 0.998686i \(0.483682\pi\)
\(420\) 0 0
\(421\) −3.44906e11 −0.535095 −0.267548 0.963545i \(-0.586213\pi\)
−0.267548 + 0.963545i \(0.586213\pi\)
\(422\) 0 0
\(423\) −4.21812e11 −0.640600
\(424\) 0 0
\(425\) −1.32225e11 −0.196591
\(426\) 0 0
\(427\) 8.20954e10 0.119507
\(428\) 0 0
\(429\) 3.68531e10 0.0525310
\(430\) 0 0
\(431\) −1.18138e12 −1.64908 −0.824539 0.565806i \(-0.808565\pi\)
−0.824539 + 0.565806i \(0.808565\pi\)
\(432\) 0 0
\(433\) 8.62695e11 1.17940 0.589701 0.807622i \(-0.299246\pi\)
0.589701 + 0.807622i \(0.299246\pi\)
\(434\) 0 0
\(435\) 1.12719e12 1.50937
\(436\) 0 0
\(437\) −2.58137e9 −0.00338598
\(438\) 0 0
\(439\) −1.42545e12 −1.83174 −0.915868 0.401480i \(-0.868496\pi\)
−0.915868 + 0.401480i \(0.868496\pi\)
\(440\) 0 0
\(441\) 3.67159e11 0.462254
\(442\) 0 0
\(443\) 1.30736e11 0.161279 0.0806396 0.996743i \(-0.474304\pi\)
0.0806396 + 0.996743i \(0.474304\pi\)
\(444\) 0 0
\(445\) −8.03670e11 −0.971533
\(446\) 0 0
\(447\) 4.06764e11 0.481901
\(448\) 0 0
\(449\) −3.46674e11 −0.402543 −0.201272 0.979535i \(-0.564507\pi\)
−0.201272 + 0.979535i \(0.564507\pi\)
\(450\) 0 0
\(451\) 1.28078e11 0.145775
\(452\) 0 0
\(453\) 9.37959e11 1.04651
\(454\) 0 0
\(455\) 1.05919e11 0.115857
\(456\) 0 0
\(457\) 1.21675e12 1.30491 0.652454 0.757829i \(-0.273740\pi\)
0.652454 + 0.757829i \(0.273740\pi\)
\(458\) 0 0
\(459\) −1.02246e11 −0.107520
\(460\) 0 0
\(461\) −1.71920e12 −1.77285 −0.886425 0.462871i \(-0.846819\pi\)
−0.886425 + 0.462871i \(0.846819\pi\)
\(462\) 0 0
\(463\) −1.11675e12 −1.12938 −0.564691 0.825302i \(-0.691005\pi\)
−0.564691 + 0.825302i \(0.691005\pi\)
\(464\) 0 0
\(465\) −1.38351e12 −1.37228
\(466\) 0 0
\(467\) −1.49994e12 −1.45931 −0.729654 0.683817i \(-0.760319\pi\)
−0.729654 + 0.683817i \(0.760319\pi\)
\(468\) 0 0
\(469\) −2.86145e10 −0.0273092
\(470\) 0 0
\(471\) −8.39792e11 −0.786281
\(472\) 0 0
\(473\) 2.94292e11 0.270336
\(474\) 0 0
\(475\) −1.12386e11 −0.101296
\(476\) 0 0
\(477\) 2.06518e11 0.182652
\(478\) 0 0
\(479\) 1.02224e12 0.887244 0.443622 0.896214i \(-0.353693\pi\)
0.443622 + 0.896214i \(0.353693\pi\)
\(480\) 0 0
\(481\) −4.22616e11 −0.359992
\(482\) 0 0
\(483\) −1.34985e10 −0.0112856
\(484\) 0 0
\(485\) 1.28890e12 1.05775
\(486\) 0 0
\(487\) −2.00167e12 −1.61254 −0.806272 0.591545i \(-0.798518\pi\)
−0.806272 + 0.591545i \(0.798518\pi\)
\(488\) 0 0
\(489\) 3.92836e11 0.310686
\(490\) 0 0
\(491\) −9.02846e11 −0.701047 −0.350523 0.936554i \(-0.613996\pi\)
−0.350523 + 0.936554i \(0.613996\pi\)
\(492\) 0 0
\(493\) −1.63526e11 −0.124674
\(494\) 0 0
\(495\) 2.99119e11 0.223934
\(496\) 0 0
\(497\) −4.77967e11 −0.351394
\(498\) 0 0
\(499\) −1.80705e12 −1.30472 −0.652360 0.757909i \(-0.726221\pi\)
−0.652360 + 0.757909i \(0.726221\pi\)
\(500\) 0 0
\(501\) 1.04221e11 0.0739070
\(502\) 0 0
\(503\) −4.95765e11 −0.345319 −0.172659 0.984982i \(-0.555236\pi\)
−0.172659 + 0.984982i \(0.555236\pi\)
\(504\) 0 0
\(505\) 1.38300e12 0.946263
\(506\) 0 0
\(507\) −8.16193e10 −0.0548601
\(508\) 0 0
\(509\) −2.41843e12 −1.59700 −0.798499 0.601996i \(-0.794372\pi\)
−0.798499 + 0.601996i \(0.794372\pi\)
\(510\) 0 0
\(511\) 5.57887e11 0.361953
\(512\) 0 0
\(513\) −8.69053e10 −0.0554011
\(514\) 0 0
\(515\) 1.12799e12 0.706599
\(516\) 0 0
\(517\) 5.62434e11 0.346230
\(518\) 0 0
\(519\) 9.91811e11 0.600034
\(520\) 0 0
\(521\) −7.87743e10 −0.0468398 −0.0234199 0.999726i \(-0.507455\pi\)
−0.0234199 + 0.999726i \(0.507455\pi\)
\(522\) 0 0
\(523\) −8.05258e11 −0.470628 −0.235314 0.971919i \(-0.575612\pi\)
−0.235314 + 0.971919i \(0.575612\pi\)
\(524\) 0 0
\(525\) −5.87691e11 −0.337623
\(526\) 0 0
\(527\) 2.00711e11 0.113350
\(528\) 0 0
\(529\) −1.79354e12 −0.995774
\(530\) 0 0
\(531\) 1.19598e12 0.652827
\(532\) 0 0
\(533\) −2.83658e11 −0.152238
\(534\) 0 0
\(535\) −3.44471e11 −0.181786
\(536\) 0 0
\(537\) 4.10763e11 0.213161
\(538\) 0 0
\(539\) −4.89562e11 −0.249838
\(540\) 0 0
\(541\) −4.67507e11 −0.234639 −0.117320 0.993094i \(-0.537430\pi\)
−0.117320 + 0.993094i \(0.537430\pi\)
\(542\) 0 0
\(543\) 2.62281e10 0.0129469
\(544\) 0 0
\(545\) −4.61715e12 −2.24176
\(546\) 0 0
\(547\) 1.59182e12 0.760242 0.380121 0.924937i \(-0.375882\pi\)
0.380121 + 0.924937i \(0.375882\pi\)
\(548\) 0 0
\(549\) −5.13461e11 −0.241230
\(550\) 0 0
\(551\) −1.38991e11 −0.0642398
\(552\) 0 0
\(553\) −6.46849e11 −0.294130
\(554\) 0 0
\(555\) 3.55064e12 1.58850
\(556\) 0 0
\(557\) −4.55275e10 −0.0200413 −0.0100207 0.999950i \(-0.503190\pi\)
−0.0100207 + 0.999950i \(0.503190\pi\)
\(558\) 0 0
\(559\) −6.51775e11 −0.282322
\(560\) 0 0
\(561\) 4.49184e10 0.0191466
\(562\) 0 0
\(563\) 1.75827e12 0.737562 0.368781 0.929516i \(-0.379775\pi\)
0.368781 + 0.929516i \(0.379775\pi\)
\(564\) 0 0
\(565\) 1.48096e12 0.611400
\(566\) 0 0
\(567\) −1.60067e11 −0.0650398
\(568\) 0 0
\(569\) 1.69143e12 0.676469 0.338235 0.941062i \(-0.390170\pi\)
0.338235 + 0.941062i \(0.390170\pi\)
\(570\) 0 0
\(571\) 1.78493e12 0.702682 0.351341 0.936247i \(-0.385726\pi\)
0.351341 + 0.936247i \(0.385726\pi\)
\(572\) 0 0
\(573\) −4.98511e11 −0.193187
\(574\) 0 0
\(575\) 3.31374e11 0.126419
\(576\) 0 0
\(577\) −3.75906e12 −1.41185 −0.705924 0.708288i \(-0.749468\pi\)
−0.705924 + 0.708288i \(0.749468\pi\)
\(578\) 0 0
\(579\) −4.89616e11 −0.181051
\(580\) 0 0
\(581\) 7.69876e11 0.280303
\(582\) 0 0
\(583\) −2.75366e11 −0.0987192
\(584\) 0 0
\(585\) −6.62465e11 −0.233863
\(586\) 0 0
\(587\) −2.10553e11 −0.0731965 −0.0365982 0.999330i \(-0.511652\pi\)
−0.0365982 + 0.999330i \(0.511652\pi\)
\(588\) 0 0
\(589\) 1.70597e11 0.0584052
\(590\) 0 0
\(591\) 3.92774e12 1.32434
\(592\) 0 0
\(593\) 2.33945e12 0.776906 0.388453 0.921469i \(-0.373010\pi\)
0.388453 + 0.921469i \(0.373010\pi\)
\(594\) 0 0
\(595\) 1.29100e11 0.0422278
\(596\) 0 0
\(597\) −2.90805e12 −0.936953
\(598\) 0 0
\(599\) −2.98402e12 −0.947068 −0.473534 0.880775i \(-0.657022\pi\)
−0.473534 + 0.880775i \(0.657022\pi\)
\(600\) 0 0
\(601\) −1.88352e12 −0.588891 −0.294445 0.955668i \(-0.595135\pi\)
−0.294445 + 0.955668i \(0.595135\pi\)
\(602\) 0 0
\(603\) 1.78968e11 0.0551248
\(604\) 0 0
\(605\) 5.25603e12 1.59499
\(606\) 0 0
\(607\) −4.77594e12 −1.42794 −0.713969 0.700177i \(-0.753104\pi\)
−0.713969 + 0.700177i \(0.753104\pi\)
\(608\) 0 0
\(609\) −7.26812e11 −0.214114
\(610\) 0 0
\(611\) −1.24563e12 −0.361581
\(612\) 0 0
\(613\) −4.25987e12 −1.21850 −0.609249 0.792979i \(-0.708529\pi\)
−0.609249 + 0.792979i \(0.708529\pi\)
\(614\) 0 0
\(615\) 2.38317e12 0.671765
\(616\) 0 0
\(617\) 4.63557e12 1.28771 0.643857 0.765145i \(-0.277333\pi\)
0.643857 + 0.765145i \(0.277333\pi\)
\(618\) 0 0
\(619\) −5.83308e12 −1.59694 −0.798472 0.602032i \(-0.794358\pi\)
−0.798472 + 0.602032i \(0.794358\pi\)
\(620\) 0 0
\(621\) 2.56242e11 0.0691415
\(622\) 0 0
\(623\) 5.18207e11 0.137818
\(624\) 0 0
\(625\) 3.19387e12 0.837255
\(626\) 0 0
\(627\) 3.81789e10 0.00986551
\(628\) 0 0
\(629\) −5.15105e11 −0.131210
\(630\) 0 0
\(631\) −5.50540e12 −1.38247 −0.691236 0.722629i \(-0.742934\pi\)
−0.691236 + 0.722629i \(0.742934\pi\)
\(632\) 0 0
\(633\) 1.12189e11 0.0277736
\(634\) 0 0
\(635\) 7.69210e12 1.87743
\(636\) 0 0
\(637\) 1.08424e12 0.260915
\(638\) 0 0
\(639\) 2.98941e12 0.709304
\(640\) 0 0
\(641\) −6.97731e12 −1.63240 −0.816201 0.577768i \(-0.803924\pi\)
−0.816201 + 0.577768i \(0.803924\pi\)
\(642\) 0 0
\(643\) −1.83777e12 −0.423976 −0.211988 0.977272i \(-0.567994\pi\)
−0.211988 + 0.977272i \(0.567994\pi\)
\(644\) 0 0
\(645\) 5.47593e12 1.24577
\(646\) 0 0
\(647\) −7.60981e11 −0.170728 −0.0853640 0.996350i \(-0.527205\pi\)
−0.0853640 + 0.996350i \(0.527205\pi\)
\(648\) 0 0
\(649\) −1.59469e12 −0.352838
\(650\) 0 0
\(651\) 8.92085e11 0.194667
\(652\) 0 0
\(653\) −2.16319e12 −0.465570 −0.232785 0.972528i \(-0.574784\pi\)
−0.232785 + 0.972528i \(0.574784\pi\)
\(654\) 0 0
\(655\) 1.10696e12 0.234988
\(656\) 0 0
\(657\) −3.48927e12 −0.730618
\(658\) 0 0
\(659\) 6.02579e12 1.24460 0.622300 0.782779i \(-0.286199\pi\)
0.622300 + 0.782779i \(0.286199\pi\)
\(660\) 0 0
\(661\) 1.26118e12 0.256963 0.128481 0.991712i \(-0.458990\pi\)
0.128481 + 0.991712i \(0.458990\pi\)
\(662\) 0 0
\(663\) −9.94817e10 −0.0199955
\(664\) 0 0
\(665\) 1.09730e11 0.0217584
\(666\) 0 0
\(667\) 4.09818e11 0.0801724
\(668\) 0 0
\(669\) −3.12572e12 −0.603299
\(670\) 0 0
\(671\) 6.84637e11 0.130379
\(672\) 0 0
\(673\) 7.37827e12 1.38640 0.693198 0.720748i \(-0.256201\pi\)
0.693198 + 0.720748i \(0.256201\pi\)
\(674\) 0 0
\(675\) 1.11561e13 2.06846
\(676\) 0 0
\(677\) 5.88382e12 1.07649 0.538245 0.842788i \(-0.319087\pi\)
0.538245 + 0.842788i \(0.319087\pi\)
\(678\) 0 0
\(679\) −8.31083e11 −0.150048
\(680\) 0 0
\(681\) 4.59312e12 0.818362
\(682\) 0 0
\(683\) 4.88451e12 0.858871 0.429436 0.903098i \(-0.358713\pi\)
0.429436 + 0.903098i \(0.358713\pi\)
\(684\) 0 0
\(685\) 6.53260e12 1.13365
\(686\) 0 0
\(687\) −5.15089e12 −0.882220
\(688\) 0 0
\(689\) 6.09858e11 0.103096
\(690\) 0 0
\(691\) 9.77308e12 1.63072 0.815361 0.578953i \(-0.196538\pi\)
0.815361 + 0.578953i \(0.196538\pi\)
\(692\) 0 0
\(693\) −1.92872e11 −0.0317665
\(694\) 0 0
\(695\) −1.24377e13 −2.02213
\(696\) 0 0
\(697\) −3.45737e11 −0.0554879
\(698\) 0 0
\(699\) 5.22206e12 0.827361
\(700\) 0 0
\(701\) −1.06947e13 −1.67278 −0.836391 0.548134i \(-0.815339\pi\)
−0.836391 + 0.548134i \(0.815339\pi\)
\(702\) 0 0
\(703\) −4.37820e11 −0.0676078
\(704\) 0 0
\(705\) 1.04653e13 1.59551
\(706\) 0 0
\(707\) −8.91761e11 −0.134234
\(708\) 0 0
\(709\) 6.42483e12 0.954891 0.477445 0.878661i \(-0.341563\pi\)
0.477445 + 0.878661i \(0.341563\pi\)
\(710\) 0 0
\(711\) 4.04568e12 0.593715
\(712\) 0 0
\(713\) −5.03008e11 −0.0728907
\(714\) 0 0
\(715\) 8.83316e11 0.126398
\(716\) 0 0
\(717\) 9.76899e12 1.38043
\(718\) 0 0
\(719\) −9.15374e12 −1.27738 −0.638688 0.769466i \(-0.720523\pi\)
−0.638688 + 0.769466i \(0.720523\pi\)
\(720\) 0 0
\(721\) −7.27329e11 −0.100236
\(722\) 0 0
\(723\) −4.67050e12 −0.635684
\(724\) 0 0
\(725\) 1.78424e13 2.39846
\(726\) 0 0
\(727\) 3.78498e12 0.502526 0.251263 0.967919i \(-0.419154\pi\)
0.251263 + 0.967919i \(0.419154\pi\)
\(728\) 0 0
\(729\) 6.78556e12 0.889839
\(730\) 0 0
\(731\) −7.94416e11 −0.102901
\(732\) 0 0
\(733\) 3.08194e12 0.394327 0.197164 0.980371i \(-0.436827\pi\)
0.197164 + 0.980371i \(0.436827\pi\)
\(734\) 0 0
\(735\) −9.10934e12 −1.15131
\(736\) 0 0
\(737\) −2.38631e11 −0.0297937
\(738\) 0 0
\(739\) 1.13283e13 1.39721 0.698607 0.715505i \(-0.253803\pi\)
0.698607 + 0.715505i \(0.253803\pi\)
\(740\) 0 0
\(741\) −8.45556e10 −0.0103029
\(742\) 0 0
\(743\) −1.98944e12 −0.239486 −0.119743 0.992805i \(-0.538207\pi\)
−0.119743 + 0.992805i \(0.538207\pi\)
\(744\) 0 0
\(745\) 9.74954e12 1.15953
\(746\) 0 0
\(747\) −4.81514e12 −0.565805
\(748\) 0 0
\(749\) 2.22115e11 0.0257875
\(750\) 0 0
\(751\) −1.64086e13 −1.88231 −0.941157 0.337971i \(-0.890259\pi\)
−0.941157 + 0.337971i \(0.890259\pi\)
\(752\) 0 0
\(753\) −4.79102e12 −0.543064
\(754\) 0 0
\(755\) 2.24815e13 2.51805
\(756\) 0 0
\(757\) 1.47125e13 1.62838 0.814190 0.580598i \(-0.197181\pi\)
0.814190 + 0.580598i \(0.197181\pi\)
\(758\) 0 0
\(759\) −1.12571e11 −0.0123123
\(760\) 0 0
\(761\) −7.63318e12 −0.825040 −0.412520 0.910949i \(-0.635351\pi\)
−0.412520 + 0.910949i \(0.635351\pi\)
\(762\) 0 0
\(763\) 2.97714e12 0.318008
\(764\) 0 0
\(765\) −8.07446e11 −0.0852387
\(766\) 0 0
\(767\) 3.53179e12 0.368482
\(768\) 0 0
\(769\) 8.30840e12 0.856740 0.428370 0.903603i \(-0.359088\pi\)
0.428370 + 0.903603i \(0.359088\pi\)
\(770\) 0 0
\(771\) −1.95212e12 −0.198958
\(772\) 0 0
\(773\) −8.08709e12 −0.814675 −0.407338 0.913278i \(-0.633543\pi\)
−0.407338 + 0.913278i \(0.633543\pi\)
\(774\) 0 0
\(775\) −2.18997e13 −2.18062
\(776\) 0 0
\(777\) −2.28945e12 −0.225339
\(778\) 0 0
\(779\) −2.93863e11 −0.0285908
\(780\) 0 0
\(781\) −3.98602e12 −0.383362
\(782\) 0 0
\(783\) 1.37970e13 1.31177
\(784\) 0 0
\(785\) −2.01286e13 −1.89191
\(786\) 0 0
\(787\) −7.00768e12 −0.651161 −0.325580 0.945514i \(-0.605560\pi\)
−0.325580 + 0.945514i \(0.605560\pi\)
\(788\) 0 0
\(789\) −6.50585e12 −0.597664
\(790\) 0 0
\(791\) −9.54924e11 −0.0867310
\(792\) 0 0
\(793\) −1.51628e12 −0.136160
\(794\) 0 0
\(795\) −5.12377e12 −0.454922
\(796\) 0 0
\(797\) −2.13611e13 −1.87526 −0.937631 0.347632i \(-0.886986\pi\)
−0.937631 + 0.347632i \(0.886986\pi\)
\(798\) 0 0
\(799\) −1.51824e12 −0.131789
\(800\) 0 0
\(801\) −3.24109e12 −0.278192
\(802\) 0 0
\(803\) 4.65251e12 0.394882
\(804\) 0 0
\(805\) −3.23541e11 −0.0271549
\(806\) 0 0
\(807\) 2.04440e11 0.0169681
\(808\) 0 0
\(809\) −1.54103e13 −1.26486 −0.632432 0.774616i \(-0.717943\pi\)
−0.632432 + 0.774616i \(0.717943\pi\)
\(810\) 0 0
\(811\) 1.10423e13 0.896327 0.448164 0.893951i \(-0.352078\pi\)
0.448164 + 0.893951i \(0.352078\pi\)
\(812\) 0 0
\(813\) −1.24196e13 −0.997009
\(814\) 0 0
\(815\) 9.41571e12 0.747556
\(816\) 0 0
\(817\) −6.75223e11 −0.0530210
\(818\) 0 0
\(819\) 4.27158e11 0.0331750
\(820\) 0 0
\(821\) −2.07575e12 −0.159453 −0.0797263 0.996817i \(-0.525405\pi\)
−0.0797263 + 0.996817i \(0.525405\pi\)
\(822\) 0 0
\(823\) −2.47289e13 −1.87890 −0.939452 0.342680i \(-0.888665\pi\)
−0.939452 + 0.342680i \(0.888665\pi\)
\(824\) 0 0
\(825\) −4.90106e12 −0.368339
\(826\) 0 0
\(827\) −1.19341e13 −0.887186 −0.443593 0.896228i \(-0.646296\pi\)
−0.443593 + 0.896228i \(0.646296\pi\)
\(828\) 0 0
\(829\) 9.59657e12 0.705701 0.352851 0.935680i \(-0.385212\pi\)
0.352851 + 0.935680i \(0.385212\pi\)
\(830\) 0 0
\(831\) −7.05515e12 −0.513217
\(832\) 0 0
\(833\) 1.32153e12 0.0950986
\(834\) 0 0
\(835\) 2.49803e12 0.177831
\(836\) 0 0
\(837\) −1.69344e13 −1.19263
\(838\) 0 0
\(839\) 9.04228e12 0.630012 0.315006 0.949090i \(-0.397993\pi\)
0.315006 + 0.949090i \(0.397993\pi\)
\(840\) 0 0
\(841\) 7.55898e12 0.521052
\(842\) 0 0
\(843\) −1.60224e13 −1.09270
\(844\) 0 0
\(845\) −1.95630e12 −0.132002
\(846\) 0 0
\(847\) −3.38909e12 −0.226260
\(848\) 0 0
\(849\) 1.61337e12 0.106573
\(850\) 0 0
\(851\) 1.29092e12 0.0843757
\(852\) 0 0
\(853\) −2.18412e13 −1.41256 −0.706278 0.707935i \(-0.749627\pi\)
−0.706278 + 0.707935i \(0.749627\pi\)
\(854\) 0 0
\(855\) −6.86298e11 −0.0439203
\(856\) 0 0
\(857\) −1.25968e13 −0.797710 −0.398855 0.917014i \(-0.630592\pi\)
−0.398855 + 0.917014i \(0.630592\pi\)
\(858\) 0 0
\(859\) 1.82770e13 1.14534 0.572671 0.819785i \(-0.305907\pi\)
0.572671 + 0.819785i \(0.305907\pi\)
\(860\) 0 0
\(861\) −1.53667e12 −0.0952942
\(862\) 0 0
\(863\) 2.96892e13 1.82201 0.911004 0.412398i \(-0.135309\pi\)
0.911004 + 0.412398i \(0.135309\pi\)
\(864\) 0 0
\(865\) 2.37723e13 1.44377
\(866\) 0 0
\(867\) 1.17442e13 0.705894
\(868\) 0 0
\(869\) −5.39441e12 −0.320889
\(870\) 0 0
\(871\) 5.28502e11 0.0311146
\(872\) 0 0
\(873\) 5.19796e12 0.302878
\(874\) 0 0
\(875\) −6.84291e12 −0.394643
\(876\) 0 0
\(877\) 9.21910e12 0.526248 0.263124 0.964762i \(-0.415247\pi\)
0.263124 + 0.964762i \(0.415247\pi\)
\(878\) 0 0
\(879\) −1.61914e13 −0.914818
\(880\) 0 0
\(881\) 8.97398e12 0.501873 0.250936 0.968004i \(-0.419262\pi\)
0.250936 + 0.968004i \(0.419262\pi\)
\(882\) 0 0
\(883\) 1.18978e13 0.658631 0.329316 0.944220i \(-0.393182\pi\)
0.329316 + 0.944220i \(0.393182\pi\)
\(884\) 0 0
\(885\) −2.96726e13 −1.62596
\(886\) 0 0
\(887\) −5.73960e12 −0.311333 −0.155667 0.987810i \(-0.549753\pi\)
−0.155667 + 0.987810i \(0.549753\pi\)
\(888\) 0 0
\(889\) −4.95987e12 −0.266325
\(890\) 0 0
\(891\) −1.33489e12 −0.0709569
\(892\) 0 0
\(893\) −1.29045e12 −0.0679061
\(894\) 0 0
\(895\) 9.84540e12 0.512897
\(896\) 0 0
\(897\) 2.49314e11 0.0128582
\(898\) 0 0
\(899\) −2.70838e13 −1.38290
\(900\) 0 0
\(901\) 7.43326e11 0.0375766
\(902\) 0 0
\(903\) −3.53088e12 −0.176721
\(904\) 0 0
\(905\) 6.28650e11 0.0311523
\(906\) 0 0
\(907\) 8.33483e12 0.408944 0.204472 0.978872i \(-0.434452\pi\)
0.204472 + 0.978872i \(0.434452\pi\)
\(908\) 0 0
\(909\) 5.57746e12 0.270956
\(910\) 0 0
\(911\) 3.19355e13 1.53618 0.768089 0.640343i \(-0.221208\pi\)
0.768089 + 0.640343i \(0.221208\pi\)
\(912\) 0 0
\(913\) 6.42040e12 0.305804
\(914\) 0 0
\(915\) 1.27391e13 0.600820
\(916\) 0 0
\(917\) −7.13768e11 −0.0333346
\(918\) 0 0
\(919\) 1.23491e13 0.571106 0.285553 0.958363i \(-0.407823\pi\)
0.285553 + 0.958363i \(0.407823\pi\)
\(920\) 0 0
\(921\) −2.09307e13 −0.958552
\(922\) 0 0
\(923\) 8.82791e12 0.400360
\(924\) 0 0
\(925\) 5.62034e13 2.52421
\(926\) 0 0
\(927\) 4.54903e12 0.202330
\(928\) 0 0
\(929\) 4.29297e12 0.189098 0.0945490 0.995520i \(-0.469859\pi\)
0.0945490 + 0.995520i \(0.469859\pi\)
\(930\) 0 0
\(931\) 1.12325e12 0.0490007
\(932\) 0 0
\(933\) 2.58550e13 1.11706
\(934\) 0 0
\(935\) 1.07663e12 0.0460695
\(936\) 0 0
\(937\) −2.84490e13 −1.20570 −0.602850 0.797855i \(-0.705968\pi\)
−0.602850 + 0.797855i \(0.705968\pi\)
\(938\) 0 0
\(939\) −2.73846e13 −1.14951
\(940\) 0 0
\(941\) −3.33306e13 −1.38576 −0.692882 0.721051i \(-0.743659\pi\)
−0.692882 + 0.721051i \(0.743659\pi\)
\(942\) 0 0
\(943\) 8.66462e11 0.0356818
\(944\) 0 0
\(945\) −1.08924e13 −0.444305
\(946\) 0 0
\(947\) −4.47061e13 −1.80631 −0.903153 0.429318i \(-0.858754\pi\)
−0.903153 + 0.429318i \(0.858754\pi\)
\(948\) 0 0
\(949\) −1.03040e13 −0.412391
\(950\) 0 0
\(951\) 3.02852e12 0.120065
\(952\) 0 0
\(953\) −2.37142e13 −0.931303 −0.465651 0.884968i \(-0.654180\pi\)
−0.465651 + 0.884968i \(0.654180\pi\)
\(954\) 0 0
\(955\) −1.19486e13 −0.464838
\(956\) 0 0
\(957\) −6.06127e12 −0.233593
\(958\) 0 0
\(959\) −4.21222e12 −0.160815
\(960\) 0 0
\(961\) 6.80292e12 0.257300
\(962\) 0 0
\(963\) −1.38920e12 −0.0520532
\(964\) 0 0
\(965\) −1.17354e13 −0.435637
\(966\) 0 0
\(967\) −8.31095e12 −0.305655 −0.152828 0.988253i \(-0.548838\pi\)
−0.152828 + 0.988253i \(0.548838\pi\)
\(968\) 0 0
\(969\) −1.03061e11 −0.00375522
\(970\) 0 0
\(971\) −2.71942e13 −0.981725 −0.490863 0.871237i \(-0.663318\pi\)
−0.490863 + 0.871237i \(0.663318\pi\)
\(972\) 0 0
\(973\) 8.01984e12 0.286852
\(974\) 0 0
\(975\) 1.08545e13 0.384670
\(976\) 0 0
\(977\) 1.22678e13 0.430767 0.215384 0.976530i \(-0.430900\pi\)
0.215384 + 0.976530i \(0.430900\pi\)
\(978\) 0 0
\(979\) 4.32160e12 0.150356
\(980\) 0 0
\(981\) −1.86203e13 −0.641914
\(982\) 0 0
\(983\) −3.84479e13 −1.31336 −0.656678 0.754171i \(-0.728039\pi\)
−0.656678 + 0.754171i \(0.728039\pi\)
\(984\) 0 0
\(985\) 9.41424e13 3.18656
\(986\) 0 0
\(987\) −6.74802e12 −0.226334
\(988\) 0 0
\(989\) 1.99091e12 0.0661712
\(990\) 0 0
\(991\) −1.42869e12 −0.0470550 −0.0235275 0.999723i \(-0.507490\pi\)
−0.0235275 + 0.999723i \(0.507490\pi\)
\(992\) 0 0
\(993\) −3.04347e13 −0.993340
\(994\) 0 0
\(995\) −6.97019e13 −2.25445
\(996\) 0 0
\(997\) −5.20929e13 −1.66974 −0.834872 0.550443i \(-0.814459\pi\)
−0.834872 + 0.550443i \(0.814459\pi\)
\(998\) 0 0
\(999\) 4.34606e13 1.38055
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.l.1.3 7
4.3 odd 2 104.10.a.c.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.c.1.5 7 4.3 odd 2
208.10.a.l.1.3 7 1.1 even 1 trivial