Properties

Label 208.2.bm.b.63.1
Level $208$
Weight $2$
Character 208.63
Analytic conductor $1.661$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,2,Mod(15,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.15");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 208.bm (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66088836204\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 63.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 208.63
Dual form 208.2.bm.b.175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 0.866025i) q^{3} +(1.00000 + 1.00000i) q^{5} +(-0.866025 + 0.232051i) q^{7} +(-0.866025 + 3.23205i) q^{11} +(-1.00000 + 3.46410i) q^{13} +(-2.36603 - 0.633975i) q^{15} +(-1.96410 - 1.13397i) q^{17} +(0.866025 + 3.23205i) q^{19} +(1.09808 - 1.09808i) q^{21} +(1.50000 + 2.59808i) q^{23} -3.00000i q^{25} -5.19615i q^{27} +(3.96410 + 6.86603i) q^{29} +(5.19615 - 5.19615i) q^{31} +(-1.50000 - 5.59808i) q^{33} +(-1.09808 - 0.633975i) q^{35} +(-3.59808 - 0.964102i) q^{37} +(-1.50000 - 6.06218i) q^{39} +(2.13397 - 7.96410i) q^{41} +(4.50000 - 7.79423i) q^{43} +(4.26795 + 4.26795i) q^{47} +(-5.36603 + 3.09808i) q^{49} +3.92820 q^{51} +4.92820 q^{53} +(-4.09808 + 2.36603i) q^{55} +(-4.09808 - 4.09808i) q^{57} +(8.59808 - 2.30385i) q^{59} +(-3.50000 + 6.06218i) q^{61} +(-4.46410 + 2.46410i) q^{65} +(-12.0622 - 3.23205i) q^{67} +(-4.50000 - 2.59808i) q^{69} +(4.33013 + 16.1603i) q^{71} +(2.46410 - 2.46410i) q^{73} +(2.59808 + 4.50000i) q^{75} -3.00000i q^{77} -3.46410i q^{79} +(4.50000 + 7.79423i) q^{81} +(0.803848 - 0.803848i) q^{83} +(-0.830127 - 3.09808i) q^{85} +(-11.8923 - 6.86603i) q^{87} +(5.86603 + 1.57180i) q^{89} +(0.0621778 - 3.23205i) q^{91} +(-3.29423 + 12.2942i) q^{93} +(-2.36603 + 4.09808i) q^{95} +(11.3301 - 3.03590i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} + 4 q^{5} - 4 q^{13} - 6 q^{15} + 6 q^{17} - 6 q^{21} + 6 q^{23} + 2 q^{29} - 6 q^{33} + 6 q^{35} - 4 q^{37} - 6 q^{39} + 12 q^{41} + 18 q^{43} + 24 q^{47} - 18 q^{49} - 12 q^{51} - 8 q^{53}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 + 0.866025i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) 1.00000 + 1.00000i 0.447214 + 0.447214i 0.894427 0.447214i \(-0.147584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −0.866025 + 0.232051i −0.327327 + 0.0877070i −0.418740 0.908106i \(-0.637528\pi\)
0.0914134 + 0.995813i \(0.470862\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.866025 + 3.23205i −0.261116 + 0.974500i 0.703468 + 0.710727i \(0.251634\pi\)
−0.964585 + 0.263773i \(0.915033\pi\)
\(12\) 0 0
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) 0 0
\(15\) −2.36603 0.633975i −0.610905 0.163692i
\(16\) 0 0
\(17\) −1.96410 1.13397i −0.476365 0.275029i 0.242536 0.970143i \(-0.422021\pi\)
−0.718900 + 0.695113i \(0.755354\pi\)
\(18\) 0 0
\(19\) 0.866025 + 3.23205i 0.198680 + 0.741483i 0.991283 + 0.131746i \(0.0420584\pi\)
−0.792604 + 0.609737i \(0.791275\pi\)
\(20\) 0 0
\(21\) 1.09808 1.09808i 0.239620 0.239620i
\(22\) 0 0
\(23\) 1.50000 + 2.59808i 0.312772 + 0.541736i 0.978961 0.204046i \(-0.0654092\pi\)
−0.666190 + 0.745782i \(0.732076\pi\)
\(24\) 0 0
\(25\) 3.00000i 0.600000i
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 3.96410 + 6.86603i 0.736115 + 1.27499i 0.954232 + 0.299066i \(0.0966752\pi\)
−0.218117 + 0.975923i \(0.569991\pi\)
\(30\) 0 0
\(31\) 5.19615 5.19615i 0.933257 0.933257i −0.0646514 0.997908i \(-0.520594\pi\)
0.997908 + 0.0646514i \(0.0205935\pi\)
\(32\) 0 0
\(33\) −1.50000 5.59808i −0.261116 0.974500i
\(34\) 0 0
\(35\) −1.09808 0.633975i −0.185609 0.107161i
\(36\) 0 0
\(37\) −3.59808 0.964102i −0.591520 0.158497i −0.0493722 0.998780i \(-0.515722\pi\)
−0.542148 + 0.840283i \(0.682389\pi\)
\(38\) 0 0
\(39\) −1.50000 6.06218i −0.240192 0.970725i
\(40\) 0 0
\(41\) 2.13397 7.96410i 0.333271 1.24378i −0.572461 0.819932i \(-0.694011\pi\)
0.905732 0.423852i \(-0.139322\pi\)
\(42\) 0 0
\(43\) 4.50000 7.79423i 0.686244 1.18861i −0.286801 0.957990i \(-0.592592\pi\)
0.973044 0.230618i \(-0.0740749\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.26795 + 4.26795i 0.622544 + 0.622544i 0.946181 0.323637i \(-0.104906\pi\)
−0.323637 + 0.946181i \(0.604906\pi\)
\(48\) 0 0
\(49\) −5.36603 + 3.09808i −0.766575 + 0.442582i
\(50\) 0 0
\(51\) 3.92820 0.550058
\(52\) 0 0
\(53\) 4.92820 0.676941 0.338470 0.940977i \(-0.390091\pi\)
0.338470 + 0.940977i \(0.390091\pi\)
\(54\) 0 0
\(55\) −4.09808 + 2.36603i −0.552584 + 0.319035i
\(56\) 0 0
\(57\) −4.09808 4.09808i −0.542803 0.542803i
\(58\) 0 0
\(59\) 8.59808 2.30385i 1.11937 0.299935i 0.348744 0.937218i \(-0.386608\pi\)
0.770630 + 0.637283i \(0.219942\pi\)
\(60\) 0 0
\(61\) −3.50000 + 6.06218i −0.448129 + 0.776182i −0.998264 0.0588933i \(-0.981243\pi\)
0.550135 + 0.835076i \(0.314576\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.46410 + 2.46410i −0.553704 + 0.305634i
\(66\) 0 0
\(67\) −12.0622 3.23205i −1.47363 0.394858i −0.569456 0.822022i \(-0.692846\pi\)
−0.904174 + 0.427164i \(0.859513\pi\)
\(68\) 0 0
\(69\) −4.50000 2.59808i −0.541736 0.312772i
\(70\) 0 0
\(71\) 4.33013 + 16.1603i 0.513892 + 1.91787i 0.372950 + 0.927851i \(0.378346\pi\)
0.140941 + 0.990018i \(0.454987\pi\)
\(72\) 0 0
\(73\) 2.46410 2.46410i 0.288401 0.288401i −0.548047 0.836448i \(-0.684628\pi\)
0.836448 + 0.548047i \(0.184628\pi\)
\(74\) 0 0
\(75\) 2.59808 + 4.50000i 0.300000 + 0.519615i
\(76\) 0 0
\(77\) 3.00000i 0.341882i
\(78\) 0 0
\(79\) 3.46410i 0.389742i −0.980829 0.194871i \(-0.937571\pi\)
0.980829 0.194871i \(-0.0624288\pi\)
\(80\) 0 0
\(81\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(82\) 0 0
\(83\) 0.803848 0.803848i 0.0882337 0.0882337i −0.661612 0.749846i \(-0.730128\pi\)
0.749846 + 0.661612i \(0.230128\pi\)
\(84\) 0 0
\(85\) −0.830127 3.09808i −0.0900399 0.336034i
\(86\) 0 0
\(87\) −11.8923 6.86603i −1.27499 0.736115i
\(88\) 0 0
\(89\) 5.86603 + 1.57180i 0.621797 + 0.166610i 0.555945 0.831219i \(-0.312357\pi\)
0.0658527 + 0.997829i \(0.479023\pi\)
\(90\) 0 0
\(91\) 0.0621778 3.23205i 0.00651801 0.338811i
\(92\) 0 0
\(93\) −3.29423 + 12.2942i −0.341596 + 1.27485i
\(94\) 0 0
\(95\) −2.36603 + 4.09808i −0.242749 + 0.420454i
\(96\) 0 0
\(97\) 11.3301 3.03590i 1.15040 0.308249i 0.367275 0.930113i \(-0.380291\pi\)
0.783125 + 0.621864i \(0.213624\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.9641 6.33013i 1.09097 0.629871i 0.157135 0.987577i \(-0.449774\pi\)
0.933834 + 0.357706i \(0.116441\pi\)
\(102\) 0 0
\(103\) −5.07180 −0.499739 −0.249869 0.968280i \(-0.580388\pi\)
−0.249869 + 0.968280i \(0.580388\pi\)
\(104\) 0 0
\(105\) 2.19615 0.214323
\(106\) 0 0
\(107\) −17.8923 + 10.3301i −1.72971 + 0.998651i −0.838896 + 0.544292i \(0.816798\pi\)
−0.890819 + 0.454359i \(0.849868\pi\)
\(108\) 0 0
\(109\) 1.00000 + 1.00000i 0.0957826 + 0.0957826i 0.753374 0.657592i \(-0.228425\pi\)
−0.657592 + 0.753374i \(0.728425\pi\)
\(110\) 0 0
\(111\) 6.23205 1.66987i 0.591520 0.158497i
\(112\) 0 0
\(113\) −4.42820 + 7.66987i −0.416570 + 0.721521i −0.995592 0.0937913i \(-0.970101\pi\)
0.579022 + 0.815312i \(0.303435\pi\)
\(114\) 0 0
\(115\) −1.09808 + 4.09808i −0.102396 + 0.382148i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.96410 + 0.526279i 0.180049 + 0.0482440i
\(120\) 0 0
\(121\) −0.169873 0.0980762i −0.0154430 0.00891602i
\(122\) 0 0
\(123\) 3.69615 + 13.7942i 0.333271 + 1.24378i
\(124\) 0 0
\(125\) 8.00000 8.00000i 0.715542 0.715542i
\(126\) 0 0
\(127\) −1.96410 3.40192i −0.174286 0.301872i 0.765628 0.643284i \(-0.222428\pi\)
−0.939914 + 0.341412i \(0.889095\pi\)
\(128\) 0 0
\(129\) 15.5885i 1.37249i
\(130\) 0 0
\(131\) 15.4641i 1.35110i 0.737312 + 0.675552i \(0.236095\pi\)
−0.737312 + 0.675552i \(0.763905\pi\)
\(132\) 0 0
\(133\) −1.50000 2.59808i −0.130066 0.225282i
\(134\) 0 0
\(135\) 5.19615 5.19615i 0.447214 0.447214i
\(136\) 0 0
\(137\) −1.33013 4.96410i −0.113640 0.424112i 0.885541 0.464561i \(-0.153788\pi\)
−0.999182 + 0.0404491i \(0.987121\pi\)
\(138\) 0 0
\(139\) −14.8923 8.59808i −1.26315 0.729279i −0.289466 0.957188i \(-0.593478\pi\)
−0.973682 + 0.227909i \(0.926811\pi\)
\(140\) 0 0
\(141\) −10.0981 2.70577i −0.850411 0.227867i
\(142\) 0 0
\(143\) −10.3301 6.23205i −0.863849 0.521150i
\(144\) 0 0
\(145\) −2.90192 + 10.8301i −0.240992 + 0.899393i
\(146\) 0 0
\(147\) 5.36603 9.29423i 0.442582 0.766575i
\(148\) 0 0
\(149\) 7.33013 1.96410i 0.600507 0.160905i 0.0542564 0.998527i \(-0.482721\pi\)
0.546251 + 0.837622i \(0.316054\pi\)
\(150\) 0 0
\(151\) 13.7321 + 13.7321i 1.11750 + 1.11750i 0.992107 + 0.125391i \(0.0400186\pi\)
0.125391 + 0.992107i \(0.459981\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 10.3923 0.834730
\(156\) 0 0
\(157\) −19.8564 −1.58471 −0.792357 0.610058i \(-0.791146\pi\)
−0.792357 + 0.610058i \(0.791146\pi\)
\(158\) 0 0
\(159\) −7.39230 + 4.26795i −0.586248 + 0.338470i
\(160\) 0 0
\(161\) −1.90192 1.90192i −0.149893 0.149893i
\(162\) 0 0
\(163\) 12.0622 3.23205i 0.944783 0.253154i 0.246636 0.969108i \(-0.420675\pi\)
0.698147 + 0.715954i \(0.254008\pi\)
\(164\) 0 0
\(165\) 4.09808 7.09808i 0.319035 0.552584i
\(166\) 0 0
\(167\) 4.20577 15.6962i 0.325452 1.21460i −0.588404 0.808567i \(-0.700244\pi\)
0.913856 0.406038i \(-0.133090\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.03590 0.598076i −0.0787579 0.0454709i 0.460104 0.887865i \(-0.347812\pi\)
−0.538862 + 0.842394i \(0.681145\pi\)
\(174\) 0 0
\(175\) 0.696152 + 2.59808i 0.0526242 + 0.196396i
\(176\) 0 0
\(177\) −10.9019 + 10.9019i −0.819439 + 0.819439i
\(178\) 0 0
\(179\) −1.03590 1.79423i −0.0774267 0.134107i 0.824712 0.565552i \(-0.191337\pi\)
−0.902139 + 0.431446i \(0.858004\pi\)
\(180\) 0 0
\(181\) 18.9282i 1.40692i −0.710734 0.703461i \(-0.751637\pi\)
0.710734 0.703461i \(-0.248363\pi\)
\(182\) 0 0
\(183\) 12.1244i 0.896258i
\(184\) 0 0
\(185\) −2.63397 4.56218i −0.193654 0.335418i
\(186\) 0 0
\(187\) 5.36603 5.36603i 0.392403 0.392403i
\(188\) 0 0
\(189\) 1.20577 + 4.50000i 0.0877070 + 0.327327i
\(190\) 0 0
\(191\) 5.89230 + 3.40192i 0.426352 + 0.246155i 0.697791 0.716301i \(-0.254166\pi\)
−0.271439 + 0.962456i \(0.587500\pi\)
\(192\) 0 0
\(193\) 25.7224 + 6.89230i 1.85154 + 0.496119i 0.999620 0.0275517i \(-0.00877110\pi\)
0.851921 + 0.523671i \(0.175438\pi\)
\(194\) 0 0
\(195\) 4.56218 7.56218i 0.326704 0.541539i
\(196\) 0 0
\(197\) −1.86603 + 6.96410i −0.132949 + 0.496172i −0.999998 0.00205102i \(-0.999347\pi\)
0.867049 + 0.498223i \(0.166014\pi\)
\(198\) 0 0
\(199\) 4.50000 7.79423i 0.318997 0.552518i −0.661282 0.750137i \(-0.729987\pi\)
0.980279 + 0.197619i \(0.0633208\pi\)
\(200\) 0 0
\(201\) 20.8923 5.59808i 1.47363 0.394858i
\(202\) 0 0
\(203\) −5.02628 5.02628i −0.352776 0.352776i
\(204\) 0 0
\(205\) 10.0981 5.83013i 0.705280 0.407194i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −11.1962 −0.774454
\(210\) 0 0
\(211\) 2.89230 1.66987i 0.199114 0.114959i −0.397128 0.917763i \(-0.629993\pi\)
0.596242 + 0.802804i \(0.296660\pi\)
\(212\) 0 0
\(213\) −20.4904 20.4904i −1.40398 1.40398i
\(214\) 0 0
\(215\) 12.2942 3.29423i 0.838459 0.224665i
\(216\) 0 0
\(217\) −3.29423 + 5.70577i −0.223627 + 0.387333i
\(218\) 0 0
\(219\) −1.56218 + 5.83013i −0.105562 + 0.393963i
\(220\) 0 0
\(221\) 5.89230 5.66987i 0.396359 0.381397i
\(222\) 0 0
\(223\) 0.866025 + 0.232051i 0.0579934 + 0.0155393i 0.287699 0.957721i \(-0.407110\pi\)
−0.229706 + 0.973260i \(0.573776\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.52628 13.1603i −0.234047 0.873477i −0.978576 0.205886i \(-0.933992\pi\)
0.744529 0.667591i \(-0.232674\pi\)
\(228\) 0 0
\(229\) 5.00000 5.00000i 0.330409 0.330409i −0.522333 0.852742i \(-0.674938\pi\)
0.852742 + 0.522333i \(0.174938\pi\)
\(230\) 0 0
\(231\) 2.59808 + 4.50000i 0.170941 + 0.296078i
\(232\) 0 0
\(233\) 4.00000i 0.262049i 0.991379 + 0.131024i \(0.0418266\pi\)
−0.991379 + 0.131024i \(0.958173\pi\)
\(234\) 0 0
\(235\) 8.53590i 0.556821i
\(236\) 0 0
\(237\) 3.00000 + 5.19615i 0.194871 + 0.337526i
\(238\) 0 0
\(239\) −1.73205 + 1.73205i −0.112037 + 0.112037i −0.760903 0.648866i \(-0.775244\pi\)
0.648866 + 0.760903i \(0.275244\pi\)
\(240\) 0 0
\(241\) 0.669873 + 2.50000i 0.0431503 + 0.161039i 0.984139 0.177399i \(-0.0567682\pi\)
−0.940989 + 0.338438i \(0.890102\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −8.46410 2.26795i −0.540752 0.144894i
\(246\) 0 0
\(247\) −12.0622 0.232051i −0.767498 0.0147650i
\(248\) 0 0
\(249\) −0.509619 + 1.90192i −0.0322958 + 0.120530i
\(250\) 0 0
\(251\) 8.89230 15.4019i 0.561277 0.972161i −0.436108 0.899894i \(-0.643643\pi\)
0.997385 0.0722665i \(-0.0230232\pi\)
\(252\) 0 0
\(253\) −9.69615 + 2.59808i −0.609592 + 0.163340i
\(254\) 0 0
\(255\) 3.92820 + 3.92820i 0.245994 + 0.245994i
\(256\) 0 0
\(257\) −13.9641 + 8.06218i −0.871057 + 0.502905i −0.867699 0.497090i \(-0.834402\pi\)
−0.00335747 + 0.999994i \(0.501069\pi\)
\(258\) 0 0
\(259\) 3.33975 0.207522
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.8923 + 10.3301i −1.10329 + 0.636983i −0.937082 0.349108i \(-0.886484\pi\)
−0.166204 + 0.986091i \(0.553151\pi\)
\(264\) 0 0
\(265\) 4.92820 + 4.92820i 0.302737 + 0.302737i
\(266\) 0 0
\(267\) −10.1603 + 2.72243i −0.621797 + 0.166610i
\(268\) 0 0
\(269\) −5.50000 + 9.52628i −0.335341 + 0.580828i −0.983550 0.180635i \(-0.942185\pi\)
0.648209 + 0.761462i \(0.275518\pi\)
\(270\) 0 0
\(271\) −3.40192 + 12.6962i −0.206652 + 0.771236i 0.782287 + 0.622918i \(0.214053\pi\)
−0.988940 + 0.148319i \(0.952614\pi\)
\(272\) 0 0
\(273\) 2.70577 + 4.90192i 0.163761 + 0.296678i
\(274\) 0 0
\(275\) 9.69615 + 2.59808i 0.584700 + 0.156670i
\(276\) 0 0
\(277\) 2.42820 + 1.40192i 0.145897 + 0.0842334i 0.571171 0.820831i \(-0.306489\pi\)
−0.425275 + 0.905064i \(0.639823\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.464102 + 0.464102i −0.0276860 + 0.0276860i −0.720814 0.693128i \(-0.756232\pi\)
0.693128 + 0.720814i \(0.256232\pi\)
\(282\) 0 0
\(283\) 4.03590 + 6.99038i 0.239909 + 0.415535i 0.960688 0.277630i \(-0.0895490\pi\)
−0.720779 + 0.693165i \(0.756216\pi\)
\(284\) 0 0
\(285\) 8.19615i 0.485498i
\(286\) 0 0
\(287\) 7.39230i 0.436354i
\(288\) 0 0
\(289\) −5.92820 10.2679i −0.348718 0.603997i
\(290\) 0 0
\(291\) −14.3660 + 14.3660i −0.842151 + 0.842151i
\(292\) 0 0
\(293\) 3.06218 + 11.4282i 0.178894 + 0.667643i 0.995855 + 0.0909500i \(0.0289903\pi\)
−0.816961 + 0.576693i \(0.804343\pi\)
\(294\) 0 0
\(295\) 10.9019 + 6.29423i 0.634735 + 0.366464i
\(296\) 0 0
\(297\) 16.7942 + 4.50000i 0.974500 + 0.261116i
\(298\) 0 0
\(299\) −10.5000 + 2.59808i −0.607231 + 0.150251i
\(300\) 0 0
\(301\) −2.08846 + 7.79423i −0.120377 + 0.449252i
\(302\) 0 0
\(303\) −10.9641 + 18.9904i −0.629871 + 1.09097i
\(304\) 0 0
\(305\) −9.56218 + 2.56218i −0.547529 + 0.146710i
\(306\) 0 0
\(307\) −7.73205 7.73205i −0.441291 0.441291i 0.451154 0.892446i \(-0.351012\pi\)
−0.892446 + 0.451154i \(0.851012\pi\)
\(308\) 0 0
\(309\) 7.60770 4.39230i 0.432787 0.249869i
\(310\) 0 0
\(311\) −5.07180 −0.287595 −0.143798 0.989607i \(-0.545931\pi\)
−0.143798 + 0.989607i \(0.545931\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.3923 + 17.3923i 0.976849 + 0.976849i 0.999738 0.0228889i \(-0.00728639\pi\)
−0.0228889 + 0.999738i \(0.507286\pi\)
\(318\) 0 0
\(319\) −25.6244 + 6.86603i −1.43469 + 0.384424i
\(320\) 0 0
\(321\) 17.8923 30.9904i 0.998651 1.72971i
\(322\) 0 0
\(323\) 1.96410 7.33013i 0.109286 0.407859i
\(324\) 0 0
\(325\) 10.3923 + 3.00000i 0.576461 + 0.166410i
\(326\) 0 0
\(327\) −2.36603 0.633975i −0.130842 0.0350589i
\(328\) 0 0
\(329\) −4.68653 2.70577i −0.258377 0.149174i
\(330\) 0 0
\(331\) 4.33013 + 16.1603i 0.238005 + 0.888248i 0.976771 + 0.214286i \(0.0687423\pi\)
−0.738766 + 0.673962i \(0.764591\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.83013 15.2942i −0.482441 0.835613i
\(336\) 0 0
\(337\) 30.9282i 1.68477i 0.538879 + 0.842383i \(0.318848\pi\)
−0.538879 + 0.842383i \(0.681152\pi\)
\(338\) 0 0
\(339\) 15.3397i 0.833141i
\(340\) 0 0
\(341\) 12.2942 + 21.2942i 0.665770 + 1.15315i
\(342\) 0 0
\(343\) 8.36603 8.36603i 0.451723 0.451723i
\(344\) 0 0
\(345\) −1.90192 7.09808i −0.102396 0.382148i
\(346\) 0 0
\(347\) −0.107695 0.0621778i −0.00578138 0.00333788i 0.497107 0.867690i \(-0.334396\pi\)
−0.502888 + 0.864352i \(0.667729\pi\)
\(348\) 0 0
\(349\) −5.06218 1.35641i −0.270972 0.0726068i 0.120774 0.992680i \(-0.461462\pi\)
−0.391746 + 0.920073i \(0.628129\pi\)
\(350\) 0 0
\(351\) 18.0000 + 5.19615i 0.960769 + 0.277350i
\(352\) 0 0
\(353\) 8.13397 30.3564i 0.432928 1.61571i −0.313049 0.949737i \(-0.601351\pi\)
0.745977 0.665972i \(-0.231983\pi\)
\(354\) 0 0
\(355\) −11.8301 + 20.4904i −0.627878 + 1.08752i
\(356\) 0 0
\(357\) −3.40192 + 0.911543i −0.180049 + 0.0482440i
\(358\) 0 0
\(359\) −5.19615 5.19615i −0.274242 0.274242i 0.556563 0.830805i \(-0.312120\pi\)
−0.830805 + 0.556563i \(0.812120\pi\)
\(360\) 0 0
\(361\) 6.75833 3.90192i 0.355702 0.205364i
\(362\) 0 0
\(363\) 0.339746 0.0178320
\(364\) 0 0
\(365\) 4.92820 0.257954
\(366\) 0 0
\(367\) 26.8923 15.5263i 1.40377 0.810465i 0.408990 0.912539i \(-0.365881\pi\)
0.994777 + 0.102074i \(0.0325477\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.26795 + 1.14359i −0.221581 + 0.0593724i
\(372\) 0 0
\(373\) −4.03590 + 6.99038i −0.208971 + 0.361948i −0.951391 0.307987i \(-0.900345\pi\)
0.742420 + 0.669935i \(0.233678\pi\)
\(374\) 0 0
\(375\) −5.07180 + 18.9282i −0.261906 + 0.977448i
\(376\) 0 0
\(377\) −27.7487 + 6.86603i −1.42913 + 0.353618i
\(378\) 0 0
\(379\) −15.5263 4.16025i −0.797531 0.213698i −0.163032 0.986621i \(-0.552127\pi\)
−0.634500 + 0.772923i \(0.718794\pi\)
\(380\) 0 0
\(381\) 5.89230 + 3.40192i 0.301872 + 0.174286i
\(382\) 0 0
\(383\) −8.59808 32.0885i −0.439341 1.63964i −0.730459 0.682956i \(-0.760694\pi\)
0.291118 0.956687i \(-0.405973\pi\)
\(384\) 0 0
\(385\) 3.00000 3.00000i 0.152894 0.152894i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.9282i 0.756890i −0.925624 0.378445i \(-0.876459\pi\)
0.925624 0.378445i \(-0.123541\pi\)
\(390\) 0 0
\(391\) 6.80385i 0.344085i
\(392\) 0 0
\(393\) −13.3923 23.1962i −0.675552 1.17009i
\(394\) 0 0
\(395\) 3.46410 3.46410i 0.174298 0.174298i
\(396\) 0 0
\(397\) 2.52628 + 9.42820i 0.126790 + 0.473188i 0.999897 0.0143410i \(-0.00456503\pi\)
−0.873107 + 0.487529i \(0.837898\pi\)
\(398\) 0 0
\(399\) 4.50000 + 2.59808i 0.225282 + 0.130066i
\(400\) 0 0
\(401\) −27.4545 7.35641i −1.37101 0.367361i −0.503163 0.864191i \(-0.667831\pi\)
−0.867848 + 0.496830i \(0.834497\pi\)
\(402\) 0 0
\(403\) 12.8038 + 23.1962i 0.637805 + 1.15548i
\(404\) 0 0
\(405\) −3.29423 + 12.2942i −0.163692 + 0.610905i
\(406\) 0 0
\(407\) 6.23205 10.7942i 0.308911 0.535050i
\(408\) 0 0
\(409\) −17.9904 + 4.82051i −0.889567 + 0.238359i −0.674530 0.738247i \(-0.735654\pi\)
−0.215037 + 0.976606i \(0.568987\pi\)
\(410\) 0 0
\(411\) 6.29423 + 6.29423i 0.310471 + 0.310471i
\(412\) 0 0
\(413\) −6.91154 + 3.99038i −0.340095 + 0.196354i
\(414\) 0 0
\(415\) 1.60770 0.0789187
\(416\) 0 0
\(417\) 29.7846 1.45856
\(418\) 0 0
\(419\) 20.8923 12.0622i 1.02066 0.589276i 0.106362 0.994327i \(-0.466080\pi\)
0.914294 + 0.405052i \(0.132746\pi\)
\(420\) 0 0
\(421\) −1.92820 1.92820i −0.0939749 0.0939749i 0.658556 0.752531i \(-0.271167\pi\)
−0.752531 + 0.658556i \(0.771167\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.40192 + 5.89230i −0.165018 + 0.285819i
\(426\) 0 0
\(427\) 1.62436 6.06218i 0.0786081 0.293369i
\(428\) 0 0
\(429\) 20.8923 + 0.401924i 1.00869 + 0.0194051i
\(430\) 0 0
\(431\) 25.7942 + 6.91154i 1.24246 + 0.332917i 0.819421 0.573192i \(-0.194295\pi\)
0.423043 + 0.906109i \(0.360962\pi\)
\(432\) 0 0
\(433\) −8.89230 5.13397i −0.427337 0.246723i 0.270875 0.962615i \(-0.412687\pi\)
−0.698211 + 0.715892i \(0.746020\pi\)
\(434\) 0 0
\(435\) −5.02628 18.7583i −0.240992 0.899393i
\(436\) 0 0
\(437\) −7.09808 + 7.09808i −0.339547 + 0.339547i
\(438\) 0 0
\(439\) 4.96410 + 8.59808i 0.236924 + 0.410364i 0.959830 0.280582i \(-0.0905275\pi\)
−0.722906 + 0.690946i \(0.757194\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.60770i 0.0763839i 0.999270 + 0.0381920i \(0.0121598\pi\)
−0.999270 + 0.0381920i \(0.987840\pi\)
\(444\) 0 0
\(445\) 4.29423 + 7.43782i 0.203566 + 0.352587i
\(446\) 0 0
\(447\) −9.29423 + 9.29423i −0.439602 + 0.439602i
\(448\) 0 0
\(449\) −9.47372 35.3564i −0.447093 1.66857i −0.710352 0.703847i \(-0.751464\pi\)
0.263259 0.964725i \(-0.415203\pi\)
\(450\) 0 0
\(451\) 23.8923 + 13.7942i 1.12504 + 0.649545i
\(452\) 0 0
\(453\) −32.4904 8.70577i −1.52653 0.409033i
\(454\) 0 0
\(455\) 3.29423 3.16987i 0.154436 0.148606i
\(456\) 0 0
\(457\) 10.3827 38.7487i 0.485682 1.81259i −0.0912904 0.995824i \(-0.529099\pi\)
0.576972 0.816764i \(-0.304234\pi\)
\(458\) 0 0
\(459\) −5.89230 + 10.2058i −0.275029 + 0.476365i
\(460\) 0 0
\(461\) −39.4545 + 10.5718i −1.83758 + 0.492378i −0.998654 0.0518700i \(-0.983482\pi\)
−0.838925 + 0.544248i \(0.816815\pi\)
\(462\) 0 0
\(463\) −22.2679 22.2679i −1.03488 1.03488i −0.999369 0.0355100i \(-0.988694\pi\)
−0.0355100 0.999369i \(-0.511306\pi\)
\(464\) 0 0
\(465\) −15.5885 + 9.00000i −0.722897 + 0.417365i
\(466\) 0 0
\(467\) −13.8564 −0.641198 −0.320599 0.947215i \(-0.603884\pi\)
−0.320599 + 0.947215i \(0.603884\pi\)
\(468\) 0 0
\(469\) 11.1962 0.516990
\(470\) 0 0
\(471\) 29.7846 17.1962i 1.37240 0.792357i
\(472\) 0 0
\(473\) 21.2942 + 21.2942i 0.979110 + 0.979110i
\(474\) 0 0
\(475\) 9.69615 2.59808i 0.444890 0.119208i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.52628 35.5526i 0.435267 1.62444i −0.305160 0.952301i \(-0.598710\pi\)
0.740427 0.672137i \(-0.234623\pi\)
\(480\) 0 0
\(481\) 6.93782 11.5000i 0.316337 0.524355i
\(482\) 0 0
\(483\) 4.50000 + 1.20577i 0.204757 + 0.0548645i
\(484\) 0 0
\(485\) 14.3660 + 8.29423i 0.652328 + 0.376622i
\(486\) 0 0
\(487\) 2.47372 + 9.23205i 0.112095 + 0.418344i 0.999053 0.0435055i \(-0.0138526\pi\)
−0.886958 + 0.461850i \(0.847186\pi\)
\(488\) 0 0
\(489\) −15.2942 + 15.2942i −0.691629 + 0.691629i
\(490\) 0 0
\(491\) −13.9641 24.1865i −0.630191 1.09152i −0.987512 0.157541i \(-0.949643\pi\)
0.357321 0.933982i \(-0.383690\pi\)
\(492\) 0 0
\(493\) 17.9808i 0.809813i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.50000 12.9904i −0.336421 0.582698i
\(498\) 0 0
\(499\) −4.26795 + 4.26795i −0.191060 + 0.191060i −0.796154 0.605094i \(-0.793135\pi\)
0.605094 + 0.796154i \(0.293135\pi\)
\(500\) 0 0
\(501\) 7.28461 + 27.1865i 0.325452 + 1.21460i
\(502\) 0 0
\(503\) −10.5000 6.06218i −0.468172 0.270299i 0.247302 0.968938i \(-0.420456\pi\)
−0.715474 + 0.698639i \(0.753789\pi\)
\(504\) 0 0
\(505\) 17.2942 + 4.63397i 0.769583 + 0.206209i
\(506\) 0 0
\(507\) 22.5000 + 0.866025i 0.999260 + 0.0384615i
\(508\) 0 0
\(509\) 8.52628 31.8205i 0.377921 1.41042i −0.471109 0.882075i \(-0.656146\pi\)
0.849030 0.528344i \(-0.177187\pi\)
\(510\) 0 0
\(511\) −1.56218 + 2.70577i −0.0691067 + 0.119696i
\(512\) 0 0
\(513\) 16.7942 4.50000i 0.741483 0.198680i
\(514\) 0 0
\(515\) −5.07180 5.07180i −0.223490 0.223490i
\(516\) 0 0
\(517\) −17.4904 + 10.0981i −0.769226 + 0.444113i
\(518\) 0 0
\(519\) 2.07180 0.0909418
\(520\) 0 0
\(521\) 8.14359 0.356777 0.178389 0.983960i \(-0.442912\pi\)
0.178389 + 0.983960i \(0.442912\pi\)
\(522\) 0 0
\(523\) 20.8923 12.0622i 0.913557 0.527442i 0.0319829 0.999488i \(-0.489818\pi\)
0.881574 + 0.472046i \(0.156484\pi\)
\(524\) 0 0
\(525\) −3.29423 3.29423i −0.143772 0.143772i
\(526\) 0 0
\(527\) −16.0981 + 4.31347i −0.701243 + 0.187898i
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 25.4545 + 15.3564i 1.10256 + 0.665160i
\(534\) 0 0
\(535\) −28.2224 7.56218i −1.22016 0.326941i
\(536\) 0 0
\(537\) 3.10770 + 1.79423i 0.134107 + 0.0774267i
\(538\) 0 0
\(539\) −5.36603 20.0263i −0.231131 0.862593i
\(540\) 0 0
\(541\) 19.5359 19.5359i 0.839914 0.839914i −0.148933 0.988847i \(-0.547584\pi\)
0.988847 + 0.148933i \(0.0475840\pi\)
\(542\) 0 0
\(543\) 16.3923 + 28.3923i 0.703461 + 1.21843i
\(544\) 0 0
\(545\) 2.00000i 0.0856706i
\(546\) 0 0
\(547\) 13.6077i 0.581823i −0.956750 0.290912i \(-0.906041\pi\)
0.956750 0.290912i \(-0.0939585\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −18.7583 + 18.7583i −0.799132 + 0.799132i
\(552\) 0 0
\(553\) 0.803848 + 3.00000i 0.0341831 + 0.127573i
\(554\) 0 0
\(555\) 7.90192 + 4.56218i 0.335418 + 0.193654i
\(556\) 0 0
\(557\) 3.86603 + 1.03590i 0.163809 + 0.0438924i 0.339791 0.940501i \(-0.389644\pi\)
−0.175983 + 0.984393i \(0.556310\pi\)
\(558\) 0 0
\(559\) 22.5000 + 23.3827i 0.951649 + 0.988982i
\(560\) 0 0
\(561\) −3.40192 + 12.6962i −0.143629 + 0.536032i
\(562\) 0 0
\(563\) −16.0359 + 27.7750i −0.675833 + 1.17058i 0.300392 + 0.953816i \(0.402882\pi\)
−0.976225 + 0.216761i \(0.930451\pi\)
\(564\) 0 0
\(565\) −12.0981 + 3.24167i −0.508970 + 0.136378i
\(566\) 0 0
\(567\) −5.70577 5.70577i −0.239620 0.239620i
\(568\) 0 0
\(569\) −29.4282 + 16.9904i −1.23369 + 0.712274i −0.967798 0.251728i \(-0.919001\pi\)
−0.265896 + 0.964002i \(0.585668\pi\)
\(570\) 0 0
\(571\) −30.9282 −1.29431 −0.647153 0.762361i \(-0.724040\pi\)
−0.647153 + 0.762361i \(0.724040\pi\)
\(572\) 0 0
\(573\) −11.7846 −0.492309
\(574\) 0 0
\(575\) 7.79423 4.50000i 0.325042 0.187663i
\(576\) 0 0
\(577\) 2.46410 + 2.46410i 0.102582 + 0.102582i 0.756535 0.653953i \(-0.226891\pi\)
−0.653953 + 0.756535i \(0.726891\pi\)
\(578\) 0 0
\(579\) −44.5526 + 11.9378i −1.85154 + 0.496119i
\(580\) 0 0
\(581\) −0.509619 + 0.882686i −0.0211426 + 0.0366200i
\(582\) 0 0
\(583\) −4.26795 + 15.9282i −0.176760 + 0.659679i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.7224 + 5.55256i 0.855306 + 0.229179i 0.659723 0.751509i \(-0.270673\pi\)
0.195583 + 0.980687i \(0.437340\pi\)
\(588\) 0 0
\(589\) 21.2942 + 12.2942i 0.877413 + 0.506575i
\(590\) 0 0
\(591\) −3.23205 12.0622i −0.132949 0.496172i
\(592\) 0 0
\(593\) −6.60770 + 6.60770i −0.271346 + 0.271346i −0.829642 0.558296i \(-0.811455\pi\)
0.558296 + 0.829642i \(0.311455\pi\)
\(594\) 0 0
\(595\) 1.43782 + 2.49038i 0.0589450 + 0.102096i
\(596\) 0 0
\(597\) 15.5885i 0.637993i
\(598\) 0 0
\(599\) 48.2487i 1.97139i 0.168542 + 0.985694i \(0.446094\pi\)
−0.168542 + 0.985694i \(0.553906\pi\)
\(600\) 0 0
\(601\) −4.03590 6.99038i −0.164628 0.285144i 0.771895 0.635750i \(-0.219309\pi\)
−0.936523 + 0.350606i \(0.885976\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.0717968 0.267949i −0.00291895 0.0108937i
\(606\) 0 0
\(607\) 16.2846 + 9.40192i 0.660972 + 0.381612i 0.792647 0.609681i \(-0.208702\pi\)
−0.131675 + 0.991293i \(0.542036\pi\)
\(608\) 0 0
\(609\) 11.8923 + 3.18653i 0.481901 + 0.129125i
\(610\) 0 0
\(611\) −19.0526 + 10.5167i −0.770784 + 0.425459i
\(612\) 0 0
\(613\) −2.79423 + 10.4282i −0.112858 + 0.421191i −0.999118 0.0419971i \(-0.986628\pi\)
0.886260 + 0.463188i \(0.153295\pi\)
\(614\) 0 0
\(615\) −10.0981 + 17.4904i −0.407194 + 0.705280i
\(616\) 0 0
\(617\) −6.52628 + 1.74871i −0.262738 + 0.0704005i −0.387783 0.921751i \(-0.626759\pi\)
0.125045 + 0.992151i \(0.460092\pi\)
\(618\) 0 0
\(619\) 11.1962 + 11.1962i 0.450011 + 0.450011i 0.895358 0.445347i \(-0.146920\pi\)
−0.445347 + 0.895358i \(0.646920\pi\)
\(620\) 0 0
\(621\) 13.5000 7.79423i 0.541736 0.312772i
\(622\) 0 0
\(623\) −5.44486 −0.218144
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 16.7942 9.69615i 0.670697 0.387227i
\(628\) 0 0
\(629\) 5.97372 + 5.97372i 0.238188 + 0.238188i
\(630\) 0 0
\(631\) −20.7224 + 5.55256i −0.824947 + 0.221044i −0.646508 0.762907i \(-0.723771\pi\)
−0.178439 + 0.983951i \(0.557105\pi\)
\(632\) 0 0
\(633\) −2.89230 + 5.00962i −0.114959 + 0.199114i
\(634\) 0 0
\(635\) 1.43782 5.36603i 0.0570582 0.212944i
\(636\) 0 0
\(637\) −5.36603 21.6865i −0.212610 0.859252i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.96410 + 2.86603i 0.196070 + 0.113201i 0.594821 0.803858i \(-0.297223\pi\)
−0.398751 + 0.917059i \(0.630556\pi\)
\(642\) 0 0
\(643\) −7.66987 28.6244i −0.302470 1.12883i −0.935101 0.354381i \(-0.884692\pi\)
0.632631 0.774453i \(-0.281975\pi\)
\(644\) 0 0
\(645\) −15.5885 + 15.5885i −0.613795 + 0.613795i
\(646\) 0 0
\(647\) −11.4282 19.7942i −0.449289 0.778191i 0.549051 0.835789i \(-0.314989\pi\)
−0.998340 + 0.0575975i \(0.981656\pi\)
\(648\) 0 0
\(649\) 29.7846i 1.16915i
\(650\) 0 0
\(651\) 11.4115i 0.447254i
\(652\) 0 0
\(653\) −3.50000 6.06218i −0.136966 0.237231i 0.789381 0.613904i \(-0.210402\pi\)
−0.926347 + 0.376672i \(0.877068\pi\)
\(654\) 0 0
\(655\) −15.4641 + 15.4641i −0.604232 + 0.604232i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.2846 + 9.40192i 0.634358 + 0.366247i 0.782438 0.622728i \(-0.213976\pi\)
−0.148080 + 0.988975i \(0.547309\pi\)
\(660\) 0 0
\(661\) −35.9904 9.64359i −1.39986 0.375092i −0.521568 0.853210i \(-0.674653\pi\)
−0.878296 + 0.478118i \(0.841319\pi\)
\(662\) 0 0
\(663\) −3.92820 + 13.6077i −0.152559 + 0.528479i
\(664\) 0 0
\(665\) 1.09808 4.09808i 0.0425816 0.158917i
\(666\) 0 0
\(667\) −11.8923 + 20.5981i −0.460472 + 0.797561i
\(668\) 0 0
\(669\) −1.50000 + 0.401924i −0.0579934 + 0.0155393i
\(670\) 0 0
\(671\) −16.5622 16.5622i −0.639376 0.639376i
\(672\) 0 0
\(673\) 27.3564 15.7942i 1.05451 0.608823i 0.130603 0.991435i \(-0.458309\pi\)
0.923909 + 0.382612i \(0.124975\pi\)
\(674\) 0 0
\(675\) −15.5885 −0.600000
\(676\) 0 0
\(677\) 26.0000 0.999261 0.499631 0.866239i \(-0.333469\pi\)
0.499631 + 0.866239i \(0.333469\pi\)
\(678\) 0 0
\(679\) −9.10770 + 5.25833i −0.349521 + 0.201796i
\(680\) 0 0
\(681\) 16.6865 + 16.6865i 0.639429 + 0.639429i
\(682\) 0 0
\(683\) 22.4545 6.01666i 0.859197 0.230221i 0.197786 0.980245i \(-0.436625\pi\)
0.661411 + 0.750024i \(0.269958\pi\)
\(684\) 0 0
\(685\) 3.63397 6.29423i 0.138847 0.240490i
\(686\) 0 0
\(687\) −3.16987 + 11.8301i −0.120938 + 0.451347i
\(688\) 0 0
\(689\) −4.92820 + 17.0718i −0.187750 + 0.650384i
\(690\) 0 0
\(691\) 29.2583 + 7.83975i 1.11304 + 0.298238i 0.768064 0.640374i \(-0.221220\pi\)
0.344976 + 0.938612i \(0.387887\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.29423 23.4904i −0.238754 0.891041i
\(696\) 0 0
\(697\) −13.2224 + 13.2224i −0.500835 + 0.500835i
\(698\) 0 0
\(699\) −3.46410 6.00000i −0.131024 0.226941i
\(700\) 0 0
\(701\) 49.5692i 1.87220i −0.351729 0.936102i \(-0.614406\pi\)
0.351729 0.936102i \(-0.385594\pi\)
\(702\) 0 0
\(703\) 12.4641i 0.470092i
\(704\) 0 0
\(705\) −7.39230 12.8038i −0.278410 0.482221i
\(706\) 0 0
\(707\) −8.02628 + 8.02628i −0.301859 + 0.301859i
\(708\) 0 0
\(709\) 6.13397 + 22.8923i 0.230366 + 0.859739i 0.980183 + 0.198093i \(0.0634749\pi\)
−0.749817 + 0.661645i \(0.769858\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21.2942 + 5.70577i 0.797475 + 0.213683i
\(714\) 0 0
\(715\) −4.09808 16.5622i −0.153259 0.619390i
\(716\) 0 0
\(717\) 1.09808 4.09808i 0.0410084 0.153045i
\(718\) 0 0
\(719\) 9.82051 17.0096i 0.366243 0.634352i −0.622732 0.782435i \(-0.713977\pi\)
0.988975 + 0.148084i \(0.0473105\pi\)
\(720\) 0 0
\(721\) 4.39230 1.17691i 0.163578 0.0438306i
\(722\) 0 0
\(723\) −3.16987 3.16987i −0.117889 0.117889i
\(724\) 0 0
\(725\) 20.5981 11.8923i 0.764993 0.441669i
\(726\) 0 0
\(727\) 37.8564 1.40402 0.702008 0.712169i \(-0.252287\pi\)
0.702008 + 0.712169i \(0.252287\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −17.6769 + 10.2058i −0.653804 + 0.377474i
\(732\) 0 0
\(733\) 4.32051 + 4.32051i 0.159582 + 0.159582i 0.782381 0.622800i \(-0.214005\pi\)
−0.622800 + 0.782381i \(0.714005\pi\)
\(734\) 0 0
\(735\) 14.6603 3.92820i 0.540752 0.144894i
\(736\) 0 0
\(737\) 20.8923 36.1865i 0.769578 1.33295i
\(738\) 0 0
\(739\) 1.91858 7.16025i 0.0705763 0.263394i −0.921618 0.388099i \(-0.873132\pi\)
0.992194 + 0.124705i \(0.0397985\pi\)
\(740\) 0 0
\(741\) 18.2942 10.0981i 0.672055 0.370962i
\(742\) 0 0
\(743\) 32.7224 + 8.76795i 1.20047 + 0.321665i 0.803016 0.595957i \(-0.203227\pi\)
0.397454 + 0.917622i \(0.369894\pi\)
\(744\) 0 0
\(745\) 9.29423 + 5.36603i 0.340514 + 0.196596i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 13.0981 13.0981i 0.478593 0.478593i
\(750\) 0 0
\(751\) −19.9641 34.5788i −0.728500 1.26180i −0.957517 0.288377i \(-0.906884\pi\)
0.229016 0.973423i \(-0.426449\pi\)
\(752\) 0 0
\(753\) 30.8038i 1.12255i
\(754\) 0 0
\(755\) 27.4641i 0.999521i
\(756\) 0 0
\(757\) −16.2846 28.2058i −0.591874 1.02516i −0.993980 0.109563i \(-0.965055\pi\)
0.402106 0.915593i \(-0.368278\pi\)
\(758\) 0 0
\(759\) 12.2942 12.2942i 0.446252 0.446252i
\(760\) 0 0
\(761\) 11.5981 + 43.2846i 0.420430 + 1.56907i 0.773705 + 0.633546i \(0.218401\pi\)
−0.353275 + 0.935520i \(0.614932\pi\)
\(762\) 0 0
\(763\) −1.09808 0.633975i −0.0397530 0.0229514i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.617314 + 32.0885i −0.0222899 + 1.15865i
\(768\) 0 0
\(769\) −5.08142 + 18.9641i −0.183241 + 0.683863i 0.811760 + 0.583991i \(0.198510\pi\)
−0.995000 + 0.0998715i \(0.968157\pi\)
\(770\) 0 0
\(771\) 13.9641 24.1865i 0.502905 0.871057i
\(772\) 0 0
\(773\) −21.9904 + 5.89230i −0.790939 + 0.211931i −0.631602 0.775293i \(-0.717602\pi\)
−0.159337 + 0.987224i \(0.550936\pi\)
\(774\) 0 0
\(775\) −15.5885 15.5885i −0.559954 0.559954i
\(776\) 0 0
\(777\) −5.00962 + 2.89230i −0.179719 + 0.103761i
\(778\) 0 0
\(779\) 27.5885 0.988459
\(780\) 0 0
\(781\) −55.9808 −2.00315
\(782\) 0 0
\(783\) 35.6769 20.5981i 1.27499 0.736115i
\(784\) 0 0
\(785\) −19.8564 19.8564i −0.708706 0.708706i
\(786\) 0 0
\(787\) −42.1865 + 11.3038i −1.50379 + 0.402939i −0.914367 0.404887i \(-0.867311\pi\)
−0.589421 + 0.807826i \(0.700644\pi\)
\(788\) 0 0
\(789\) 17.8923 30.9904i 0.636983 1.10329i
\(790\) 0 0
\(791\) 2.05514 7.66987i 0.0730722 0.272709i
\(792\) 0 0
\(793\) −17.5000 18.1865i −0.621443 0.645823i
\(794\) 0 0
\(795\) −11.6603 3.12436i −0.413547 0.110809i
\(796\) 0 0
\(797\) −29.4282 16.9904i −1.04240 0.601830i −0.121888 0.992544i \(-0.538895\pi\)
−0.920512 + 0.390714i \(0.872228\pi\)
\(798\) 0 0
\(799\) −3.54294 13.2224i −0.125340 0.467776i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.83013 + 10.0981i 0.205741 + 0.356353i
\(804\) 0 0
\(805\) 3.80385i 0.134068i
\(806\) 0 0
\(807\) 19.0526i 0.670682i
\(808\) 0 0
\(809\) −4.42820 7.66987i −0.155687 0.269658i 0.777622 0.628732i \(-0.216426\pi\)
−0.933309 + 0.359074i \(0.883093\pi\)
\(810\) 0 0
\(811\) 12.1244 12.1244i 0.425744 0.425744i −0.461432 0.887176i \(-0.652664\pi\)
0.887176 + 0.461432i \(0.152664\pi\)
\(812\) 0 0
\(813\) −5.89230 21.9904i −0.206652 0.771236i
\(814\) 0 0
\(815\) 15.2942 + 8.83013i 0.535733 + 0.309306i
\(816\) 0 0
\(817\) 29.0885 + 7.79423i 1.01768 + 0.272686i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.18653 + 34.2846i −0.320612 + 1.19654i 0.598037 + 0.801468i \(0.295947\pi\)
−0.918650 + 0.395073i \(0.870719\pi\)
\(822\) 0 0
\(823\) 8.89230 15.4019i 0.309966 0.536877i −0.668388 0.743812i \(-0.733016\pi\)
0.978355 + 0.206935i \(0.0663489\pi\)
\(824\) 0 0
\(825\) −16.7942 + 4.50000i −0.584700 + 0.156670i
\(826\) 0 0
\(827\) 23.1962 + 23.1962i 0.806609 + 0.806609i 0.984119 0.177510i \(-0.0568041\pi\)
−0.177510 + 0.984119i \(0.556804\pi\)
\(828\) 0 0
\(829\) 16.9641 9.79423i 0.589188 0.340168i −0.175589 0.984464i \(-0.556183\pi\)
0.764776 + 0.644296i \(0.222850\pi\)
\(830\) 0 0
\(831\) −4.85641 −0.168467
\(832\) 0 0
\(833\) 14.0526 0.486892
\(834\) 0 0
\(835\) 19.9019 11.4904i 0.688734 0.397641i
\(836\) 0 0
\(837\) −27.0000 27.0000i −0.933257 0.933257i
\(838\) 0 0
\(839\) 37.9186 10.1603i 1.30909 0.350771i 0.464213 0.885724i \(-0.346337\pi\)
0.844882 + 0.534953i \(0.179671\pi\)
\(840\) 0 0
\(841\) −16.9282 + 29.3205i −0.583731 + 1.01105i
\(842\) 0 0
\(843\) 0.294229 1.09808i 0.0101338 0.0378198i
\(844\) 0 0
\(845\) −4.07180 17.9282i −0.140074 0.616749i
\(846\) 0 0
\(847\) 0.169873 + 0.0455173i 0.00583690 + 0.00156399i
\(848\) 0 0
\(849\) −12.1077 6.99038i −0.415535 0.239909i
\(850\) 0 0
\(851\) −2.89230 10.7942i −0.0991469 0.370021i
\(852\) 0 0
\(853\) −20.8564 + 20.8564i −0.714110 + 0.714110i −0.967392 0.253283i \(-0.918490\pi\)
0.253283 + 0.967392i \(0.418490\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.9282i 0.783213i 0.920133 + 0.391606i \(0.128080\pi\)
−0.920133 + 0.391606i \(0.871920\pi\)
\(858\) 0 0
\(859\) 22.3923i 0.764016i −0.924159 0.382008i \(-0.875233\pi\)
0.924159 0.382008i \(-0.124767\pi\)
\(860\) 0 0
\(861\) −6.40192 11.0885i −0.218177 0.377894i
\(862\) 0 0
\(863\) −22.5167 + 22.5167i −0.766476 + 0.766476i −0.977484 0.211008i \(-0.932325\pi\)
0.211008 + 0.977484i \(0.432325\pi\)
\(864\) 0 0
\(865\) −0.437822 1.63397i −0.0148864 0.0555568i
\(866\) 0 0
\(867\) 17.7846 + 10.2679i 0.603997 + 0.348718i
\(868\) 0 0
\(869\) 11.1962 + 3.00000i 0.379803 + 0.101768i
\(870\) 0 0
\(871\) 23.2583 38.5526i 0.788078 1.30630i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5.07180 + 8.78461i −0.171458 + 0.296974i
\(876\) 0 0
\(877\) 30.2583 8.10770i 1.02175 0.273777i 0.291220 0.956656i \(-0.405939\pi\)
0.730532 + 0.682879i \(0.239272\pi\)
\(878\) 0 0
\(879\) −14.4904 14.4904i −0.488748 0.488748i
\(880\) 0 0
\(881\) −22.7487 + 13.1340i −0.766424 + 0.442495i −0.831597 0.555379i \(-0.812573\pi\)
0.0651737 + 0.997874i \(0.479240\pi\)
\(882\) 0 0
\(883\) −6.92820 −0.233153 −0.116576 0.993182i \(-0.537192\pi\)
−0.116576 + 0.993182i \(0.537192\pi\)
\(884\) 0 0
\(885\) −21.8038 −0.732928
\(886\) 0 0
\(887\) −44.6769 + 25.7942i −1.50010 + 0.866085i −0.500104 + 0.865965i \(0.666705\pi\)
−1.00000 0.000120075i \(0.999962\pi\)
\(888\) 0 0
\(889\) 2.49038 + 2.49038i 0.0835247 + 0.0835247i
\(890\) 0 0
\(891\) −29.0885 + 7.79423i −0.974500 + 0.261116i
\(892\) 0 0
\(893\) −10.0981 + 17.4904i −0.337919 + 0.585293i
\(894\) 0 0
\(895\) 0.758330 2.83013i 0.0253482 0.0946007i
\(896\) 0 0
\(897\) 13.5000 12.9904i 0.450752 0.433736i
\(898\) 0 0
\(899\) 56.2750 + 15.0788i 1.87688 + 0.502907i
\(900\) 0 0
\(901\) −9.67949 5.58846i −0.322471 0.186179i
\(902\) 0 0
\(903\) −3.61731 13.5000i −0.120377 0.449252i
\(904\) 0 0
\(905\) 18.9282 18.9282i 0.629195 0.629195i
\(906\) 0 0
\(907\) 15.3564 + 26.5981i 0.509901 + 0.883175i 0.999934 + 0.0114708i \(0.00365135\pi\)
−0.490033 + 0.871704i \(0.663015\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 45.0333i 1.49202i 0.665934 + 0.746010i \(0.268033\pi\)
−0.665934 + 0.746010i \(0.731967\pi\)
\(912\) 0 0
\(913\) 1.90192 + 3.29423i 0.0629445 + 0.109023i
\(914\) 0 0
\(915\) 12.1244 12.1244i 0.400819 0.400819i
\(916\) 0 0
\(917\) −3.58846 13.3923i −0.118501 0.442253i
\(918\) 0 0
\(919\) 5.89230 + 3.40192i 0.194369 + 0.112219i 0.594026 0.804446i \(-0.297537\pi\)
−0.399657 + 0.916665i \(0.630871\pi\)
\(920\) 0 0
\(921\) 18.2942 + 4.90192i 0.602815 + 0.161524i
\(922\) 0 0
\(923\) −60.3109 1.16025i −1.98516 0.0381902i
\(924\) 0 0
\(925\) −2.89230 + 10.7942i −0.0950984 + 0.354912i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 29.7224 7.96410i 0.975161 0.261294i 0.264156 0.964480i \(-0.414907\pi\)
0.711006 + 0.703186i \(0.248240\pi\)
\(930\) 0 0
\(931\) −14.6603 14.6603i −0.480470 0.480470i
\(932\) 0 0
\(933\) 7.60770 4.39230i 0.249065 0.143798i
\(934\) 0 0
\(935\) 10.7321 0.350976
\(936\) 0 0
\(937\) −18.7846 −0.613666 −0.306833 0.951763i \(-0.599269\pi\)
−0.306833 + 0.951763i \(0.599269\pi\)
\(938\) 0 0
\(939\) −9.00000 + 5.19615i −0.293704 + 0.169570i
\(940\) 0 0
\(941\) 4.60770 + 4.60770i 0.150207 + 0.150207i 0.778210 0.628004i \(-0.216128\pi\)
−0.628004 + 0.778210i \(0.716128\pi\)
\(942\) 0 0
\(943\) 23.8923 6.40192i 0.778040 0.208475i
\(944\) 0 0
\(945\) −3.29423 + 5.70577i −0.107161 + 0.185609i
\(946\) 0 0
\(947\) 6.74167 25.1603i 0.219075 0.817598i −0.765617 0.643296i \(-0.777566\pi\)
0.984692 0.174302i \(-0.0557670\pi\)
\(948\) 0 0
\(949\) 6.07180 + 11.0000i 0.197099 + 0.357075i
\(950\) 0 0
\(951\) −41.1506 11.0263i −1.33440 0.357552i
\(952\) 0 0
\(953\) 48.8205 + 28.1865i 1.58145 + 0.913051i 0.994648 + 0.103322i \(0.0329472\pi\)
0.586803 + 0.809729i \(0.300386\pi\)
\(954\) 0 0
\(955\) 2.49038 + 9.29423i 0.0805868 + 0.300754i
\(956\) 0 0
\(957\) 32.4904 32.4904i 1.05026 1.05026i
\(958\) 0 0
\(959\) 2.30385 + 3.99038i 0.0743951 + 0.128856i
\(960\) 0 0
\(961\) 23.0000i 0.741935i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 18.8301 + 32.6147i 0.606163 + 1.04991i
\(966\) 0 0
\(967\) −13.7321 + 13.7321i −0.441593 + 0.441593i −0.892547 0.450954i \(-0.851084\pi\)
0.450954 + 0.892547i \(0.351084\pi\)
\(968\) 0 0
\(969\) 3.40192 + 12.6962i 0.109286 + 0.407859i
\(970\) 0 0
\(971\) −13.2846 7.66987i −0.426323 0.246138i 0.271456 0.962451i \(-0.412495\pi\)
−0.697779 + 0.716313i \(0.745828\pi\)
\(972\) 0 0
\(973\) 14.8923 + 3.99038i 0.477425 + 0.127926i
\(974\) 0 0
\(975\) −18.1865 + 4.50000i −0.582435 + 0.144115i
\(976\) 0 0
\(977\) 7.06218 26.3564i 0.225939 0.843216i −0.756087 0.654471i \(-0.772891\pi\)
0.982026 0.188745i \(-0.0604420\pi\)
\(978\) 0 0
\(979\) −10.1603 + 17.5981i −0.324723 + 0.562437i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32.6603 + 32.6603i 1.04170 + 1.04170i 0.999092 + 0.0426085i \(0.0135668\pi\)
0.0426085 + 0.999092i \(0.486433\pi\)
\(984\) 0 0
\(985\) −8.83013 + 5.09808i −0.281351 + 0.162438i
\(986\) 0 0
\(987\) 9.37307 0.298348
\(988\) 0 0
\(989\) 27.0000 0.858550
\(990\) 0 0
\(991\) −19.5000 + 11.2583i −0.619438 + 0.357633i −0.776650 0.629932i \(-0.783083\pi\)
0.157212 + 0.987565i \(0.449749\pi\)
\(992\) 0 0
\(993\) −20.4904 20.4904i −0.650243 0.650243i
\(994\) 0 0
\(995\) 12.2942 3.29423i 0.389753 0.104434i
\(996\) 0 0
\(997\) 12.5000 21.6506i 0.395879 0.685682i −0.597334 0.801993i \(-0.703773\pi\)
0.993213 + 0.116310i \(0.0371066\pi\)
\(998\) 0 0
\(999\) −5.00962 + 18.6962i −0.158497 + 0.591520i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.2.bm.b.63.1 4
4.3 odd 2 208.2.bm.e.63.1 yes 4
8.3 odd 2 832.2.bu.a.63.1 4
8.5 even 2 832.2.bu.f.63.1 4
13.6 odd 12 208.2.bm.e.175.1 yes 4
52.19 even 12 inner 208.2.bm.b.175.1 yes 4
104.19 even 12 832.2.bu.f.383.1 4
104.45 odd 12 832.2.bu.a.383.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
208.2.bm.b.63.1 4 1.1 even 1 trivial
208.2.bm.b.175.1 yes 4 52.19 even 12 inner
208.2.bm.e.63.1 yes 4 4.3 odd 2
208.2.bm.e.175.1 yes 4 13.6 odd 12
832.2.bu.a.63.1 4 8.3 odd 2
832.2.bu.a.383.1 4 104.45 odd 12
832.2.bu.f.63.1 4 8.5 even 2
832.2.bu.f.383.1 4 104.19 even 12