Properties

Label 208.10.a.l.1.4
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 112810 x^{5} + 1645934 x^{4} + 3493976849 x^{3} - 83049726457 x^{2} + \cdots + 864293655586764 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{19}\cdot 3 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(46.9663\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+44.9663 q^{3} +193.817 q^{5} +763.904 q^{7} -17661.0 q^{9} -7561.06 q^{11} -28561.0 q^{13} +8715.25 q^{15} +535351. q^{17} +716609. q^{19} +34349.9 q^{21} -627632. q^{23} -1.91556e6 q^{25} -1.67922e6 q^{27} -1.84961e6 q^{29} +296342. q^{31} -339993. q^{33} +148058. q^{35} -6.20567e6 q^{37} -1.28428e6 q^{39} +3.01484e7 q^{41} -1.43641e6 q^{43} -3.42302e6 q^{45} -5.48782e7 q^{47} -3.97701e7 q^{49} +2.40728e7 q^{51} +2.37822e7 q^{53} -1.46547e6 q^{55} +3.22232e7 q^{57} -7.12523e7 q^{59} +1.75021e8 q^{61} -1.34913e7 q^{63} -5.53562e6 q^{65} -2.91001e8 q^{67} -2.82223e7 q^{69} +1.75425e8 q^{71} -8.41153e7 q^{73} -8.61356e7 q^{75} -5.77592e6 q^{77} -1.29299e8 q^{79} +2.72114e8 q^{81} -8.12518e8 q^{83} +1.03760e8 q^{85} -8.31700e7 q^{87} -2.87146e8 q^{89} -2.18179e7 q^{91} +1.33254e7 q^{93} +1.38891e8 q^{95} +1.18180e9 q^{97} +1.33536e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 13 q^{3} - 801 q^{5} + 1091 q^{7} + 87864 q^{9} - 32218 q^{11} - 199927 q^{13} - 58323 q^{15} - 870531 q^{17} + 128950 q^{19} - 719663 q^{21} - 2198844 q^{23} + 992010 q^{25} - 5441383 q^{27} + 6327710 q^{29}+ \cdots - 5204667600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 44.9663 0.320510 0.160255 0.987076i \(-0.448768\pi\)
0.160255 + 0.987076i \(0.448768\pi\)
\(4\) 0 0
\(5\) 193.817 0.138684 0.0693422 0.997593i \(-0.477910\pi\)
0.0693422 + 0.997593i \(0.477910\pi\)
\(6\) 0 0
\(7\) 763.904 0.120253 0.0601267 0.998191i \(-0.480850\pi\)
0.0601267 + 0.998191i \(0.480850\pi\)
\(8\) 0 0
\(9\) −17661.0 −0.897273
\(10\) 0 0
\(11\) −7561.06 −0.155710 −0.0778548 0.996965i \(-0.524807\pi\)
−0.0778548 + 0.996965i \(0.524807\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 0 0
\(15\) 8715.25 0.0444497
\(16\) 0 0
\(17\) 535351. 1.55460 0.777300 0.629130i \(-0.216589\pi\)
0.777300 + 0.629130i \(0.216589\pi\)
\(18\) 0 0
\(19\) 716609. 1.26151 0.630755 0.775982i \(-0.282745\pi\)
0.630755 + 0.775982i \(0.282745\pi\)
\(20\) 0 0
\(21\) 34349.9 0.0385424
\(22\) 0 0
\(23\) −627632. −0.467659 −0.233830 0.972278i \(-0.575126\pi\)
−0.233830 + 0.972278i \(0.575126\pi\)
\(24\) 0 0
\(25\) −1.91556e6 −0.980767
\(26\) 0 0
\(27\) −1.67922e6 −0.608095
\(28\) 0 0
\(29\) −1.84961e6 −0.485611 −0.242806 0.970075i \(-0.578068\pi\)
−0.242806 + 0.970075i \(0.578068\pi\)
\(30\) 0 0
\(31\) 296342. 0.0576323 0.0288162 0.999585i \(-0.490826\pi\)
0.0288162 + 0.999585i \(0.490826\pi\)
\(32\) 0 0
\(33\) −339993. −0.0499065
\(34\) 0 0
\(35\) 148058. 0.0166773
\(36\) 0 0
\(37\) −6.20567e6 −0.544353 −0.272177 0.962247i \(-0.587744\pi\)
−0.272177 + 0.962247i \(0.587744\pi\)
\(38\) 0 0
\(39\) −1.28428e6 −0.0888934
\(40\) 0 0
\(41\) 3.01484e7 1.66624 0.833119 0.553094i \(-0.186553\pi\)
0.833119 + 0.553094i \(0.186553\pi\)
\(42\) 0 0
\(43\) −1.43641e6 −0.0640721 −0.0320361 0.999487i \(-0.510199\pi\)
−0.0320361 + 0.999487i \(0.510199\pi\)
\(44\) 0 0
\(45\) −3.42302e6 −0.124438
\(46\) 0 0
\(47\) −5.48782e7 −1.64044 −0.820218 0.572051i \(-0.806148\pi\)
−0.820218 + 0.572051i \(0.806148\pi\)
\(48\) 0 0
\(49\) −3.97701e7 −0.985539
\(50\) 0 0
\(51\) 2.40728e7 0.498265
\(52\) 0 0
\(53\) 2.37822e7 0.414010 0.207005 0.978340i \(-0.433628\pi\)
0.207005 + 0.978340i \(0.433628\pi\)
\(54\) 0 0
\(55\) −1.46547e6 −0.0215945
\(56\) 0 0
\(57\) 3.22232e7 0.404327
\(58\) 0 0
\(59\) −7.12523e7 −0.765535 −0.382767 0.923845i \(-0.625029\pi\)
−0.382767 + 0.923845i \(0.625029\pi\)
\(60\) 0 0
\(61\) 1.75021e8 1.61847 0.809236 0.587484i \(-0.199882\pi\)
0.809236 + 0.587484i \(0.199882\pi\)
\(62\) 0 0
\(63\) −1.34913e7 −0.107900
\(64\) 0 0
\(65\) −5.53562e6 −0.0384641
\(66\) 0 0
\(67\) −2.91001e8 −1.76424 −0.882120 0.471024i \(-0.843885\pi\)
−0.882120 + 0.471024i \(0.843885\pi\)
\(68\) 0 0
\(69\) −2.82223e7 −0.149889
\(70\) 0 0
\(71\) 1.75425e8 0.819273 0.409636 0.912249i \(-0.365656\pi\)
0.409636 + 0.912249i \(0.365656\pi\)
\(72\) 0 0
\(73\) −8.41153e7 −0.346675 −0.173337 0.984863i \(-0.555455\pi\)
−0.173337 + 0.984863i \(0.555455\pi\)
\(74\) 0 0
\(75\) −8.61356e7 −0.314345
\(76\) 0 0
\(77\) −5.77592e6 −0.0187246
\(78\) 0 0
\(79\) −1.29299e8 −0.373486 −0.186743 0.982409i \(-0.559793\pi\)
−0.186743 + 0.982409i \(0.559793\pi\)
\(80\) 0 0
\(81\) 2.72114e8 0.702373
\(82\) 0 0
\(83\) −8.12518e8 −1.87924 −0.939618 0.342225i \(-0.888820\pi\)
−0.939618 + 0.342225i \(0.888820\pi\)
\(84\) 0 0
\(85\) 1.03760e8 0.215599
\(86\) 0 0
\(87\) −8.31700e7 −0.155643
\(88\) 0 0
\(89\) −2.87146e8 −0.485118 −0.242559 0.970137i \(-0.577987\pi\)
−0.242559 + 0.970137i \(0.577987\pi\)
\(90\) 0 0
\(91\) −2.18179e7 −0.0333523
\(92\) 0 0
\(93\) 1.33254e7 0.0184717
\(94\) 0 0
\(95\) 1.38891e8 0.174952
\(96\) 0 0
\(97\) 1.18180e9 1.35541 0.677706 0.735333i \(-0.262974\pi\)
0.677706 + 0.735333i \(0.262974\pi\)
\(98\) 0 0
\(99\) 1.33536e8 0.139714
\(100\) 0 0
\(101\) 1.18751e9 1.13551 0.567755 0.823198i \(-0.307812\pi\)
0.567755 + 0.823198i \(0.307812\pi\)
\(102\) 0 0
\(103\) −1.27767e9 −1.11854 −0.559271 0.828985i \(-0.688919\pi\)
−0.559271 + 0.828985i \(0.688919\pi\)
\(104\) 0 0
\(105\) 6.65761e6 0.00534523
\(106\) 0 0
\(107\) −5.95864e8 −0.439461 −0.219730 0.975561i \(-0.570518\pi\)
−0.219730 + 0.975561i \(0.570518\pi\)
\(108\) 0 0
\(109\) −2.66555e9 −1.80871 −0.904353 0.426784i \(-0.859646\pi\)
−0.904353 + 0.426784i \(0.859646\pi\)
\(110\) 0 0
\(111\) −2.79046e8 −0.174471
\(112\) 0 0
\(113\) 8.61591e8 0.497105 0.248552 0.968618i \(-0.420045\pi\)
0.248552 + 0.968618i \(0.420045\pi\)
\(114\) 0 0
\(115\) −1.21646e8 −0.0648571
\(116\) 0 0
\(117\) 5.04417e8 0.248859
\(118\) 0 0
\(119\) 4.08957e8 0.186946
\(120\) 0 0
\(121\) −2.30078e9 −0.975754
\(122\) 0 0
\(123\) 1.35566e9 0.534045
\(124\) 0 0
\(125\) −7.49819e8 −0.274702
\(126\) 0 0
\(127\) −4.76529e9 −1.62545 −0.812723 0.582650i \(-0.802016\pi\)
−0.812723 + 0.582650i \(0.802016\pi\)
\(128\) 0 0
\(129\) −6.45898e7 −0.0205357
\(130\) 0 0
\(131\) −3.80511e9 −1.12888 −0.564438 0.825476i \(-0.690907\pi\)
−0.564438 + 0.825476i \(0.690907\pi\)
\(132\) 0 0
\(133\) 5.47420e8 0.151701
\(134\) 0 0
\(135\) −3.25463e8 −0.0843333
\(136\) 0 0
\(137\) −5.02656e9 −1.21907 −0.609535 0.792759i \(-0.708644\pi\)
−0.609535 + 0.792759i \(0.708644\pi\)
\(138\) 0 0
\(139\) 6.38922e9 1.45171 0.725857 0.687845i \(-0.241443\pi\)
0.725857 + 0.687845i \(0.241443\pi\)
\(140\) 0 0
\(141\) −2.46767e9 −0.525776
\(142\) 0 0
\(143\) 2.15951e8 0.0431861
\(144\) 0 0
\(145\) −3.58486e8 −0.0673467
\(146\) 0 0
\(147\) −1.78831e9 −0.315875
\(148\) 0 0
\(149\) −4.24336e9 −0.705296 −0.352648 0.935756i \(-0.614719\pi\)
−0.352648 + 0.935756i \(0.614719\pi\)
\(150\) 0 0
\(151\) 3.01475e9 0.471905 0.235953 0.971765i \(-0.424179\pi\)
0.235953 + 0.971765i \(0.424179\pi\)
\(152\) 0 0
\(153\) −9.45486e9 −1.39490
\(154\) 0 0
\(155\) 5.74363e7 0.00799271
\(156\) 0 0
\(157\) −7.29377e9 −0.958084 −0.479042 0.877792i \(-0.659016\pi\)
−0.479042 + 0.877792i \(0.659016\pi\)
\(158\) 0 0
\(159\) 1.06940e9 0.132694
\(160\) 0 0
\(161\) −4.79450e8 −0.0562376
\(162\) 0 0
\(163\) −2.54785e9 −0.282702 −0.141351 0.989960i \(-0.545145\pi\)
−0.141351 + 0.989960i \(0.545145\pi\)
\(164\) 0 0
\(165\) −6.58965e7 −0.00692125
\(166\) 0 0
\(167\) 2.62273e9 0.260933 0.130467 0.991453i \(-0.458352\pi\)
0.130467 + 0.991453i \(0.458352\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −1.26561e10 −1.13192
\(172\) 0 0
\(173\) −1.42300e10 −1.20781 −0.603903 0.797058i \(-0.706389\pi\)
−0.603903 + 0.797058i \(0.706389\pi\)
\(174\) 0 0
\(175\) −1.46330e9 −0.117941
\(176\) 0 0
\(177\) −3.20395e9 −0.245361
\(178\) 0 0
\(179\) 7.10504e9 0.517283 0.258641 0.965973i \(-0.416725\pi\)
0.258641 + 0.965973i \(0.416725\pi\)
\(180\) 0 0
\(181\) −1.67076e10 −1.15708 −0.578538 0.815656i \(-0.696376\pi\)
−0.578538 + 0.815656i \(0.696376\pi\)
\(182\) 0 0
\(183\) 7.87003e9 0.518736
\(184\) 0 0
\(185\) −1.20277e9 −0.0754933
\(186\) 0 0
\(187\) −4.04782e9 −0.242066
\(188\) 0 0
\(189\) −1.28276e9 −0.0731255
\(190\) 0 0
\(191\) −2.43295e10 −1.32276 −0.661382 0.750049i \(-0.730030\pi\)
−0.661382 + 0.750049i \(0.730030\pi\)
\(192\) 0 0
\(193\) 1.51656e9 0.0786779 0.0393390 0.999226i \(-0.487475\pi\)
0.0393390 + 0.999226i \(0.487475\pi\)
\(194\) 0 0
\(195\) −2.48916e8 −0.0123281
\(196\) 0 0
\(197\) −6.69974e9 −0.316927 −0.158464 0.987365i \(-0.550654\pi\)
−0.158464 + 0.987365i \(0.550654\pi\)
\(198\) 0 0
\(199\) −2.89503e10 −1.30862 −0.654312 0.756225i \(-0.727042\pi\)
−0.654312 + 0.756225i \(0.727042\pi\)
\(200\) 0 0
\(201\) −1.30852e10 −0.565456
\(202\) 0 0
\(203\) −1.41292e9 −0.0583964
\(204\) 0 0
\(205\) 5.84328e9 0.231081
\(206\) 0 0
\(207\) 1.10846e10 0.419618
\(208\) 0 0
\(209\) −5.41832e9 −0.196429
\(210\) 0 0
\(211\) 1.32094e10 0.458787 0.229394 0.973334i \(-0.426326\pi\)
0.229394 + 0.973334i \(0.426326\pi\)
\(212\) 0 0
\(213\) 7.88820e9 0.262585
\(214\) 0 0
\(215\) −2.78400e8 −0.00888581
\(216\) 0 0
\(217\) 2.26377e8 0.00693048
\(218\) 0 0
\(219\) −3.78235e9 −0.111113
\(220\) 0 0
\(221\) −1.52902e10 −0.431169
\(222\) 0 0
\(223\) 3.34948e9 0.0906997 0.0453499 0.998971i \(-0.485560\pi\)
0.0453499 + 0.998971i \(0.485560\pi\)
\(224\) 0 0
\(225\) 3.38308e10 0.880016
\(226\) 0 0
\(227\) −7.11141e10 −1.77762 −0.888811 0.458275i \(-0.848468\pi\)
−0.888811 + 0.458275i \(0.848468\pi\)
\(228\) 0 0
\(229\) 4.27622e10 1.02754 0.513772 0.857927i \(-0.328248\pi\)
0.513772 + 0.857927i \(0.328248\pi\)
\(230\) 0 0
\(231\) −2.59722e8 −0.00600142
\(232\) 0 0
\(233\) 5.90867e10 1.31337 0.656687 0.754163i \(-0.271957\pi\)
0.656687 + 0.754163i \(0.271957\pi\)
\(234\) 0 0
\(235\) −1.06363e10 −0.227503
\(236\) 0 0
\(237\) −5.81412e9 −0.119706
\(238\) 0 0
\(239\) 3.67583e10 0.728726 0.364363 0.931257i \(-0.381287\pi\)
0.364363 + 0.931257i \(0.381287\pi\)
\(240\) 0 0
\(241\) −1.27679e10 −0.243805 −0.121902 0.992542i \(-0.538899\pi\)
−0.121902 + 0.992542i \(0.538899\pi\)
\(242\) 0 0
\(243\) 4.52881e10 0.833212
\(244\) 0 0
\(245\) −7.70813e9 −0.136679
\(246\) 0 0
\(247\) −2.04671e10 −0.349880
\(248\) 0 0
\(249\) −3.65359e10 −0.602314
\(250\) 0 0
\(251\) −2.44043e10 −0.388092 −0.194046 0.980992i \(-0.562161\pi\)
−0.194046 + 0.980992i \(0.562161\pi\)
\(252\) 0 0
\(253\) 4.74556e9 0.0728191
\(254\) 0 0
\(255\) 4.66572e9 0.0691016
\(256\) 0 0
\(257\) 6.02903e10 0.862081 0.431040 0.902333i \(-0.358147\pi\)
0.431040 + 0.902333i \(0.358147\pi\)
\(258\) 0 0
\(259\) −4.74053e9 −0.0654603
\(260\) 0 0
\(261\) 3.26660e10 0.435726
\(262\) 0 0
\(263\) −2.02168e10 −0.260563 −0.130281 0.991477i \(-0.541588\pi\)
−0.130281 + 0.991477i \(0.541588\pi\)
\(264\) 0 0
\(265\) 4.60940e9 0.0574167
\(266\) 0 0
\(267\) −1.29119e10 −0.155485
\(268\) 0 0
\(269\) 4.60447e10 0.536160 0.268080 0.963397i \(-0.413611\pi\)
0.268080 + 0.963397i \(0.413611\pi\)
\(270\) 0 0
\(271\) −1.29942e11 −1.46348 −0.731741 0.681583i \(-0.761292\pi\)
−0.731741 + 0.681583i \(0.761292\pi\)
\(272\) 0 0
\(273\) −9.81068e8 −0.0106897
\(274\) 0 0
\(275\) 1.44837e10 0.152715
\(276\) 0 0
\(277\) 3.59452e10 0.366845 0.183422 0.983034i \(-0.441282\pi\)
0.183422 + 0.983034i \(0.441282\pi\)
\(278\) 0 0
\(279\) −5.23371e9 −0.0517120
\(280\) 0 0
\(281\) −8.72897e9 −0.0835188 −0.0417594 0.999128i \(-0.513296\pi\)
−0.0417594 + 0.999128i \(0.513296\pi\)
\(282\) 0 0
\(283\) 7.13022e10 0.660791 0.330396 0.943843i \(-0.392818\pi\)
0.330396 + 0.943843i \(0.392818\pi\)
\(284\) 0 0
\(285\) 6.24542e9 0.0560738
\(286\) 0 0
\(287\) 2.30305e10 0.200371
\(288\) 0 0
\(289\) 1.68013e11 1.41678
\(290\) 0 0
\(291\) 5.31412e10 0.434423
\(292\) 0 0
\(293\) −7.53611e10 −0.597369 −0.298685 0.954352i \(-0.596548\pi\)
−0.298685 + 0.954352i \(0.596548\pi\)
\(294\) 0 0
\(295\) −1.38099e10 −0.106168
\(296\) 0 0
\(297\) 1.26967e10 0.0946862
\(298\) 0 0
\(299\) 1.79258e10 0.129705
\(300\) 0 0
\(301\) −1.09728e9 −0.00770489
\(302\) 0 0
\(303\) 5.33979e10 0.363942
\(304\) 0 0
\(305\) 3.39220e10 0.224457
\(306\) 0 0
\(307\) 1.81582e10 0.116667 0.0583337 0.998297i \(-0.481421\pi\)
0.0583337 + 0.998297i \(0.481421\pi\)
\(308\) 0 0
\(309\) −5.74522e10 −0.358504
\(310\) 0 0
\(311\) 2.05503e11 1.24565 0.622825 0.782361i \(-0.285985\pi\)
0.622825 + 0.782361i \(0.285985\pi\)
\(312\) 0 0
\(313\) −5.23346e10 −0.308205 −0.154102 0.988055i \(-0.549249\pi\)
−0.154102 + 0.988055i \(0.549249\pi\)
\(314\) 0 0
\(315\) −2.61485e9 −0.0149641
\(316\) 0 0
\(317\) 8.85228e10 0.492366 0.246183 0.969223i \(-0.420824\pi\)
0.246183 + 0.969223i \(0.420824\pi\)
\(318\) 0 0
\(319\) 1.39850e10 0.0756144
\(320\) 0 0
\(321\) −2.67938e10 −0.140851
\(322\) 0 0
\(323\) 3.83638e11 1.96115
\(324\) 0 0
\(325\) 5.47103e10 0.272016
\(326\) 0 0
\(327\) −1.19860e11 −0.579708
\(328\) 0 0
\(329\) −4.19216e10 −0.197268
\(330\) 0 0
\(331\) 2.72421e11 1.24743 0.623713 0.781653i \(-0.285623\pi\)
0.623713 + 0.781653i \(0.285623\pi\)
\(332\) 0 0
\(333\) 1.09599e11 0.488434
\(334\) 0 0
\(335\) −5.64011e10 −0.244673
\(336\) 0 0
\(337\) −2.45525e11 −1.03696 −0.518478 0.855091i \(-0.673501\pi\)
−0.518478 + 0.855091i \(0.673501\pi\)
\(338\) 0 0
\(339\) 3.87425e10 0.159327
\(340\) 0 0
\(341\) −2.24066e9 −0.00897391
\(342\) 0 0
\(343\) −6.12068e10 −0.238768
\(344\) 0 0
\(345\) −5.46996e9 −0.0207873
\(346\) 0 0
\(347\) 1.20829e11 0.447391 0.223695 0.974659i \(-0.428188\pi\)
0.223695 + 0.974659i \(0.428188\pi\)
\(348\) 0 0
\(349\) −3.24249e11 −1.16994 −0.584971 0.811054i \(-0.698894\pi\)
−0.584971 + 0.811054i \(0.698894\pi\)
\(350\) 0 0
\(351\) 4.79603e10 0.168655
\(352\) 0 0
\(353\) 3.01775e11 1.03442 0.517209 0.855859i \(-0.326971\pi\)
0.517209 + 0.855859i \(0.326971\pi\)
\(354\) 0 0
\(355\) 3.40004e10 0.113620
\(356\) 0 0
\(357\) 1.83893e10 0.0599180
\(358\) 0 0
\(359\) 3.12893e11 0.994194 0.497097 0.867695i \(-0.334399\pi\)
0.497097 + 0.867695i \(0.334399\pi\)
\(360\) 0 0
\(361\) 1.90841e11 0.591409
\(362\) 0 0
\(363\) −1.03457e11 −0.312739
\(364\) 0 0
\(365\) −1.63030e10 −0.0480784
\(366\) 0 0
\(367\) 4.62832e11 1.33176 0.665880 0.746059i \(-0.268056\pi\)
0.665880 + 0.746059i \(0.268056\pi\)
\(368\) 0 0
\(369\) −5.32452e11 −1.49507
\(370\) 0 0
\(371\) 1.81673e10 0.0497861
\(372\) 0 0
\(373\) 5.81695e11 1.55599 0.777993 0.628274i \(-0.216238\pi\)
0.777993 + 0.628274i \(0.216238\pi\)
\(374\) 0 0
\(375\) −3.37165e10 −0.0880445
\(376\) 0 0
\(377\) 5.28267e10 0.134684
\(378\) 0 0
\(379\) 4.51535e11 1.12413 0.562063 0.827095i \(-0.310008\pi\)
0.562063 + 0.827095i \(0.310008\pi\)
\(380\) 0 0
\(381\) −2.14277e11 −0.520971
\(382\) 0 0
\(383\) −2.86456e11 −0.680242 −0.340121 0.940382i \(-0.610468\pi\)
−0.340121 + 0.940382i \(0.610468\pi\)
\(384\) 0 0
\(385\) −1.11947e9 −0.00259681
\(386\) 0 0
\(387\) 2.53684e10 0.0574902
\(388\) 0 0
\(389\) −2.00404e11 −0.443745 −0.221872 0.975076i \(-0.571217\pi\)
−0.221872 + 0.975076i \(0.571217\pi\)
\(390\) 0 0
\(391\) −3.36003e11 −0.727023
\(392\) 0 0
\(393\) −1.71102e11 −0.361816
\(394\) 0 0
\(395\) −2.50605e10 −0.0517968
\(396\) 0 0
\(397\) 3.69392e11 0.746329 0.373165 0.927765i \(-0.378273\pi\)
0.373165 + 0.927765i \(0.378273\pi\)
\(398\) 0 0
\(399\) 2.46154e10 0.0486216
\(400\) 0 0
\(401\) 1.80193e11 0.348008 0.174004 0.984745i \(-0.444329\pi\)
0.174004 + 0.984745i \(0.444329\pi\)
\(402\) 0 0
\(403\) −8.46383e9 −0.0159843
\(404\) 0 0
\(405\) 5.27404e10 0.0974082
\(406\) 0 0
\(407\) 4.69214e10 0.0847611
\(408\) 0 0
\(409\) 4.95350e11 0.875301 0.437651 0.899145i \(-0.355811\pi\)
0.437651 + 0.899145i \(0.355811\pi\)
\(410\) 0 0
\(411\) −2.26026e11 −0.390724
\(412\) 0 0
\(413\) −5.44299e10 −0.0920581
\(414\) 0 0
\(415\) −1.57480e11 −0.260621
\(416\) 0 0
\(417\) 2.87299e11 0.465289
\(418\) 0 0
\(419\) −1.16304e12 −1.84346 −0.921728 0.387837i \(-0.873222\pi\)
−0.921728 + 0.387837i \(0.873222\pi\)
\(420\) 0 0
\(421\) 3.47281e11 0.538780 0.269390 0.963031i \(-0.413178\pi\)
0.269390 + 0.963031i \(0.413178\pi\)
\(422\) 0 0
\(423\) 9.69206e11 1.47192
\(424\) 0 0
\(425\) −1.02550e12 −1.52470
\(426\) 0 0
\(427\) 1.33699e11 0.194627
\(428\) 0 0
\(429\) 9.71053e9 0.0138416
\(430\) 0 0
\(431\) −3.66122e11 −0.511067 −0.255534 0.966800i \(-0.582251\pi\)
−0.255534 + 0.966800i \(0.582251\pi\)
\(432\) 0 0
\(433\) 3.58487e11 0.490093 0.245046 0.969511i \(-0.421197\pi\)
0.245046 + 0.969511i \(0.421197\pi\)
\(434\) 0 0
\(435\) −1.61198e10 −0.0215853
\(436\) 0 0
\(437\) −4.49766e11 −0.589957
\(438\) 0 0
\(439\) −1.39866e12 −1.79731 −0.898653 0.438660i \(-0.855453\pi\)
−0.898653 + 0.438660i \(0.855453\pi\)
\(440\) 0 0
\(441\) 7.02380e11 0.884298
\(442\) 0 0
\(443\) 5.38017e11 0.663712 0.331856 0.943330i \(-0.392325\pi\)
0.331856 + 0.943330i \(0.392325\pi\)
\(444\) 0 0
\(445\) −5.56539e10 −0.0672784
\(446\) 0 0
\(447\) −1.90808e11 −0.226054
\(448\) 0 0
\(449\) 5.19645e10 0.0603390 0.0301695 0.999545i \(-0.490395\pi\)
0.0301695 + 0.999545i \(0.490395\pi\)
\(450\) 0 0
\(451\) −2.27954e11 −0.259449
\(452\) 0 0
\(453\) 1.35562e11 0.151250
\(454\) 0 0
\(455\) −4.22868e9 −0.00462544
\(456\) 0 0
\(457\) −1.12990e12 −1.21176 −0.605882 0.795554i \(-0.707180\pi\)
−0.605882 + 0.795554i \(0.707180\pi\)
\(458\) 0 0
\(459\) −8.98974e11 −0.945344
\(460\) 0 0
\(461\) 8.06097e10 0.0831252 0.0415626 0.999136i \(-0.486766\pi\)
0.0415626 + 0.999136i \(0.486766\pi\)
\(462\) 0 0
\(463\) −1.83902e12 −1.85982 −0.929911 0.367784i \(-0.880117\pi\)
−0.929911 + 0.367784i \(0.880117\pi\)
\(464\) 0 0
\(465\) 2.58270e9 0.00256174
\(466\) 0 0
\(467\) 1.55579e12 1.51365 0.756826 0.653617i \(-0.226749\pi\)
0.756826 + 0.653617i \(0.226749\pi\)
\(468\) 0 0
\(469\) −2.22297e11 −0.212156
\(470\) 0 0
\(471\) −3.27974e11 −0.307075
\(472\) 0 0
\(473\) 1.08608e10 0.00997665
\(474\) 0 0
\(475\) −1.37271e12 −1.23725
\(476\) 0 0
\(477\) −4.20018e11 −0.371480
\(478\) 0 0
\(479\) −2.05558e12 −1.78412 −0.892061 0.451914i \(-0.850741\pi\)
−0.892061 + 0.451914i \(0.850741\pi\)
\(480\) 0 0
\(481\) 1.77240e11 0.150976
\(482\) 0 0
\(483\) −2.15591e10 −0.0180247
\(484\) 0 0
\(485\) 2.29054e11 0.187975
\(486\) 0 0
\(487\) −4.90785e11 −0.395376 −0.197688 0.980265i \(-0.563343\pi\)
−0.197688 + 0.980265i \(0.563343\pi\)
\(488\) 0 0
\(489\) −1.14567e11 −0.0906088
\(490\) 0 0
\(491\) 1.80560e12 1.40202 0.701010 0.713152i \(-0.252733\pi\)
0.701010 + 0.713152i \(0.252733\pi\)
\(492\) 0 0
\(493\) −9.90190e11 −0.754931
\(494\) 0 0
\(495\) 2.58816e10 0.0193762
\(496\) 0 0
\(497\) 1.34008e11 0.0985203
\(498\) 0 0
\(499\) 1.46846e12 1.06025 0.530125 0.847920i \(-0.322145\pi\)
0.530125 + 0.847920i \(0.322145\pi\)
\(500\) 0 0
\(501\) 1.17934e11 0.0836316
\(502\) 0 0
\(503\) −1.89165e12 −1.31761 −0.658803 0.752315i \(-0.728937\pi\)
−0.658803 + 0.752315i \(0.728937\pi\)
\(504\) 0 0
\(505\) 2.30160e11 0.157478
\(506\) 0 0
\(507\) 3.66804e10 0.0246546
\(508\) 0 0
\(509\) 1.78314e12 1.17748 0.588742 0.808321i \(-0.299624\pi\)
0.588742 + 0.808321i \(0.299624\pi\)
\(510\) 0 0
\(511\) −6.42560e10 −0.0416888
\(512\) 0 0
\(513\) −1.20335e12 −0.767118
\(514\) 0 0
\(515\) −2.47635e11 −0.155124
\(516\) 0 0
\(517\) 4.14937e11 0.255432
\(518\) 0 0
\(519\) −6.39870e11 −0.387114
\(520\) 0 0
\(521\) −1.87038e12 −1.11214 −0.556069 0.831136i \(-0.687691\pi\)
−0.556069 + 0.831136i \(0.687691\pi\)
\(522\) 0 0
\(523\) 7.75520e11 0.453248 0.226624 0.973982i \(-0.427231\pi\)
0.226624 + 0.973982i \(0.427231\pi\)
\(524\) 0 0
\(525\) −6.57993e10 −0.0378011
\(526\) 0 0
\(527\) 1.58647e11 0.0895952
\(528\) 0 0
\(529\) −1.40723e12 −0.781295
\(530\) 0 0
\(531\) 1.25839e12 0.686894
\(532\) 0 0
\(533\) −8.61068e11 −0.462131
\(534\) 0 0
\(535\) −1.15489e11 −0.0609464
\(536\) 0 0
\(537\) 3.19487e11 0.165794
\(538\) 0 0
\(539\) 3.00704e11 0.153458
\(540\) 0 0
\(541\) 2.36216e12 1.18555 0.592776 0.805367i \(-0.298032\pi\)
0.592776 + 0.805367i \(0.298032\pi\)
\(542\) 0 0
\(543\) −7.51281e11 −0.370854
\(544\) 0 0
\(545\) −5.16631e11 −0.250840
\(546\) 0 0
\(547\) −2.05243e12 −0.980224 −0.490112 0.871659i \(-0.663044\pi\)
−0.490112 + 0.871659i \(0.663044\pi\)
\(548\) 0 0
\(549\) −3.09105e12 −1.45221
\(550\) 0 0
\(551\) −1.32545e12 −0.612604
\(552\) 0 0
\(553\) −9.87723e10 −0.0449130
\(554\) 0 0
\(555\) −5.40839e10 −0.0241964
\(556\) 0 0
\(557\) −3.18520e12 −1.40213 −0.701066 0.713097i \(-0.747292\pi\)
−0.701066 + 0.713097i \(0.747292\pi\)
\(558\) 0 0
\(559\) 4.10252e10 0.0177704
\(560\) 0 0
\(561\) −1.82016e11 −0.0775846
\(562\) 0 0
\(563\) 2.23578e12 0.937867 0.468934 0.883233i \(-0.344638\pi\)
0.468934 + 0.883233i \(0.344638\pi\)
\(564\) 0 0
\(565\) 1.66991e11 0.0689407
\(566\) 0 0
\(567\) 2.07869e11 0.0844628
\(568\) 0 0
\(569\) 3.46124e11 0.138429 0.0692144 0.997602i \(-0.477951\pi\)
0.0692144 + 0.997602i \(0.477951\pi\)
\(570\) 0 0
\(571\) 1.06244e11 0.0418255 0.0209128 0.999781i \(-0.493343\pi\)
0.0209128 + 0.999781i \(0.493343\pi\)
\(572\) 0 0
\(573\) −1.09401e12 −0.423959
\(574\) 0 0
\(575\) 1.20227e12 0.458665
\(576\) 0 0
\(577\) 9.88176e11 0.371145 0.185572 0.982631i \(-0.440586\pi\)
0.185572 + 0.982631i \(0.440586\pi\)
\(578\) 0 0
\(579\) 6.81942e10 0.0252170
\(580\) 0 0
\(581\) −6.20685e11 −0.225985
\(582\) 0 0
\(583\) −1.79819e11 −0.0644653
\(584\) 0 0
\(585\) 9.77648e10 0.0345129
\(586\) 0 0
\(587\) 2.45712e12 0.854189 0.427095 0.904207i \(-0.359537\pi\)
0.427095 + 0.904207i \(0.359537\pi\)
\(588\) 0 0
\(589\) 2.12362e11 0.0727038
\(590\) 0 0
\(591\) −3.01262e11 −0.101578
\(592\) 0 0
\(593\) −1.54983e12 −0.514682 −0.257341 0.966321i \(-0.582846\pi\)
−0.257341 + 0.966321i \(0.582846\pi\)
\(594\) 0 0
\(595\) 7.92630e10 0.0259265
\(596\) 0 0
\(597\) −1.30179e12 −0.419427
\(598\) 0 0
\(599\) 4.31316e12 1.36891 0.684456 0.729055i \(-0.260040\pi\)
0.684456 + 0.729055i \(0.260040\pi\)
\(600\) 0 0
\(601\) 1.71612e12 0.536554 0.268277 0.963342i \(-0.413546\pi\)
0.268277 + 0.963342i \(0.413546\pi\)
\(602\) 0 0
\(603\) 5.13938e12 1.58301
\(604\) 0 0
\(605\) −4.45931e11 −0.135322
\(606\) 0 0
\(607\) 1.07880e12 0.322547 0.161273 0.986910i \(-0.448440\pi\)
0.161273 + 0.986910i \(0.448440\pi\)
\(608\) 0 0
\(609\) −6.35339e10 −0.0187166
\(610\) 0 0
\(611\) 1.56738e12 0.454975
\(612\) 0 0
\(613\) 6.89026e11 0.197090 0.0985448 0.995133i \(-0.468581\pi\)
0.0985448 + 0.995133i \(0.468581\pi\)
\(614\) 0 0
\(615\) 2.62751e11 0.0740638
\(616\) 0 0
\(617\) 2.22658e12 0.618523 0.309262 0.950977i \(-0.399918\pi\)
0.309262 + 0.950977i \(0.399918\pi\)
\(618\) 0 0
\(619\) 3.03265e12 0.830261 0.415131 0.909762i \(-0.363736\pi\)
0.415131 + 0.909762i \(0.363736\pi\)
\(620\) 0 0
\(621\) 1.05393e12 0.284381
\(622\) 0 0
\(623\) −2.19352e11 −0.0583371
\(624\) 0 0
\(625\) 3.59600e12 0.942670
\(626\) 0 0
\(627\) −2.43642e11 −0.0629576
\(628\) 0 0
\(629\) −3.32221e12 −0.846252
\(630\) 0 0
\(631\) −4.37390e12 −1.09834 −0.549170 0.835710i \(-0.685056\pi\)
−0.549170 + 0.835710i \(0.685056\pi\)
\(632\) 0 0
\(633\) 5.93976e11 0.147046
\(634\) 0 0
\(635\) −9.23596e11 −0.225424
\(636\) 0 0
\(637\) 1.13587e12 0.273339
\(638\) 0 0
\(639\) −3.09818e12 −0.735111
\(640\) 0 0
\(641\) −5.17133e12 −1.20988 −0.604938 0.796272i \(-0.706802\pi\)
−0.604938 + 0.796272i \(0.706802\pi\)
\(642\) 0 0
\(643\) 3.17173e12 0.731723 0.365861 0.930669i \(-0.380774\pi\)
0.365861 + 0.930669i \(0.380774\pi\)
\(644\) 0 0
\(645\) −1.25186e10 −0.00284799
\(646\) 0 0
\(647\) −8.59340e12 −1.92795 −0.963975 0.265992i \(-0.914300\pi\)
−0.963975 + 0.265992i \(0.914300\pi\)
\(648\) 0 0
\(649\) 5.38743e11 0.119201
\(650\) 0 0
\(651\) 1.01793e10 0.00222129
\(652\) 0 0
\(653\) 7.34215e12 1.58021 0.790103 0.612974i \(-0.210027\pi\)
0.790103 + 0.612974i \(0.210027\pi\)
\(654\) 0 0
\(655\) −7.37496e11 −0.156558
\(656\) 0 0
\(657\) 1.48556e12 0.311062
\(658\) 0 0
\(659\) 8.53358e12 1.76257 0.881286 0.472584i \(-0.156679\pi\)
0.881286 + 0.472584i \(0.156679\pi\)
\(660\) 0 0
\(661\) 3.89705e12 0.794016 0.397008 0.917815i \(-0.370049\pi\)
0.397008 + 0.917815i \(0.370049\pi\)
\(662\) 0 0
\(663\) −6.87542e11 −0.138194
\(664\) 0 0
\(665\) 1.06100e11 0.0210386
\(666\) 0 0
\(667\) 1.16087e12 0.227101
\(668\) 0 0
\(669\) 1.50614e11 0.0290701
\(670\) 0 0
\(671\) −1.32334e12 −0.252012
\(672\) 0 0
\(673\) 4.93969e12 0.928180 0.464090 0.885788i \(-0.346381\pi\)
0.464090 + 0.885788i \(0.346381\pi\)
\(674\) 0 0
\(675\) 3.21665e12 0.596399
\(676\) 0 0
\(677\) −4.27408e12 −0.781977 −0.390988 0.920396i \(-0.627867\pi\)
−0.390988 + 0.920396i \(0.627867\pi\)
\(678\) 0 0
\(679\) 9.02782e11 0.162993
\(680\) 0 0
\(681\) −3.19774e12 −0.569745
\(682\) 0 0
\(683\) −2.74685e12 −0.482994 −0.241497 0.970402i \(-0.577638\pi\)
−0.241497 + 0.970402i \(0.577638\pi\)
\(684\) 0 0
\(685\) −9.74236e11 −0.169066
\(686\) 0 0
\(687\) 1.92286e12 0.329338
\(688\) 0 0
\(689\) −6.79243e11 −0.114826
\(690\) 0 0
\(691\) −7.31354e12 −1.22033 −0.610164 0.792275i \(-0.708896\pi\)
−0.610164 + 0.792275i \(0.708896\pi\)
\(692\) 0 0
\(693\) 1.02009e11 0.0168011
\(694\) 0 0
\(695\) 1.23834e12 0.201330
\(696\) 0 0
\(697\) 1.61400e13 2.59033
\(698\) 0 0
\(699\) 2.65691e12 0.420949
\(700\) 0 0
\(701\) 4.54373e12 0.710693 0.355346 0.934735i \(-0.384363\pi\)
0.355346 + 0.934735i \(0.384363\pi\)
\(702\) 0 0
\(703\) −4.44704e12 −0.686708
\(704\) 0 0
\(705\) −4.78277e11 −0.0729170
\(706\) 0 0
\(707\) 9.07143e11 0.136549
\(708\) 0 0
\(709\) 6.96821e12 1.03565 0.517825 0.855487i \(-0.326742\pi\)
0.517825 + 0.855487i \(0.326742\pi\)
\(710\) 0 0
\(711\) 2.28356e12 0.335119
\(712\) 0 0
\(713\) −1.85994e11 −0.0269523
\(714\) 0 0
\(715\) 4.18552e10 0.00598924
\(716\) 0 0
\(717\) 1.65288e12 0.233564
\(718\) 0 0
\(719\) −6.53484e12 −0.911917 −0.455958 0.890001i \(-0.650703\pi\)
−0.455958 + 0.890001i \(0.650703\pi\)
\(720\) 0 0
\(721\) −9.76020e11 −0.134509
\(722\) 0 0
\(723\) −5.74124e11 −0.0781418
\(724\) 0 0
\(725\) 3.54303e12 0.476271
\(726\) 0 0
\(727\) −7.44685e11 −0.0988708 −0.0494354 0.998777i \(-0.515742\pi\)
−0.0494354 + 0.998777i \(0.515742\pi\)
\(728\) 0 0
\(729\) −3.31958e12 −0.435320
\(730\) 0 0
\(731\) −7.68982e11 −0.0996065
\(732\) 0 0
\(733\) 1.05042e12 0.134399 0.0671993 0.997740i \(-0.478594\pi\)
0.0671993 + 0.997740i \(0.478594\pi\)
\(734\) 0 0
\(735\) −3.46606e11 −0.0438069
\(736\) 0 0
\(737\) 2.20028e12 0.274709
\(738\) 0 0
\(739\) −3.05643e12 −0.376977 −0.188488 0.982075i \(-0.560359\pi\)
−0.188488 + 0.982075i \(0.560359\pi\)
\(740\) 0 0
\(741\) −9.20328e11 −0.112140
\(742\) 0 0
\(743\) 3.27513e12 0.394256 0.197128 0.980378i \(-0.436838\pi\)
0.197128 + 0.980378i \(0.436838\pi\)
\(744\) 0 0
\(745\) −8.22437e11 −0.0978136
\(746\) 0 0
\(747\) 1.43499e13 1.68619
\(748\) 0 0
\(749\) −4.55183e11 −0.0528467
\(750\) 0 0
\(751\) −8.12818e12 −0.932425 −0.466212 0.884673i \(-0.654382\pi\)
−0.466212 + 0.884673i \(0.654382\pi\)
\(752\) 0 0
\(753\) −1.09737e12 −0.124387
\(754\) 0 0
\(755\) 5.84311e11 0.0654459
\(756\) 0 0
\(757\) −5.65281e12 −0.625652 −0.312826 0.949810i \(-0.601276\pi\)
−0.312826 + 0.949810i \(0.601276\pi\)
\(758\) 0 0
\(759\) 2.13390e11 0.0233392
\(760\) 0 0
\(761\) 8.94783e12 0.967134 0.483567 0.875307i \(-0.339341\pi\)
0.483567 + 0.875307i \(0.339341\pi\)
\(762\) 0 0
\(763\) −2.03623e12 −0.217503
\(764\) 0 0
\(765\) −1.83252e12 −0.193451
\(766\) 0 0
\(767\) 2.03504e12 0.212321
\(768\) 0 0
\(769\) 1.35334e13 1.39553 0.697766 0.716326i \(-0.254178\pi\)
0.697766 + 0.716326i \(0.254178\pi\)
\(770\) 0 0
\(771\) 2.71103e12 0.276305
\(772\) 0 0
\(773\) 6.35436e12 0.640124 0.320062 0.947397i \(-0.396296\pi\)
0.320062 + 0.947397i \(0.396296\pi\)
\(774\) 0 0
\(775\) −5.67662e11 −0.0565239
\(776\) 0 0
\(777\) −2.13164e11 −0.0209807
\(778\) 0 0
\(779\) 2.16046e13 2.10198
\(780\) 0 0
\(781\) −1.32640e12 −0.127569
\(782\) 0 0
\(783\) 3.10590e12 0.295298
\(784\) 0 0
\(785\) −1.41366e12 −0.132871
\(786\) 0 0
\(787\) −9.99821e11 −0.0929044 −0.0464522 0.998921i \(-0.514792\pi\)
−0.0464522 + 0.998921i \(0.514792\pi\)
\(788\) 0 0
\(789\) −9.09076e11 −0.0835130
\(790\) 0 0
\(791\) 6.58172e11 0.0597785
\(792\) 0 0
\(793\) −4.99876e12 −0.448883
\(794\) 0 0
\(795\) 2.07268e11 0.0184026
\(796\) 0 0
\(797\) −7.69462e12 −0.675499 −0.337750 0.941236i \(-0.609666\pi\)
−0.337750 + 0.941236i \(0.609666\pi\)
\(798\) 0 0
\(799\) −2.93791e13 −2.55022
\(800\) 0 0
\(801\) 5.07130e12 0.435284
\(802\) 0 0
\(803\) 6.36001e11 0.0539806
\(804\) 0 0
\(805\) −9.29258e10 −0.00779928
\(806\) 0 0
\(807\) 2.07046e12 0.171844
\(808\) 0 0
\(809\) −1.49499e13 −1.22708 −0.613538 0.789666i \(-0.710254\pi\)
−0.613538 + 0.789666i \(0.710254\pi\)
\(810\) 0 0
\(811\) 9.73391e12 0.790121 0.395060 0.918655i \(-0.370724\pi\)
0.395060 + 0.918655i \(0.370724\pi\)
\(812\) 0 0
\(813\) −5.84300e12 −0.469060
\(814\) 0 0
\(815\) −4.93817e11 −0.0392064
\(816\) 0 0
\(817\) −1.02934e12 −0.0808277
\(818\) 0 0
\(819\) 3.85326e11 0.0299261
\(820\) 0 0
\(821\) −9.54265e12 −0.733035 −0.366517 0.930411i \(-0.619450\pi\)
−0.366517 + 0.930411i \(0.619450\pi\)
\(822\) 0 0
\(823\) 1.34813e12 0.102431 0.0512155 0.998688i \(-0.483690\pi\)
0.0512155 + 0.998688i \(0.483690\pi\)
\(824\) 0 0
\(825\) 6.51277e11 0.0489466
\(826\) 0 0
\(827\) −1.05233e13 −0.782307 −0.391153 0.920326i \(-0.627924\pi\)
−0.391153 + 0.920326i \(0.627924\pi\)
\(828\) 0 0
\(829\) 1.10484e13 0.812461 0.406231 0.913771i \(-0.366843\pi\)
0.406231 + 0.913771i \(0.366843\pi\)
\(830\) 0 0
\(831\) 1.61632e12 0.117577
\(832\) 0 0
\(833\) −2.12910e13 −1.53212
\(834\) 0 0
\(835\) 5.08330e11 0.0361874
\(836\) 0 0
\(837\) −4.97625e11 −0.0350459
\(838\) 0 0
\(839\) −2.06097e13 −1.43596 −0.717980 0.696063i \(-0.754933\pi\)
−0.717980 + 0.696063i \(0.754933\pi\)
\(840\) 0 0
\(841\) −1.10861e13 −0.764182
\(842\) 0 0
\(843\) −3.92509e11 −0.0267686
\(844\) 0 0
\(845\) 1.58103e11 0.0106680
\(846\) 0 0
\(847\) −1.75757e12 −0.117338
\(848\) 0 0
\(849\) 3.20620e12 0.211790
\(850\) 0 0
\(851\) 3.89487e12 0.254572
\(852\) 0 0
\(853\) 2.14975e13 1.39033 0.695166 0.718850i \(-0.255331\pi\)
0.695166 + 0.718850i \(0.255331\pi\)
\(854\) 0 0
\(855\) −2.45296e12 −0.156980
\(856\) 0 0
\(857\) −1.28165e13 −0.811627 −0.405814 0.913956i \(-0.633012\pi\)
−0.405814 + 0.913956i \(0.633012\pi\)
\(858\) 0 0
\(859\) 2.40613e13 1.50782 0.753911 0.656976i \(-0.228165\pi\)
0.753911 + 0.656976i \(0.228165\pi\)
\(860\) 0 0
\(861\) 1.03559e12 0.0642208
\(862\) 0 0
\(863\) 2.14086e13 1.31383 0.656917 0.753963i \(-0.271860\pi\)
0.656917 + 0.753963i \(0.271860\pi\)
\(864\) 0 0
\(865\) −2.75802e12 −0.167504
\(866\) 0 0
\(867\) 7.55493e12 0.454093
\(868\) 0 0
\(869\) 9.77641e11 0.0581555
\(870\) 0 0
\(871\) 8.31128e12 0.489312
\(872\) 0 0
\(873\) −2.08718e13 −1.21618
\(874\) 0 0
\(875\) −5.72789e11 −0.0330338
\(876\) 0 0
\(877\) −2.05602e13 −1.17362 −0.586812 0.809723i \(-0.699617\pi\)
−0.586812 + 0.809723i \(0.699617\pi\)
\(878\) 0 0
\(879\) −3.38871e12 −0.191463
\(880\) 0 0
\(881\) 1.48422e13 0.830055 0.415028 0.909809i \(-0.363772\pi\)
0.415028 + 0.909809i \(0.363772\pi\)
\(882\) 0 0
\(883\) 7.99446e12 0.442553 0.221277 0.975211i \(-0.428978\pi\)
0.221277 + 0.975211i \(0.428978\pi\)
\(884\) 0 0
\(885\) −6.20981e11 −0.0340278
\(886\) 0 0
\(887\) −3.36659e12 −0.182614 −0.0913070 0.995823i \(-0.529104\pi\)
−0.0913070 + 0.995823i \(0.529104\pi\)
\(888\) 0 0
\(889\) −3.64022e12 −0.195465
\(890\) 0 0
\(891\) −2.05747e12 −0.109366
\(892\) 0 0
\(893\) −3.93262e13 −2.06943
\(894\) 0 0
\(895\) 1.37708e12 0.0717391
\(896\) 0 0
\(897\) 8.06056e11 0.0415718
\(898\) 0 0
\(899\) −5.48117e11 −0.0279869
\(900\) 0 0
\(901\) 1.27318e13 0.643620
\(902\) 0 0
\(903\) −4.93404e10 −0.00246949
\(904\) 0 0
\(905\) −3.23823e12 −0.160468
\(906\) 0 0
\(907\) −3.60908e13 −1.77078 −0.885388 0.464853i \(-0.846107\pi\)
−0.885388 + 0.464853i \(0.846107\pi\)
\(908\) 0 0
\(909\) −2.09726e13 −1.01886
\(910\) 0 0
\(911\) −2.48291e13 −1.19434 −0.597170 0.802115i \(-0.703708\pi\)
−0.597170 + 0.802115i \(0.703708\pi\)
\(912\) 0 0
\(913\) 6.14350e12 0.292615
\(914\) 0 0
\(915\) 1.52535e12 0.0719406
\(916\) 0 0
\(917\) −2.90674e12 −0.135751
\(918\) 0 0
\(919\) −6.20332e12 −0.286883 −0.143441 0.989659i \(-0.545817\pi\)
−0.143441 + 0.989659i \(0.545817\pi\)
\(920\) 0 0
\(921\) 8.16506e11 0.0373930
\(922\) 0 0
\(923\) −5.01031e12 −0.227225
\(924\) 0 0
\(925\) 1.18873e13 0.533884
\(926\) 0 0
\(927\) 2.25650e13 1.00364
\(928\) 0 0
\(929\) −1.83085e13 −0.806459 −0.403230 0.915099i \(-0.632112\pi\)
−0.403230 + 0.915099i \(0.632112\pi\)
\(930\) 0 0
\(931\) −2.84996e13 −1.24327
\(932\) 0 0
\(933\) 9.24070e12 0.399243
\(934\) 0 0
\(935\) −7.84539e11 −0.0335708
\(936\) 0 0
\(937\) −1.62316e13 −0.687912 −0.343956 0.938986i \(-0.611767\pi\)
−0.343956 + 0.938986i \(0.611767\pi\)
\(938\) 0 0
\(939\) −2.35329e12 −0.0987826
\(940\) 0 0
\(941\) −3.97614e13 −1.65313 −0.826567 0.562839i \(-0.809709\pi\)
−0.826567 + 0.562839i \(0.809709\pi\)
\(942\) 0 0
\(943\) −1.89221e13 −0.779231
\(944\) 0 0
\(945\) −2.48622e11 −0.0101414
\(946\) 0 0
\(947\) −2.21556e13 −0.895176 −0.447588 0.894240i \(-0.647717\pi\)
−0.447588 + 0.894240i \(0.647717\pi\)
\(948\) 0 0
\(949\) 2.40242e12 0.0961503
\(950\) 0 0
\(951\) 3.98054e12 0.157808
\(952\) 0 0
\(953\) −1.39008e12 −0.0545911 −0.0272956 0.999627i \(-0.508690\pi\)
−0.0272956 + 0.999627i \(0.508690\pi\)
\(954\) 0 0
\(955\) −4.71548e12 −0.183447
\(956\) 0 0
\(957\) 6.28853e11 0.0242351
\(958\) 0 0
\(959\) −3.83981e12 −0.146597
\(960\) 0 0
\(961\) −2.63518e13 −0.996679
\(962\) 0 0
\(963\) 1.05236e13 0.394316
\(964\) 0 0
\(965\) 2.93936e11 0.0109114
\(966\) 0 0
\(967\) 3.92185e13 1.44236 0.721178 0.692750i \(-0.243601\pi\)
0.721178 + 0.692750i \(0.243601\pi\)
\(968\) 0 0
\(969\) 1.72508e13 0.628566
\(970\) 0 0
\(971\) 1.67024e13 0.602964 0.301482 0.953472i \(-0.402519\pi\)
0.301482 + 0.953472i \(0.402519\pi\)
\(972\) 0 0
\(973\) 4.88075e12 0.174574
\(974\) 0 0
\(975\) 2.46012e12 0.0871837
\(976\) 0 0
\(977\) 4.71451e13 1.65543 0.827715 0.561148i \(-0.189640\pi\)
0.827715 + 0.561148i \(0.189640\pi\)
\(978\) 0 0
\(979\) 2.17113e12 0.0755376
\(980\) 0 0
\(981\) 4.70764e13 1.62290
\(982\) 0 0
\(983\) −4.28954e13 −1.46528 −0.732638 0.680618i \(-0.761711\pi\)
−0.732638 + 0.680618i \(0.761711\pi\)
\(984\) 0 0
\(985\) −1.29853e12 −0.0439529
\(986\) 0 0
\(987\) −1.88506e12 −0.0632264
\(988\) 0 0
\(989\) 9.01533e11 0.0299639
\(990\) 0 0
\(991\) −3.17587e13 −1.04600 −0.523000 0.852333i \(-0.675187\pi\)
−0.523000 + 0.852333i \(0.675187\pi\)
\(992\) 0 0
\(993\) 1.22498e13 0.399813
\(994\) 0 0
\(995\) −5.61108e12 −0.181486
\(996\) 0 0
\(997\) −8.44481e12 −0.270683 −0.135342 0.990799i \(-0.543213\pi\)
−0.135342 + 0.990799i \(0.543213\pi\)
\(998\) 0 0
\(999\) 1.04207e13 0.331018
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.l.1.4 7
4.3 odd 2 104.10.a.c.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.c.1.4 7 4.3 odd 2
208.10.a.l.1.4 7 1.1 even 1 trivial