Properties

Label 208.10.a.m.1.7
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3 x^{7} - 135356 x^{6} - 24398 x^{5} + 5213582205 x^{4} + 598076469 x^{3} + \cdots + 15\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{25}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(227.704\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+209.704 q^{3} +488.996 q^{5} -11010.2 q^{7} +24292.6 q^{9} -23581.1 q^{11} +28561.0 q^{13} +102544. q^{15} +160701. q^{17} +397828. q^{19} -2.30887e6 q^{21} -324898. q^{23} -1.71401e6 q^{25} +966648. q^{27} +4.55158e6 q^{29} +9.68113e6 q^{31} -4.94504e6 q^{33} -5.38392e6 q^{35} +5.70767e6 q^{37} +5.98934e6 q^{39} +1.10096e7 q^{41} -2.05034e7 q^{43} +1.18790e7 q^{45} +4.62183e7 q^{47} +8.08698e7 q^{49} +3.36996e7 q^{51} +9.51270e7 q^{53} -1.15311e7 q^{55} +8.34260e7 q^{57} -2.01368e7 q^{59} +1.10626e8 q^{61} -2.67465e8 q^{63} +1.39662e7 q^{65} +1.26183e8 q^{67} -6.81323e7 q^{69} +1.44850e8 q^{71} -3.98283e7 q^{73} -3.59434e8 q^{75} +2.59632e8 q^{77} -2.09504e8 q^{79} -2.75441e8 q^{81} -1.27715e8 q^{83} +7.85822e7 q^{85} +9.54482e8 q^{87} -1.03596e9 q^{89} -3.14461e8 q^{91} +2.03017e9 q^{93} +1.94536e8 q^{95} +1.07626e9 q^{97} -5.72846e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 141 q^{3} + 2051 q^{5} + 2417 q^{7} + 115741 q^{9} + 53118 q^{11} + 228488 q^{13} + 464555 q^{15} + 433095 q^{17} + 434954 q^{19} + 906875 q^{21} + 1124296 q^{23} + 5966065 q^{25} - 7820643 q^{27}+ \cdots + 641626736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 209.704 1.49472 0.747361 0.664419i \(-0.231321\pi\)
0.747361 + 0.664419i \(0.231321\pi\)
\(4\) 0 0
\(5\) 488.996 0.349897 0.174949 0.984578i \(-0.444024\pi\)
0.174949 + 0.984578i \(0.444024\pi\)
\(6\) 0 0
\(7\) −11010.2 −1.73321 −0.866607 0.498992i \(-0.833704\pi\)
−0.866607 + 0.498992i \(0.833704\pi\)
\(8\) 0 0
\(9\) 24292.6 1.23419
\(10\) 0 0
\(11\) −23581.1 −0.485621 −0.242810 0.970074i \(-0.578069\pi\)
−0.242810 + 0.970074i \(0.578069\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) 102544. 0.522999
\(16\) 0 0
\(17\) 160701. 0.466658 0.233329 0.972398i \(-0.425038\pi\)
0.233329 + 0.972398i \(0.425038\pi\)
\(18\) 0 0
\(19\) 397828. 0.700332 0.350166 0.936688i \(-0.386125\pi\)
0.350166 + 0.936688i \(0.386125\pi\)
\(20\) 0 0
\(21\) −2.30887e6 −2.59067
\(22\) 0 0
\(23\) −324898. −0.242087 −0.121044 0.992647i \(-0.538624\pi\)
−0.121044 + 0.992647i \(0.538624\pi\)
\(24\) 0 0
\(25\) −1.71401e6 −0.877572
\(26\) 0 0
\(27\) 966648. 0.350051
\(28\) 0 0
\(29\) 4.55158e6 1.19501 0.597504 0.801866i \(-0.296159\pi\)
0.597504 + 0.801866i \(0.296159\pi\)
\(30\) 0 0
\(31\) 9.68113e6 1.88278 0.941388 0.337326i \(-0.109523\pi\)
0.941388 + 0.337326i \(0.109523\pi\)
\(32\) 0 0
\(33\) −4.94504e6 −0.725867
\(34\) 0 0
\(35\) −5.38392e6 −0.606447
\(36\) 0 0
\(37\) 5.70767e6 0.500670 0.250335 0.968159i \(-0.419459\pi\)
0.250335 + 0.968159i \(0.419459\pi\)
\(38\) 0 0
\(39\) 5.98934e6 0.414561
\(40\) 0 0
\(41\) 1.10096e7 0.608477 0.304239 0.952596i \(-0.401598\pi\)
0.304239 + 0.952596i \(0.401598\pi\)
\(42\) 0 0
\(43\) −2.05034e7 −0.914574 −0.457287 0.889319i \(-0.651179\pi\)
−0.457287 + 0.889319i \(0.651179\pi\)
\(44\) 0 0
\(45\) 1.18790e7 0.431840
\(46\) 0 0
\(47\) 4.62183e7 1.38157 0.690787 0.723058i \(-0.257264\pi\)
0.690787 + 0.723058i \(0.257264\pi\)
\(48\) 0 0
\(49\) 8.08698e7 2.00403
\(50\) 0 0
\(51\) 3.36996e7 0.697524
\(52\) 0 0
\(53\) 9.51270e7 1.65601 0.828004 0.560722i \(-0.189476\pi\)
0.828004 + 0.560722i \(0.189476\pi\)
\(54\) 0 0
\(55\) −1.15311e7 −0.169917
\(56\) 0 0
\(57\) 8.34260e7 1.04680
\(58\) 0 0
\(59\) −2.01368e7 −0.216350 −0.108175 0.994132i \(-0.534501\pi\)
−0.108175 + 0.994132i \(0.534501\pi\)
\(60\) 0 0
\(61\) 1.10626e8 1.02299 0.511495 0.859286i \(-0.329092\pi\)
0.511495 + 0.859286i \(0.329092\pi\)
\(62\) 0 0
\(63\) −2.67465e8 −2.13912
\(64\) 0 0
\(65\) 1.39662e7 0.0970440
\(66\) 0 0
\(67\) 1.26183e8 0.765007 0.382503 0.923954i \(-0.375062\pi\)
0.382503 + 0.923954i \(0.375062\pi\)
\(68\) 0 0
\(69\) −6.81323e7 −0.361853
\(70\) 0 0
\(71\) 1.44850e8 0.676480 0.338240 0.941060i \(-0.390168\pi\)
0.338240 + 0.941060i \(0.390168\pi\)
\(72\) 0 0
\(73\) −3.98283e7 −0.164149 −0.0820747 0.996626i \(-0.526155\pi\)
−0.0820747 + 0.996626i \(0.526155\pi\)
\(74\) 0 0
\(75\) −3.59434e8 −1.31173
\(76\) 0 0
\(77\) 2.59632e8 0.841684
\(78\) 0 0
\(79\) −2.09504e8 −0.605159 −0.302579 0.953124i \(-0.597848\pi\)
−0.302579 + 0.953124i \(0.597848\pi\)
\(80\) 0 0
\(81\) −2.75441e8 −0.710963
\(82\) 0 0
\(83\) −1.27715e8 −0.295387 −0.147694 0.989033i \(-0.547185\pi\)
−0.147694 + 0.989033i \(0.547185\pi\)
\(84\) 0 0
\(85\) 7.85822e7 0.163282
\(86\) 0 0
\(87\) 9.54482e8 1.78620
\(88\) 0 0
\(89\) −1.03596e9 −1.75020 −0.875098 0.483947i \(-0.839203\pi\)
−0.875098 + 0.483947i \(0.839203\pi\)
\(90\) 0 0
\(91\) −3.14461e8 −0.480707
\(92\) 0 0
\(93\) 2.03017e9 2.81422
\(94\) 0 0
\(95\) 1.94536e8 0.245044
\(96\) 0 0
\(97\) 1.07626e9 1.23437 0.617185 0.786818i \(-0.288273\pi\)
0.617185 + 0.786818i \(0.288273\pi\)
\(98\) 0 0
\(99\) −5.72846e8 −0.599349
\(100\) 0 0
\(101\) 4.50063e8 0.430355 0.215178 0.976575i \(-0.430967\pi\)
0.215178 + 0.976575i \(0.430967\pi\)
\(102\) 0 0
\(103\) −1.19015e9 −1.04192 −0.520960 0.853581i \(-0.674426\pi\)
−0.520960 + 0.853581i \(0.674426\pi\)
\(104\) 0 0
\(105\) −1.12903e9 −0.906469
\(106\) 0 0
\(107\) −8.89269e8 −0.655852 −0.327926 0.944703i \(-0.606350\pi\)
−0.327926 + 0.944703i \(0.606350\pi\)
\(108\) 0 0
\(109\) 2.28855e9 1.55289 0.776446 0.630184i \(-0.217020\pi\)
0.776446 + 0.630184i \(0.217020\pi\)
\(110\) 0 0
\(111\) 1.19692e9 0.748362
\(112\) 0 0
\(113\) 1.84249e9 1.06305 0.531524 0.847043i \(-0.321620\pi\)
0.531524 + 0.847043i \(0.321620\pi\)
\(114\) 0 0
\(115\) −1.58874e8 −0.0847056
\(116\) 0 0
\(117\) 6.93821e8 0.342303
\(118\) 0 0
\(119\) −1.76934e9 −0.808818
\(120\) 0 0
\(121\) −1.80188e9 −0.764173
\(122\) 0 0
\(123\) 2.30875e9 0.909504
\(124\) 0 0
\(125\) −1.79321e9 −0.656957
\(126\) 0 0
\(127\) −5.07757e9 −1.73196 −0.865982 0.500075i \(-0.833306\pi\)
−0.865982 + 0.500075i \(0.833306\pi\)
\(128\) 0 0
\(129\) −4.29965e9 −1.36703
\(130\) 0 0
\(131\) 2.40078e9 0.712248 0.356124 0.934439i \(-0.384098\pi\)
0.356124 + 0.934439i \(0.384098\pi\)
\(132\) 0 0
\(133\) −4.38015e9 −1.21383
\(134\) 0 0
\(135\) 4.72687e8 0.122482
\(136\) 0 0
\(137\) −2.13089e9 −0.516795 −0.258397 0.966039i \(-0.583194\pi\)
−0.258397 + 0.966039i \(0.583194\pi\)
\(138\) 0 0
\(139\) 8.96667e8 0.203735 0.101867 0.994798i \(-0.467518\pi\)
0.101867 + 0.994798i \(0.467518\pi\)
\(140\) 0 0
\(141\) 9.69215e9 2.06507
\(142\) 0 0
\(143\) −6.73500e8 −0.134687
\(144\) 0 0
\(145\) 2.22570e9 0.418130
\(146\) 0 0
\(147\) 1.69587e10 2.99547
\(148\) 0 0
\(149\) −5.19244e8 −0.0863044 −0.0431522 0.999069i \(-0.513740\pi\)
−0.0431522 + 0.999069i \(0.513740\pi\)
\(150\) 0 0
\(151\) 5.64069e9 0.882950 0.441475 0.897274i \(-0.354455\pi\)
0.441475 + 0.897274i \(0.354455\pi\)
\(152\) 0 0
\(153\) 3.90385e9 0.575945
\(154\) 0 0
\(155\) 4.73404e9 0.658778
\(156\) 0 0
\(157\) 7.87589e9 1.03455 0.517275 0.855819i \(-0.326947\pi\)
0.517275 + 0.855819i \(0.326947\pi\)
\(158\) 0 0
\(159\) 1.99485e10 2.47527
\(160\) 0 0
\(161\) 3.57718e9 0.419589
\(162\) 0 0
\(163\) 1.14373e10 1.26905 0.634524 0.772903i \(-0.281196\pi\)
0.634524 + 0.772903i \(0.281196\pi\)
\(164\) 0 0
\(165\) −2.41811e9 −0.253979
\(166\) 0 0
\(167\) 2.85367e8 0.0283909 0.0141955 0.999899i \(-0.495481\pi\)
0.0141955 + 0.999899i \(0.495481\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 9.66428e9 0.864344
\(172\) 0 0
\(173\) −5.16392e9 −0.438300 −0.219150 0.975691i \(-0.570328\pi\)
−0.219150 + 0.975691i \(0.570328\pi\)
\(174\) 0 0
\(175\) 1.88715e10 1.52102
\(176\) 0 0
\(177\) −4.22276e9 −0.323382
\(178\) 0 0
\(179\) −7.64026e9 −0.556249 −0.278125 0.960545i \(-0.589713\pi\)
−0.278125 + 0.960545i \(0.589713\pi\)
\(180\) 0 0
\(181\) 2.03632e10 1.41024 0.705118 0.709090i \(-0.250894\pi\)
0.705118 + 0.709090i \(0.250894\pi\)
\(182\) 0 0
\(183\) 2.31986e10 1.52908
\(184\) 0 0
\(185\) 2.79103e9 0.175183
\(186\) 0 0
\(187\) −3.78951e9 −0.226619
\(188\) 0 0
\(189\) −1.06429e10 −0.606714
\(190\) 0 0
\(191\) −2.20144e10 −1.19690 −0.598448 0.801161i \(-0.704216\pi\)
−0.598448 + 0.801161i \(0.704216\pi\)
\(192\) 0 0
\(193\) 1.87942e10 0.975024 0.487512 0.873116i \(-0.337904\pi\)
0.487512 + 0.873116i \(0.337904\pi\)
\(194\) 0 0
\(195\) 2.92877e9 0.145054
\(196\) 0 0
\(197\) 1.52558e10 0.721668 0.360834 0.932630i \(-0.382492\pi\)
0.360834 + 0.932630i \(0.382492\pi\)
\(198\) 0 0
\(199\) −2.41160e10 −1.09010 −0.545049 0.838404i \(-0.683489\pi\)
−0.545049 + 0.838404i \(0.683489\pi\)
\(200\) 0 0
\(201\) 2.64611e10 1.14347
\(202\) 0 0
\(203\) −5.01135e10 −2.07120
\(204\) 0 0
\(205\) 5.38366e9 0.212905
\(206\) 0 0
\(207\) −7.89261e9 −0.298782
\(208\) 0 0
\(209\) −9.38123e9 −0.340096
\(210\) 0 0
\(211\) 9.12569e9 0.316953 0.158476 0.987363i \(-0.449342\pi\)
0.158476 + 0.987363i \(0.449342\pi\)
\(212\) 0 0
\(213\) 3.03755e10 1.01115
\(214\) 0 0
\(215\) −1.00261e10 −0.320007
\(216\) 0 0
\(217\) −1.06591e11 −3.26325
\(218\) 0 0
\(219\) −8.35214e9 −0.245357
\(220\) 0 0
\(221\) 4.58978e9 0.129428
\(222\) 0 0
\(223\) 4.20762e10 1.13937 0.569684 0.821864i \(-0.307065\pi\)
0.569684 + 0.821864i \(0.307065\pi\)
\(224\) 0 0
\(225\) −4.16377e10 −1.08309
\(226\) 0 0
\(227\) 2.18393e10 0.545912 0.272956 0.962027i \(-0.411999\pi\)
0.272956 + 0.962027i \(0.411999\pi\)
\(228\) 0 0
\(229\) 4.18787e10 1.00631 0.503157 0.864195i \(-0.332172\pi\)
0.503157 + 0.864195i \(0.332172\pi\)
\(230\) 0 0
\(231\) 5.44457e10 1.25808
\(232\) 0 0
\(233\) 1.19849e10 0.266399 0.133199 0.991089i \(-0.457475\pi\)
0.133199 + 0.991089i \(0.457475\pi\)
\(234\) 0 0
\(235\) 2.26006e10 0.483409
\(236\) 0 0
\(237\) −4.39336e10 −0.904544
\(238\) 0 0
\(239\) −6.91323e10 −1.37054 −0.685268 0.728291i \(-0.740315\pi\)
−0.685268 + 0.728291i \(0.740315\pi\)
\(240\) 0 0
\(241\) 7.97901e10 1.52361 0.761803 0.647809i \(-0.224315\pi\)
0.761803 + 0.647809i \(0.224315\pi\)
\(242\) 0 0
\(243\) −7.67876e10 −1.41274
\(244\) 0 0
\(245\) 3.95450e10 0.701204
\(246\) 0 0
\(247\) 1.13624e10 0.194237
\(248\) 0 0
\(249\) −2.67824e10 −0.441522
\(250\) 0 0
\(251\) 2.43450e10 0.387150 0.193575 0.981086i \(-0.437992\pi\)
0.193575 + 0.981086i \(0.437992\pi\)
\(252\) 0 0
\(253\) 7.66145e9 0.117562
\(254\) 0 0
\(255\) 1.64790e10 0.244062
\(256\) 0 0
\(257\) −7.83619e10 −1.12048 −0.560242 0.828329i \(-0.689292\pi\)
−0.560242 + 0.828329i \(0.689292\pi\)
\(258\) 0 0
\(259\) −6.28424e10 −0.867768
\(260\) 0 0
\(261\) 1.10570e11 1.47487
\(262\) 0 0
\(263\) −5.44846e10 −0.702219 −0.351110 0.936334i \(-0.614196\pi\)
−0.351110 + 0.936334i \(0.614196\pi\)
\(264\) 0 0
\(265\) 4.65168e10 0.579433
\(266\) 0 0
\(267\) −2.17244e11 −2.61605
\(268\) 0 0
\(269\) −1.66373e10 −0.193730 −0.0968651 0.995298i \(-0.530882\pi\)
−0.0968651 + 0.995298i \(0.530882\pi\)
\(270\) 0 0
\(271\) −1.35918e11 −1.53079 −0.765394 0.643562i \(-0.777456\pi\)
−0.765394 + 0.643562i \(0.777456\pi\)
\(272\) 0 0
\(273\) −6.59436e10 −0.718523
\(274\) 0 0
\(275\) 4.04182e10 0.426167
\(276\) 0 0
\(277\) 1.04715e11 1.06869 0.534345 0.845266i \(-0.320558\pi\)
0.534345 + 0.845266i \(0.320558\pi\)
\(278\) 0 0
\(279\) 2.35180e11 2.32371
\(280\) 0 0
\(281\) −1.75058e11 −1.67495 −0.837477 0.546472i \(-0.815971\pi\)
−0.837477 + 0.546472i \(0.815971\pi\)
\(282\) 0 0
\(283\) −7.71468e10 −0.714955 −0.357478 0.933922i \(-0.616363\pi\)
−0.357478 + 0.933922i \(0.616363\pi\)
\(284\) 0 0
\(285\) 4.07950e10 0.366273
\(286\) 0 0
\(287\) −1.21217e11 −1.05462
\(288\) 0 0
\(289\) −9.27630e10 −0.782230
\(290\) 0 0
\(291\) 2.25696e11 1.84504
\(292\) 0 0
\(293\) 1.92868e11 1.52882 0.764410 0.644730i \(-0.223030\pi\)
0.764410 + 0.644730i \(0.223030\pi\)
\(294\) 0 0
\(295\) −9.84681e9 −0.0757001
\(296\) 0 0
\(297\) −2.27946e10 −0.169992
\(298\) 0 0
\(299\) −9.27941e9 −0.0671429
\(300\) 0 0
\(301\) 2.25746e11 1.58515
\(302\) 0 0
\(303\) 9.43798e10 0.643261
\(304\) 0 0
\(305\) 5.40955e10 0.357941
\(306\) 0 0
\(307\) 3.50351e10 0.225103 0.112551 0.993646i \(-0.464098\pi\)
0.112551 + 0.993646i \(0.464098\pi\)
\(308\) 0 0
\(309\) −2.49579e11 −1.55738
\(310\) 0 0
\(311\) −3.10470e11 −1.88190 −0.940952 0.338540i \(-0.890067\pi\)
−0.940952 + 0.338540i \(0.890067\pi\)
\(312\) 0 0
\(313\) 1.83696e11 1.08181 0.540905 0.841084i \(-0.318082\pi\)
0.540905 + 0.841084i \(0.318082\pi\)
\(314\) 0 0
\(315\) −1.30789e11 −0.748471
\(316\) 0 0
\(317\) −2.20565e11 −1.22679 −0.613394 0.789777i \(-0.710196\pi\)
−0.613394 + 0.789777i \(0.710196\pi\)
\(318\) 0 0
\(319\) −1.07331e11 −0.580320
\(320\) 0 0
\(321\) −1.86483e11 −0.980316
\(322\) 0 0
\(323\) 6.39314e10 0.326816
\(324\) 0 0
\(325\) −4.89538e10 −0.243395
\(326\) 0 0
\(327\) 4.79917e11 2.32114
\(328\) 0 0
\(329\) −5.08871e11 −2.39456
\(330\) 0 0
\(331\) 4.51234e10 0.206621 0.103311 0.994649i \(-0.467056\pi\)
0.103311 + 0.994649i \(0.467056\pi\)
\(332\) 0 0
\(333\) 1.38654e11 0.617923
\(334\) 0 0
\(335\) 6.17031e10 0.267674
\(336\) 0 0
\(337\) 1.61655e11 0.682738 0.341369 0.939929i \(-0.389109\pi\)
0.341369 + 0.939929i \(0.389109\pi\)
\(338\) 0 0
\(339\) 3.86377e11 1.58896
\(340\) 0 0
\(341\) −2.28292e11 −0.914315
\(342\) 0 0
\(343\) −4.46090e11 −1.74020
\(344\) 0 0
\(345\) −3.33164e10 −0.126611
\(346\) 0 0
\(347\) 3.66990e11 1.35885 0.679425 0.733745i \(-0.262229\pi\)
0.679425 + 0.733745i \(0.262229\pi\)
\(348\) 0 0
\(349\) −5.29964e11 −1.91219 −0.956096 0.293053i \(-0.905329\pi\)
−0.956096 + 0.293053i \(0.905329\pi\)
\(350\) 0 0
\(351\) 2.76084e10 0.0970867
\(352\) 0 0
\(353\) 1.77519e11 0.608497 0.304249 0.952593i \(-0.401595\pi\)
0.304249 + 0.952593i \(0.401595\pi\)
\(354\) 0 0
\(355\) 7.08309e10 0.236698
\(356\) 0 0
\(357\) −3.71038e11 −1.20896
\(358\) 0 0
\(359\) 5.57397e11 1.77109 0.885544 0.464556i \(-0.153786\pi\)
0.885544 + 0.464556i \(0.153786\pi\)
\(360\) 0 0
\(361\) −1.64421e11 −0.509535
\(362\) 0 0
\(363\) −3.77860e11 −1.14223
\(364\) 0 0
\(365\) −1.94759e10 −0.0574354
\(366\) 0 0
\(367\) 1.20340e11 0.346269 0.173134 0.984898i \(-0.444611\pi\)
0.173134 + 0.984898i \(0.444611\pi\)
\(368\) 0 0
\(369\) 2.67452e11 0.750978
\(370\) 0 0
\(371\) −1.04736e12 −2.87022
\(372\) 0 0
\(373\) −7.03469e11 −1.88172 −0.940861 0.338793i \(-0.889981\pi\)
−0.940861 + 0.338793i \(0.889981\pi\)
\(374\) 0 0
\(375\) −3.76043e11 −0.981968
\(376\) 0 0
\(377\) 1.29998e11 0.331436
\(378\) 0 0
\(379\) −5.50542e11 −1.37061 −0.685306 0.728256i \(-0.740331\pi\)
−0.685306 + 0.728256i \(0.740331\pi\)
\(380\) 0 0
\(381\) −1.06478e12 −2.58880
\(382\) 0 0
\(383\) 8.34780e11 1.98234 0.991168 0.132612i \(-0.0423363\pi\)
0.991168 + 0.132612i \(0.0423363\pi\)
\(384\) 0 0
\(385\) 1.26959e11 0.294503
\(386\) 0 0
\(387\) −4.98082e11 −1.12876
\(388\) 0 0
\(389\) 7.60130e11 1.68312 0.841559 0.540164i \(-0.181638\pi\)
0.841559 + 0.540164i \(0.181638\pi\)
\(390\) 0 0
\(391\) −5.22114e10 −0.112972
\(392\) 0 0
\(393\) 5.03451e11 1.06461
\(394\) 0 0
\(395\) −1.02446e11 −0.211743
\(396\) 0 0
\(397\) −1.72936e11 −0.349405 −0.174702 0.984621i \(-0.555896\pi\)
−0.174702 + 0.984621i \(0.555896\pi\)
\(398\) 0 0
\(399\) −9.18533e11 −1.81433
\(400\) 0 0
\(401\) 5.85244e11 1.13028 0.565141 0.824994i \(-0.308822\pi\)
0.565141 + 0.824994i \(0.308822\pi\)
\(402\) 0 0
\(403\) 2.76503e11 0.522188
\(404\) 0 0
\(405\) −1.34690e11 −0.248764
\(406\) 0 0
\(407\) −1.34593e11 −0.243136
\(408\) 0 0
\(409\) −1.90539e11 −0.336689 −0.168344 0.985728i \(-0.553842\pi\)
−0.168344 + 0.985728i \(0.553842\pi\)
\(410\) 0 0
\(411\) −4.46855e11 −0.772464
\(412\) 0 0
\(413\) 2.21709e11 0.374980
\(414\) 0 0
\(415\) −6.24523e10 −0.103355
\(416\) 0 0
\(417\) 1.88034e11 0.304526
\(418\) 0 0
\(419\) 9.62485e11 1.52557 0.762783 0.646655i \(-0.223833\pi\)
0.762783 + 0.646655i \(0.223833\pi\)
\(420\) 0 0
\(421\) 3.13093e11 0.485740 0.242870 0.970059i \(-0.421911\pi\)
0.242870 + 0.970059i \(0.421911\pi\)
\(422\) 0 0
\(423\) 1.12276e12 1.70513
\(424\) 0 0
\(425\) −2.75443e11 −0.409526
\(426\) 0 0
\(427\) −1.21800e12 −1.77306
\(428\) 0 0
\(429\) −1.41235e11 −0.201319
\(430\) 0 0
\(431\) −8.35637e11 −1.16646 −0.583230 0.812307i \(-0.698211\pi\)
−0.583230 + 0.812307i \(0.698211\pi\)
\(432\) 0 0
\(433\) 3.32262e11 0.454239 0.227120 0.973867i \(-0.427069\pi\)
0.227120 + 0.973867i \(0.427069\pi\)
\(434\) 0 0
\(435\) 4.66738e11 0.624988
\(436\) 0 0
\(437\) −1.29253e11 −0.169541
\(438\) 0 0
\(439\) 8.43501e11 1.08391 0.541957 0.840406i \(-0.317683\pi\)
0.541957 + 0.840406i \(0.317683\pi\)
\(440\) 0 0
\(441\) 1.96454e12 2.47336
\(442\) 0 0
\(443\) 7.60339e10 0.0937973 0.0468986 0.998900i \(-0.485066\pi\)
0.0468986 + 0.998900i \(0.485066\pi\)
\(444\) 0 0
\(445\) −5.06579e11 −0.612388
\(446\) 0 0
\(447\) −1.08887e11 −0.129001
\(448\) 0 0
\(449\) −5.94316e11 −0.690095 −0.345047 0.938585i \(-0.612137\pi\)
−0.345047 + 0.938585i \(0.612137\pi\)
\(450\) 0 0
\(451\) −2.59619e11 −0.295489
\(452\) 0 0
\(453\) 1.18287e12 1.31976
\(454\) 0 0
\(455\) −1.53770e11 −0.168198
\(456\) 0 0
\(457\) 6.46986e11 0.693861 0.346930 0.937891i \(-0.387224\pi\)
0.346930 + 0.937891i \(0.387224\pi\)
\(458\) 0 0
\(459\) 1.55341e11 0.163354
\(460\) 0 0
\(461\) 2.49748e10 0.0257542 0.0128771 0.999917i \(-0.495901\pi\)
0.0128771 + 0.999917i \(0.495901\pi\)
\(462\) 0 0
\(463\) 1.86304e12 1.88412 0.942058 0.335451i \(-0.108889\pi\)
0.942058 + 0.335451i \(0.108889\pi\)
\(464\) 0 0
\(465\) 9.92745e11 0.984689
\(466\) 0 0
\(467\) 1.93423e12 1.88184 0.940918 0.338635i \(-0.109965\pi\)
0.940918 + 0.338635i \(0.109965\pi\)
\(468\) 0 0
\(469\) −1.38930e12 −1.32592
\(470\) 0 0
\(471\) 1.65160e12 1.54636
\(472\) 0 0
\(473\) 4.83494e11 0.444136
\(474\) 0 0
\(475\) −6.81880e11 −0.614592
\(476\) 0 0
\(477\) 2.31088e12 2.04383
\(478\) 0 0
\(479\) −1.24141e12 −1.07747 −0.538735 0.842475i \(-0.681097\pi\)
−0.538735 + 0.842475i \(0.681097\pi\)
\(480\) 0 0
\(481\) 1.63017e11 0.138861
\(482\) 0 0
\(483\) 7.50146e11 0.627168
\(484\) 0 0
\(485\) 5.26288e11 0.431902
\(486\) 0 0
\(487\) −9.20890e11 −0.741869 −0.370935 0.928659i \(-0.620963\pi\)
−0.370935 + 0.928659i \(0.620963\pi\)
\(488\) 0 0
\(489\) 2.39844e12 1.89687
\(490\) 0 0
\(491\) −1.07106e12 −0.831661 −0.415831 0.909442i \(-0.636509\pi\)
−0.415831 + 0.909442i \(0.636509\pi\)
\(492\) 0 0
\(493\) 7.31443e11 0.557660
\(494\) 0 0
\(495\) −2.80120e11 −0.209711
\(496\) 0 0
\(497\) −1.59482e12 −1.17248
\(498\) 0 0
\(499\) −1.38423e11 −0.0999438 −0.0499719 0.998751i \(-0.515913\pi\)
−0.0499719 + 0.998751i \(0.515913\pi\)
\(500\) 0 0
\(501\) 5.98425e10 0.0424365
\(502\) 0 0
\(503\) 2.40845e12 1.67757 0.838785 0.544462i \(-0.183266\pi\)
0.838785 + 0.544462i \(0.183266\pi\)
\(504\) 0 0
\(505\) 2.20079e11 0.150580
\(506\) 0 0
\(507\) 1.71062e11 0.114979
\(508\) 0 0
\(509\) −1.30609e12 −0.862468 −0.431234 0.902240i \(-0.641922\pi\)
−0.431234 + 0.902240i \(0.641922\pi\)
\(510\) 0 0
\(511\) 4.38516e11 0.284506
\(512\) 0 0
\(513\) 3.84560e11 0.245152
\(514\) 0 0
\(515\) −5.81979e11 −0.364565
\(516\) 0 0
\(517\) −1.08988e12 −0.670921
\(518\) 0 0
\(519\) −1.08289e12 −0.655137
\(520\) 0 0
\(521\) −1.17098e12 −0.696274 −0.348137 0.937444i \(-0.613186\pi\)
−0.348137 + 0.937444i \(0.613186\pi\)
\(522\) 0 0
\(523\) −7.76176e11 −0.453631 −0.226815 0.973938i \(-0.572831\pi\)
−0.226815 + 0.973938i \(0.572831\pi\)
\(524\) 0 0
\(525\) 3.95742e12 2.27350
\(526\) 0 0
\(527\) 1.55577e12 0.878612
\(528\) 0 0
\(529\) −1.69559e12 −0.941394
\(530\) 0 0
\(531\) −4.89175e11 −0.267017
\(532\) 0 0
\(533\) 3.14445e11 0.168761
\(534\) 0 0
\(535\) −4.34849e11 −0.229481
\(536\) 0 0
\(537\) −1.60219e12 −0.831437
\(538\) 0 0
\(539\) −1.90700e12 −0.973198
\(540\) 0 0
\(541\) 2.59227e11 0.130105 0.0650523 0.997882i \(-0.479279\pi\)
0.0650523 + 0.997882i \(0.479279\pi\)
\(542\) 0 0
\(543\) 4.27023e12 2.10791
\(544\) 0 0
\(545\) 1.11909e12 0.543353
\(546\) 0 0
\(547\) −1.74086e12 −0.831421 −0.415710 0.909497i \(-0.636467\pi\)
−0.415710 + 0.909497i \(0.636467\pi\)
\(548\) 0 0
\(549\) 2.68738e12 1.26257
\(550\) 0 0
\(551\) 1.81074e12 0.836903
\(552\) 0 0
\(553\) 2.30667e12 1.04887
\(554\) 0 0
\(555\) 5.85289e11 0.261850
\(556\) 0 0
\(557\) −4.29154e12 −1.88914 −0.944571 0.328309i \(-0.893521\pi\)
−0.944571 + 0.328309i \(0.893521\pi\)
\(558\) 0 0
\(559\) −5.85599e11 −0.253657
\(560\) 0 0
\(561\) −7.94674e11 −0.338732
\(562\) 0 0
\(563\) −3.14494e12 −1.31924 −0.659621 0.751598i \(-0.729283\pi\)
−0.659621 + 0.751598i \(0.729283\pi\)
\(564\) 0 0
\(565\) 9.00972e11 0.371958
\(566\) 0 0
\(567\) 3.03265e12 1.23225
\(568\) 0 0
\(569\) −2.38655e12 −0.954475 −0.477238 0.878774i \(-0.658362\pi\)
−0.477238 + 0.878774i \(0.658362\pi\)
\(570\) 0 0
\(571\) −2.29305e12 −0.902718 −0.451359 0.892343i \(-0.649061\pi\)
−0.451359 + 0.892343i \(0.649061\pi\)
\(572\) 0 0
\(573\) −4.61650e12 −1.78903
\(574\) 0 0
\(575\) 5.56878e11 0.212449
\(576\) 0 0
\(577\) −2.28430e12 −0.857950 −0.428975 0.903316i \(-0.641125\pi\)
−0.428975 + 0.903316i \(0.641125\pi\)
\(578\) 0 0
\(579\) 3.94121e12 1.45739
\(580\) 0 0
\(581\) 1.40617e12 0.511969
\(582\) 0 0
\(583\) −2.24320e12 −0.804192
\(584\) 0 0
\(585\) 3.39276e11 0.119771
\(586\) 0 0
\(587\) 2.41317e12 0.838912 0.419456 0.907776i \(-0.362221\pi\)
0.419456 + 0.907776i \(0.362221\pi\)
\(588\) 0 0
\(589\) 3.85143e12 1.31857
\(590\) 0 0
\(591\) 3.19920e12 1.07869
\(592\) 0 0
\(593\) −3.27743e12 −1.08840 −0.544199 0.838956i \(-0.683166\pi\)
−0.544199 + 0.838956i \(0.683166\pi\)
\(594\) 0 0
\(595\) −8.65202e11 −0.283003
\(596\) 0 0
\(597\) −5.05720e12 −1.62939
\(598\) 0 0
\(599\) −4.38370e12 −1.39130 −0.695650 0.718381i \(-0.744883\pi\)
−0.695650 + 0.718381i \(0.744883\pi\)
\(600\) 0 0
\(601\) 2.93453e12 0.917494 0.458747 0.888567i \(-0.348298\pi\)
0.458747 + 0.888567i \(0.348298\pi\)
\(602\) 0 0
\(603\) 3.06532e12 0.944165
\(604\) 0 0
\(605\) −8.81112e11 −0.267382
\(606\) 0 0
\(607\) −3.73411e12 −1.11645 −0.558224 0.829690i \(-0.688517\pi\)
−0.558224 + 0.829690i \(0.688517\pi\)
\(608\) 0 0
\(609\) −1.05090e13 −3.09587
\(610\) 0 0
\(611\) 1.32004e12 0.383180
\(612\) 0 0
\(613\) 4.86942e11 0.139285 0.0696427 0.997572i \(-0.477814\pi\)
0.0696427 + 0.997572i \(0.477814\pi\)
\(614\) 0 0
\(615\) 1.12897e12 0.318233
\(616\) 0 0
\(617\) −4.58538e12 −1.27377 −0.636887 0.770957i \(-0.719778\pi\)
−0.636887 + 0.770957i \(0.719778\pi\)
\(618\) 0 0
\(619\) 2.33142e12 0.638281 0.319141 0.947707i \(-0.396606\pi\)
0.319141 + 0.947707i \(0.396606\pi\)
\(620\) 0 0
\(621\) −3.14062e11 −0.0847429
\(622\) 0 0
\(623\) 1.14060e13 3.03346
\(624\) 0 0
\(625\) 2.47080e12 0.647705
\(626\) 0 0
\(627\) −1.96728e12 −0.508348
\(628\) 0 0
\(629\) 9.17229e11 0.233642
\(630\) 0 0
\(631\) 1.23807e12 0.310895 0.155448 0.987844i \(-0.450318\pi\)
0.155448 + 0.987844i \(0.450318\pi\)
\(632\) 0 0
\(633\) 1.91369e12 0.473756
\(634\) 0 0
\(635\) −2.48291e12 −0.606009
\(636\) 0 0
\(637\) 2.30972e12 0.555818
\(638\) 0 0
\(639\) 3.51877e12 0.834906
\(640\) 0 0
\(641\) 8.11886e11 0.189948 0.0949738 0.995480i \(-0.469723\pi\)
0.0949738 + 0.995480i \(0.469723\pi\)
\(642\) 0 0
\(643\) −3.19368e12 −0.736788 −0.368394 0.929670i \(-0.620092\pi\)
−0.368394 + 0.929670i \(0.620092\pi\)
\(644\) 0 0
\(645\) −2.10251e12 −0.478321
\(646\) 0 0
\(647\) 9.88017e11 0.221664 0.110832 0.993839i \(-0.464648\pi\)
0.110832 + 0.993839i \(0.464648\pi\)
\(648\) 0 0
\(649\) 4.74848e11 0.105064
\(650\) 0 0
\(651\) −2.23525e13 −4.87765
\(652\) 0 0
\(653\) 2.31322e12 0.497860 0.248930 0.968521i \(-0.419921\pi\)
0.248930 + 0.968521i \(0.419921\pi\)
\(654\) 0 0
\(655\) 1.17397e12 0.249213
\(656\) 0 0
\(657\) −9.67533e11 −0.202592
\(658\) 0 0
\(659\) −8.88926e12 −1.83604 −0.918018 0.396539i \(-0.870211\pi\)
−0.918018 + 0.396539i \(0.870211\pi\)
\(660\) 0 0
\(661\) −3.75968e12 −0.766028 −0.383014 0.923742i \(-0.625114\pi\)
−0.383014 + 0.923742i \(0.625114\pi\)
\(662\) 0 0
\(663\) 9.62494e11 0.193458
\(664\) 0 0
\(665\) −2.14188e12 −0.424714
\(666\) 0 0
\(667\) −1.47880e12 −0.289296
\(668\) 0 0
\(669\) 8.82352e12 1.70304
\(670\) 0 0
\(671\) −2.60867e12 −0.496785
\(672\) 0 0
\(673\) 2.37969e11 0.0447150 0.0223575 0.999750i \(-0.492883\pi\)
0.0223575 + 0.999750i \(0.492883\pi\)
\(674\) 0 0
\(675\) −1.65684e12 −0.307195
\(676\) 0 0
\(677\) −9.42990e11 −0.172527 −0.0862637 0.996272i \(-0.527493\pi\)
−0.0862637 + 0.996272i \(0.527493\pi\)
\(678\) 0 0
\(679\) −1.18498e13 −2.13943
\(680\) 0 0
\(681\) 4.57978e12 0.815986
\(682\) 0 0
\(683\) 2.87035e12 0.504709 0.252355 0.967635i \(-0.418795\pi\)
0.252355 + 0.967635i \(0.418795\pi\)
\(684\) 0 0
\(685\) −1.04200e12 −0.180825
\(686\) 0 0
\(687\) 8.78211e12 1.50416
\(688\) 0 0
\(689\) 2.71692e12 0.459294
\(690\) 0 0
\(691\) −5.99596e12 −1.00048 −0.500239 0.865887i \(-0.666754\pi\)
−0.500239 + 0.865887i \(0.666754\pi\)
\(692\) 0 0
\(693\) 6.30712e12 1.03880
\(694\) 0 0
\(695\) 4.38467e11 0.0712862
\(696\) 0 0
\(697\) 1.76926e12 0.283951
\(698\) 0 0
\(699\) 2.51327e12 0.398192
\(700\) 0 0
\(701\) 8.08801e12 1.26506 0.632530 0.774536i \(-0.282017\pi\)
0.632530 + 0.774536i \(0.282017\pi\)
\(702\) 0 0
\(703\) 2.27067e12 0.350635
\(704\) 0 0
\(705\) 4.73943e12 0.722561
\(706\) 0 0
\(707\) −4.95526e12 −0.745898
\(708\) 0 0
\(709\) 5.55768e12 0.826011 0.413005 0.910729i \(-0.364479\pi\)
0.413005 + 0.910729i \(0.364479\pi\)
\(710\) 0 0
\(711\) −5.08938e12 −0.746882
\(712\) 0 0
\(713\) −3.14538e12 −0.455796
\(714\) 0 0
\(715\) −3.29339e11 −0.0471266
\(716\) 0 0
\(717\) −1.44973e13 −2.04857
\(718\) 0 0
\(719\) 5.71213e12 0.797109 0.398555 0.917145i \(-0.369512\pi\)
0.398555 + 0.917145i \(0.369512\pi\)
\(720\) 0 0
\(721\) 1.31037e13 1.80587
\(722\) 0 0
\(723\) 1.67323e13 2.27737
\(724\) 0 0
\(725\) −7.80144e12 −1.04871
\(726\) 0 0
\(727\) 2.04269e12 0.271205 0.135603 0.990763i \(-0.456703\pi\)
0.135603 + 0.990763i \(0.456703\pi\)
\(728\) 0 0
\(729\) −1.06811e13 −1.40069
\(730\) 0 0
\(731\) −3.29493e12 −0.426793
\(732\) 0 0
\(733\) −1.18481e12 −0.151594 −0.0757971 0.997123i \(-0.524150\pi\)
−0.0757971 + 0.997123i \(0.524150\pi\)
\(734\) 0 0
\(735\) 8.29274e12 1.04811
\(736\) 0 0
\(737\) −2.97554e12 −0.371503
\(738\) 0 0
\(739\) 8.43689e12 1.04060 0.520298 0.853985i \(-0.325821\pi\)
0.520298 + 0.853985i \(0.325821\pi\)
\(740\) 0 0
\(741\) 2.38273e12 0.290331
\(742\) 0 0
\(743\) −7.29494e12 −0.878157 −0.439079 0.898449i \(-0.644695\pi\)
−0.439079 + 0.898449i \(0.644695\pi\)
\(744\) 0 0
\(745\) −2.53908e11 −0.0301977
\(746\) 0 0
\(747\) −3.10254e12 −0.364565
\(748\) 0 0
\(749\) 9.79098e12 1.13673
\(750\) 0 0
\(751\) −2.29023e12 −0.262724 −0.131362 0.991334i \(-0.541935\pi\)
−0.131362 + 0.991334i \(0.541935\pi\)
\(752\) 0 0
\(753\) 5.10524e12 0.578681
\(754\) 0 0
\(755\) 2.75828e12 0.308942
\(756\) 0 0
\(757\) −2.83841e12 −0.314155 −0.157078 0.987586i \(-0.550207\pi\)
−0.157078 + 0.987586i \(0.550207\pi\)
\(758\) 0 0
\(759\) 1.60663e12 0.175723
\(760\) 0 0
\(761\) −1.70378e13 −1.84155 −0.920774 0.390096i \(-0.872442\pi\)
−0.920774 + 0.390096i \(0.872442\pi\)
\(762\) 0 0
\(763\) −2.51973e13 −2.69149
\(764\) 0 0
\(765\) 1.90897e12 0.201522
\(766\) 0 0
\(767\) −5.75127e11 −0.0600046
\(768\) 0 0
\(769\) 1.93798e12 0.199839 0.0999194 0.994996i \(-0.468142\pi\)
0.0999194 + 0.994996i \(0.468142\pi\)
\(770\) 0 0
\(771\) −1.64328e13 −1.67481
\(772\) 0 0
\(773\) 2.48333e12 0.250166 0.125083 0.992146i \(-0.460080\pi\)
0.125083 + 0.992146i \(0.460080\pi\)
\(774\) 0 0
\(775\) −1.65935e13 −1.65227
\(776\) 0 0
\(777\) −1.31783e13 −1.29707
\(778\) 0 0
\(779\) 4.37993e12 0.426136
\(780\) 0 0
\(781\) −3.41572e12 −0.328513
\(782\) 0 0
\(783\) 4.39977e12 0.418314
\(784\) 0 0
\(785\) 3.85128e12 0.361986
\(786\) 0 0
\(787\) 1.40039e13 1.30126 0.650628 0.759397i \(-0.274506\pi\)
0.650628 + 0.759397i \(0.274506\pi\)
\(788\) 0 0
\(789\) −1.14256e13 −1.04962
\(790\) 0 0
\(791\) −2.02861e13 −1.84249
\(792\) 0 0
\(793\) 3.15958e12 0.283726
\(794\) 0 0
\(795\) 9.75473e12 0.866090
\(796\) 0 0
\(797\) 1.88540e13 1.65516 0.827581 0.561346i \(-0.189716\pi\)
0.827581 + 0.561346i \(0.189716\pi\)
\(798\) 0 0
\(799\) 7.42734e12 0.644722
\(800\) 0 0
\(801\) −2.51661e13 −2.16008
\(802\) 0 0
\(803\) 9.39196e11 0.0797143
\(804\) 0 0
\(805\) 1.74923e12 0.146813
\(806\) 0 0
\(807\) −3.48890e12 −0.289573
\(808\) 0 0
\(809\) −1.03147e13 −0.846618 −0.423309 0.905985i \(-0.639132\pi\)
−0.423309 + 0.905985i \(0.639132\pi\)
\(810\) 0 0
\(811\) −1.52992e13 −1.24187 −0.620934 0.783863i \(-0.713246\pi\)
−0.620934 + 0.783863i \(0.713246\pi\)
\(812\) 0 0
\(813\) −2.85025e13 −2.28810
\(814\) 0 0
\(815\) 5.59278e12 0.444036
\(816\) 0 0
\(817\) −8.15685e12 −0.640506
\(818\) 0 0
\(819\) −7.63907e12 −0.593285
\(820\) 0 0
\(821\) 1.13333e13 0.870584 0.435292 0.900289i \(-0.356645\pi\)
0.435292 + 0.900289i \(0.356645\pi\)
\(822\) 0 0
\(823\) −1.11886e13 −0.850109 −0.425055 0.905168i \(-0.639745\pi\)
−0.425055 + 0.905168i \(0.639745\pi\)
\(824\) 0 0
\(825\) 8.47584e12 0.637001
\(826\) 0 0
\(827\) 2.42673e13 1.80404 0.902020 0.431694i \(-0.142084\pi\)
0.902020 + 0.431694i \(0.142084\pi\)
\(828\) 0 0
\(829\) −1.05896e13 −0.778723 −0.389362 0.921085i \(-0.627304\pi\)
−0.389362 + 0.921085i \(0.627304\pi\)
\(830\) 0 0
\(831\) 2.19592e13 1.59739
\(832\) 0 0
\(833\) 1.29959e13 0.935196
\(834\) 0 0
\(835\) 1.39543e11 0.00993391
\(836\) 0 0
\(837\) 9.35825e12 0.659068
\(838\) 0 0
\(839\) 7.99276e12 0.556888 0.278444 0.960452i \(-0.410181\pi\)
0.278444 + 0.960452i \(0.410181\pi\)
\(840\) 0 0
\(841\) 6.20969e12 0.428044
\(842\) 0 0
\(843\) −3.67103e13 −2.50359
\(844\) 0 0
\(845\) 3.98889e11 0.0269152
\(846\) 0 0
\(847\) 1.98390e13 1.32447
\(848\) 0 0
\(849\) −1.61780e13 −1.06866
\(850\) 0 0
\(851\) −1.85441e12 −0.121206
\(852\) 0 0
\(853\) 2.38359e13 1.54156 0.770782 0.637099i \(-0.219866\pi\)
0.770782 + 0.637099i \(0.219866\pi\)
\(854\) 0 0
\(855\) 4.72579e12 0.302432
\(856\) 0 0
\(857\) 8.25953e12 0.523048 0.261524 0.965197i \(-0.415775\pi\)
0.261524 + 0.965197i \(0.415775\pi\)
\(858\) 0 0
\(859\) 9.39817e11 0.0588944 0.0294472 0.999566i \(-0.490625\pi\)
0.0294472 + 0.999566i \(0.490625\pi\)
\(860\) 0 0
\(861\) −2.54197e13 −1.57637
\(862\) 0 0
\(863\) 2.34275e13 1.43773 0.718866 0.695149i \(-0.244661\pi\)
0.718866 + 0.695149i \(0.244661\pi\)
\(864\) 0 0
\(865\) −2.52513e12 −0.153360
\(866\) 0 0
\(867\) −1.94527e13 −1.16922
\(868\) 0 0
\(869\) 4.94033e12 0.293878
\(870\) 0 0
\(871\) 3.60392e12 0.212175
\(872\) 0 0
\(873\) 2.61452e13 1.52345
\(874\) 0 0
\(875\) 1.97436e13 1.13865
\(876\) 0 0
\(877\) −7.28411e12 −0.415794 −0.207897 0.978151i \(-0.566662\pi\)
−0.207897 + 0.978151i \(0.566662\pi\)
\(878\) 0 0
\(879\) 4.04452e13 2.28516
\(880\) 0 0
\(881\) 2.69854e12 0.150917 0.0754583 0.997149i \(-0.475958\pi\)
0.0754583 + 0.997149i \(0.475958\pi\)
\(882\) 0 0
\(883\) −2.16728e13 −1.19975 −0.599875 0.800094i \(-0.704783\pi\)
−0.599875 + 0.800094i \(0.704783\pi\)
\(884\) 0 0
\(885\) −2.06491e12 −0.113151
\(886\) 0 0
\(887\) 2.91657e12 0.158203 0.0791017 0.996867i \(-0.474795\pi\)
0.0791017 + 0.996867i \(0.474795\pi\)
\(888\) 0 0
\(889\) 5.59048e13 3.00186
\(890\) 0 0
\(891\) 6.49522e12 0.345258
\(892\) 0 0
\(893\) 1.83870e13 0.967561
\(894\) 0 0
\(895\) −3.73606e12 −0.194630
\(896\) 0 0
\(897\) −1.94593e12 −0.100360
\(898\) 0 0
\(899\) 4.40644e13 2.24993
\(900\) 0 0
\(901\) 1.52870e13 0.772789
\(902\) 0 0
\(903\) 4.73398e13 2.36936
\(904\) 0 0
\(905\) 9.95751e12 0.493437
\(906\) 0 0
\(907\) −4.15436e12 −0.203831 −0.101916 0.994793i \(-0.532497\pi\)
−0.101916 + 0.994793i \(0.532497\pi\)
\(908\) 0 0
\(909\) 1.09332e13 0.531141
\(910\) 0 0
\(911\) 1.49662e13 0.719911 0.359955 0.932970i \(-0.382792\pi\)
0.359955 + 0.932970i \(0.382792\pi\)
\(912\) 0 0
\(913\) 3.01167e12 0.143446
\(914\) 0 0
\(915\) 1.13440e13 0.535022
\(916\) 0 0
\(917\) −2.64329e13 −1.23448
\(918\) 0 0
\(919\) 2.15787e13 0.997940 0.498970 0.866619i \(-0.333712\pi\)
0.498970 + 0.866619i \(0.333712\pi\)
\(920\) 0 0
\(921\) 7.34699e12 0.336466
\(922\) 0 0
\(923\) 4.13705e12 0.187622
\(924\) 0 0
\(925\) −9.78300e12 −0.439374
\(926\) 0 0
\(927\) −2.89119e13 −1.28593
\(928\) 0 0
\(929\) 1.19492e12 0.0526344 0.0263172 0.999654i \(-0.491622\pi\)
0.0263172 + 0.999654i \(0.491622\pi\)
\(930\) 0 0
\(931\) 3.21723e13 1.40349
\(932\) 0 0
\(933\) −6.51066e13 −2.81292
\(934\) 0 0
\(935\) −1.85306e12 −0.0792933
\(936\) 0 0
\(937\) −9.57530e12 −0.405811 −0.202906 0.979198i \(-0.565038\pi\)
−0.202906 + 0.979198i \(0.565038\pi\)
\(938\) 0 0
\(939\) 3.85218e13 1.61700
\(940\) 0 0
\(941\) 9.31828e12 0.387420 0.193710 0.981059i \(-0.437948\pi\)
0.193710 + 0.981059i \(0.437948\pi\)
\(942\) 0 0
\(943\) −3.57700e12 −0.147305
\(944\) 0 0
\(945\) −5.20436e12 −0.212287
\(946\) 0 0
\(947\) 1.73521e13 0.701095 0.350547 0.936545i \(-0.385996\pi\)
0.350547 + 0.936545i \(0.385996\pi\)
\(948\) 0 0
\(949\) −1.13754e12 −0.0455268
\(950\) 0 0
\(951\) −4.62532e13 −1.83371
\(952\) 0 0
\(953\) −4.44704e13 −1.74644 −0.873219 0.487327i \(-0.837972\pi\)
−0.873219 + 0.487327i \(0.837972\pi\)
\(954\) 0 0
\(955\) −1.07650e13 −0.418791
\(956\) 0 0
\(957\) −2.25077e13 −0.867417
\(958\) 0 0
\(959\) 2.34614e13 0.895716
\(960\) 0 0
\(961\) 6.72847e13 2.54484
\(962\) 0 0
\(963\) −2.16026e13 −0.809447
\(964\) 0 0
\(965\) 9.19028e12 0.341158
\(966\) 0 0
\(967\) −4.23612e13 −1.55793 −0.778967 0.627064i \(-0.784256\pi\)
−0.778967 + 0.627064i \(0.784256\pi\)
\(968\) 0 0
\(969\) 1.34066e13 0.488498
\(970\) 0 0
\(971\) −2.19787e13 −0.793443 −0.396722 0.917939i \(-0.629852\pi\)
−0.396722 + 0.917939i \(0.629852\pi\)
\(972\) 0 0
\(973\) −9.87244e12 −0.353116
\(974\) 0 0
\(975\) −1.02658e13 −0.363807
\(976\) 0 0
\(977\) 3.03573e13 1.06595 0.532976 0.846130i \(-0.321074\pi\)
0.532976 + 0.846130i \(0.321074\pi\)
\(978\) 0 0
\(979\) 2.44290e13 0.849931
\(980\) 0 0
\(981\) 5.55948e13 1.91657
\(982\) 0 0
\(983\) 5.32931e13 1.82046 0.910228 0.414108i \(-0.135907\pi\)
0.910228 + 0.414108i \(0.135907\pi\)
\(984\) 0 0
\(985\) 7.46004e12 0.252510
\(986\) 0 0
\(987\) −1.06712e14 −3.57920
\(988\) 0 0
\(989\) 6.66153e12 0.221407
\(990\) 0 0
\(991\) −5.41382e13 −1.78309 −0.891544 0.452935i \(-0.850377\pi\)
−0.891544 + 0.452935i \(0.850377\pi\)
\(992\) 0 0
\(993\) 9.46253e12 0.308841
\(994\) 0 0
\(995\) −1.17926e13 −0.381422
\(996\) 0 0
\(997\) −3.76703e13 −1.20746 −0.603728 0.797191i \(-0.706319\pi\)
−0.603728 + 0.797191i \(0.706319\pi\)
\(998\) 0 0
\(999\) 5.51731e12 0.175260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.m.1.7 8
4.3 odd 2 104.10.a.d.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.d.1.2 8 4.3 odd 2
208.10.a.m.1.7 8 1.1 even 1 trivial