Properties

Label 208.2.k.b.47.2
Level $208$
Weight $2$
Character 208.47
Analytic conductor $1.661$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,2,Mod(31,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 208.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66088836204\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 14x^{10} + 147x^{8} + 662x^{6} + 2233x^{4} + 588x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.2
Root \(1.17542 - 2.03589i\) of defining polynomial
Character \(\chi\) \(=\) 208.47
Dual form 208.2.k.b.31.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.35084i q^{3} +(2.79911 + 2.79911i) q^{5} +(2.49735 + 2.49735i) q^{7} -2.52644 q^{9} +(-1.73205 - 1.73205i) q^{11} +(-2.79911 - 2.27267i) q^{13} +(6.58024 - 6.58024i) q^{15} -1.52644i q^{17} +(0.618787 - 0.618787i) q^{19} +(5.87088 - 5.87088i) q^{21} -6.23228 q^{23} +10.6700i q^{25} -1.11326i q^{27} -2.54533 q^{29} +(-4.08289 + 4.08289i) q^{31} +(-4.07177 + 4.07177i) q^{33} +13.9807i q^{35} +(6.79911 - 6.79911i) q^{37} +(-5.34267 + 6.58024i) q^{39} +(-1.07177 - 1.07177i) q^{41} +1.11326 q^{43} +(-7.07177 - 7.07177i) q^{45} +(5.66842 + 5.66842i) q^{47} +5.47356i q^{49} -3.58841 q^{51} -5.59821 q^{53} -9.69639i q^{55} +(-1.45467 - 1.45467i) q^{57} +(-4.37592 - 4.37592i) q^{59} +5.19642 q^{61} +(-6.30942 - 6.30942i) q^{63} +(-1.47356 - 14.1964i) q^{65} +(0.201443 - 0.201443i) q^{67} +14.6511i q^{69} +(-5.66842 + 5.66842i) q^{71} +(-0.526440 + 0.526440i) q^{73} +25.0834 q^{75} -8.65109i q^{77} -6.63517i q^{79} -10.1964 q^{81} +(-5.19615 + 5.19615i) q^{83} +(4.27267 - 4.27267i) q^{85} +5.98366i q^{87} +(-4.12465 + 4.12465i) q^{89} +(-1.31471 - 12.6660i) q^{91} +(9.59821 + 9.59821i) q^{93} +3.46410 q^{95} +(4.59821 + 4.59821i) q^{97} +(4.37592 + 4.37592i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{5} - 20 q^{9} - 4 q^{13} - 8 q^{21} + 8 q^{29} + 52 q^{37} + 36 q^{41} - 36 q^{45} - 8 q^{53} - 56 q^{57} - 56 q^{61} - 28 q^{65} + 4 q^{73} - 4 q^{81} + 32 q^{85} + 20 q^{89} + 56 q^{93} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.35084i 1.35726i −0.734482 0.678629i \(-0.762575\pi\)
0.734482 0.678629i \(-0.237425\pi\)
\(4\) 0 0
\(5\) 2.79911 + 2.79911i 1.25180 + 1.25180i 0.954913 + 0.296885i \(0.0959477\pi\)
0.296885 + 0.954913i \(0.404052\pi\)
\(6\) 0 0
\(7\) 2.49735 + 2.49735i 0.943911 + 0.943911i 0.998508 0.0545971i \(-0.0173875\pi\)
−0.0545971 + 0.998508i \(0.517387\pi\)
\(8\) 0 0
\(9\) −2.52644 −0.842147
\(10\) 0 0
\(11\) −1.73205 1.73205i −0.522233 0.522233i 0.396012 0.918245i \(-0.370394\pi\)
−0.918245 + 0.396012i \(0.870394\pi\)
\(12\) 0 0
\(13\) −2.79911 2.27267i −0.776332 0.630324i
\(14\) 0 0
\(15\) 6.58024 6.58024i 1.69901 1.69901i
\(16\) 0 0
\(17\) 1.52644i 0.370216i −0.982718 0.185108i \(-0.940737\pi\)
0.982718 0.185108i \(-0.0592635\pi\)
\(18\) 0 0
\(19\) 0.618787 0.618787i 0.141960 0.141960i −0.632555 0.774515i \(-0.717994\pi\)
0.774515 + 0.632555i \(0.217994\pi\)
\(20\) 0 0
\(21\) 5.87088 5.87088i 1.28113 1.28113i
\(22\) 0 0
\(23\) −6.23228 −1.29952 −0.649761 0.760139i \(-0.725131\pi\)
−0.649761 + 0.760139i \(0.725131\pi\)
\(24\) 0 0
\(25\) 10.6700i 2.13400i
\(26\) 0 0
\(27\) 1.11326i 0.214248i
\(28\) 0 0
\(29\) −2.54533 −0.472656 −0.236328 0.971673i \(-0.575944\pi\)
−0.236328 + 0.971673i \(0.575944\pi\)
\(30\) 0 0
\(31\) −4.08289 + 4.08289i −0.733308 + 0.733308i −0.971274 0.237965i \(-0.923520\pi\)
0.237965 + 0.971274i \(0.423520\pi\)
\(32\) 0 0
\(33\) −4.07177 + 4.07177i −0.708804 + 0.708804i
\(34\) 0 0
\(35\) 13.9807i 2.36317i
\(36\) 0 0
\(37\) 6.79911 6.79911i 1.11777 1.11777i 0.125697 0.992069i \(-0.459883\pi\)
0.992069 0.125697i \(-0.0401168\pi\)
\(38\) 0 0
\(39\) −5.34267 + 6.58024i −0.855512 + 1.05368i
\(40\) 0 0
\(41\) −1.07177 1.07177i −0.167383 0.167383i 0.618445 0.785828i \(-0.287763\pi\)
−0.785828 + 0.618445i \(0.787763\pi\)
\(42\) 0 0
\(43\) 1.11326 0.169771 0.0848855 0.996391i \(-0.472948\pi\)
0.0848855 + 0.996391i \(0.472948\pi\)
\(44\) 0 0
\(45\) −7.07177 7.07177i −1.05420 1.05420i
\(46\) 0 0
\(47\) 5.66842 + 5.66842i 0.826824 + 0.826824i 0.987076 0.160252i \(-0.0512306\pi\)
−0.160252 + 0.987076i \(0.551231\pi\)
\(48\) 0 0
\(49\) 5.47356i 0.781937i
\(50\) 0 0
\(51\) −3.58841 −0.502478
\(52\) 0 0
\(53\) −5.59821 −0.768973 −0.384487 0.923131i \(-0.625622\pi\)
−0.384487 + 0.923131i \(0.625622\pi\)
\(54\) 0 0
\(55\) 9.69639i 1.30746i
\(56\) 0 0
\(57\) −1.45467 1.45467i −0.192676 0.192676i
\(58\) 0 0
\(59\) −4.37592 4.37592i −0.569697 0.569697i 0.362347 0.932043i \(-0.381976\pi\)
−0.932043 + 0.362347i \(0.881976\pi\)
\(60\) 0 0
\(61\) 5.19642 0.665334 0.332667 0.943044i \(-0.392052\pi\)
0.332667 + 0.943044i \(0.392052\pi\)
\(62\) 0 0
\(63\) −6.30942 6.30942i −0.794912 0.794912i
\(64\) 0 0
\(65\) −1.47356 14.1964i −0.182773 1.76085i
\(66\) 0 0
\(67\) 0.201443 0.201443i 0.0246102 0.0246102i −0.694695 0.719305i \(-0.744460\pi\)
0.719305 + 0.694695i \(0.244460\pi\)
\(68\) 0 0
\(69\) 14.6511i 1.76378i
\(70\) 0 0
\(71\) −5.66842 + 5.66842i −0.672718 + 0.672718i −0.958342 0.285624i \(-0.907799\pi\)
0.285624 + 0.958342i \(0.407799\pi\)
\(72\) 0 0
\(73\) −0.526440 + 0.526440i −0.0616151 + 0.0616151i −0.737243 0.675628i \(-0.763873\pi\)
0.675628 + 0.737243i \(0.263873\pi\)
\(74\) 0 0
\(75\) 25.0834 2.89638
\(76\) 0 0
\(77\) 8.65109i 0.985883i
\(78\) 0 0
\(79\) 6.63517i 0.746515i −0.927728 0.373257i \(-0.878241\pi\)
0.927728 0.373257i \(-0.121759\pi\)
\(80\) 0 0
\(81\) −10.1964 −1.13294
\(82\) 0 0
\(83\) −5.19615 + 5.19615i −0.570352 + 0.570352i −0.932227 0.361875i \(-0.882137\pi\)
0.361875 + 0.932227i \(0.382137\pi\)
\(84\) 0 0
\(85\) 4.27267 4.27267i 0.463436 0.463436i
\(86\) 0 0
\(87\) 5.98366i 0.641516i
\(88\) 0 0
\(89\) −4.12465 + 4.12465i −0.437212 + 0.437212i −0.891073 0.453861i \(-0.850046\pi\)
0.453861 + 0.891073i \(0.350046\pi\)
\(90\) 0 0
\(91\) −1.31471 12.6660i −0.137819 1.32776i
\(92\) 0 0
\(93\) 9.59821 + 9.59821i 0.995288 + 0.995288i
\(94\) 0 0
\(95\) 3.46410 0.355409
\(96\) 0 0
\(97\) 4.59821 + 4.59821i 0.466878 + 0.466878i 0.900901 0.434024i \(-0.142907\pi\)
−0.434024 + 0.900901i \(0.642907\pi\)
\(98\) 0 0
\(99\) 4.37592 + 4.37592i 0.439797 + 0.439797i
\(100\) 0 0
\(101\) 11.1964i 1.11409i 0.830484 + 0.557043i \(0.188064\pi\)
−0.830484 + 0.557043i \(0.811936\pi\)
\(102\) 0 0
\(103\) 17.8622 1.76001 0.880006 0.474963i \(-0.157539\pi\)
0.880006 + 0.474963i \(0.157539\pi\)
\(104\) 0 0
\(105\) 32.8664 3.20743
\(106\) 0 0
\(107\) 15.9287i 1.53988i 0.638115 + 0.769941i \(0.279715\pi\)
−0.638115 + 0.769941i \(0.720285\pi\)
\(108\) 0 0
\(109\) −4.39732 4.39732i −0.421186 0.421186i 0.464426 0.885612i \(-0.346261\pi\)
−0.885612 + 0.464426i \(0.846261\pi\)
\(110\) 0 0
\(111\) −15.9836 15.9836i −1.51710 1.51710i
\(112\) 0 0
\(113\) −2.94712 −0.277242 −0.138621 0.990346i \(-0.544267\pi\)
−0.138621 + 0.990346i \(0.544267\pi\)
\(114\) 0 0
\(115\) −17.4448 17.4448i −1.62674 1.62674i
\(116\) 0 0
\(117\) 7.07177 + 5.74175i 0.653785 + 0.530825i
\(118\) 0 0
\(119\) 3.81206 3.81206i 0.349451 0.349451i
\(120\) 0 0
\(121\) 5.00000i 0.454545i
\(122\) 0 0
\(123\) −2.51956 + 2.51956i −0.227181 + 0.227181i
\(124\) 0 0
\(125\) −15.8709 + 15.8709i −1.41953 + 1.41953i
\(126\) 0 0
\(127\) 20.0887 1.78258 0.891292 0.453431i \(-0.149800\pi\)
0.891292 + 0.453431i \(0.149800\pi\)
\(128\) 0 0
\(129\) 2.61710i 0.230423i
\(130\) 0 0
\(131\) 19.2685i 1.68349i −0.539873 0.841747i \(-0.681528\pi\)
0.539873 0.841747i \(-0.318472\pi\)
\(132\) 0 0
\(133\) 3.09066 0.267994
\(134\) 0 0
\(135\) 3.11614 3.11614i 0.268195 0.268195i
\(136\) 0 0
\(137\) 5.14354 5.14354i 0.439442 0.439442i −0.452382 0.891824i \(-0.649426\pi\)
0.891824 + 0.452382i \(0.149426\pi\)
\(138\) 0 0
\(139\) 5.41205i 0.459044i −0.973303 0.229522i \(-0.926284\pi\)
0.973303 0.229522i \(-0.0737163\pi\)
\(140\) 0 0
\(141\) 13.3255 13.3255i 1.12221 1.12221i
\(142\) 0 0
\(143\) 0.911820 + 8.78457i 0.0762502 + 0.734602i
\(144\) 0 0
\(145\) −7.12465 7.12465i −0.591670 0.591670i
\(146\) 0 0
\(147\) 12.8675 1.06129
\(148\) 0 0
\(149\) −7.57932 7.57932i −0.620922 0.620922i 0.324845 0.945767i \(-0.394688\pi\)
−0.945767 + 0.324845i \(0.894688\pi\)
\(150\) 0 0
\(151\) 2.49735 + 2.49735i 0.203232 + 0.203232i 0.801383 0.598151i \(-0.204098\pi\)
−0.598151 + 0.801383i \(0.704098\pi\)
\(152\) 0 0
\(153\) 3.85646i 0.311776i
\(154\) 0 0
\(155\) −22.8569 −1.83591
\(156\) 0 0
\(157\) −21.3400 −1.70311 −0.851557 0.524262i \(-0.824341\pi\)
−0.851557 + 0.524262i \(0.824341\pi\)
\(158\) 0 0
\(159\) 13.1605i 1.04369i
\(160\) 0 0
\(161\) −15.5642 15.5642i −1.22663 1.22663i
\(162\) 0 0
\(163\) 16.1301 + 16.1301i 1.26341 + 1.26341i 0.949430 + 0.313977i \(0.101662\pi\)
0.313977 + 0.949430i \(0.398338\pi\)
\(164\) 0 0
\(165\) −22.7946 −1.77456
\(166\) 0 0
\(167\) 1.85636 + 1.85636i 0.143650 + 0.143650i 0.775274 0.631625i \(-0.217612\pi\)
−0.631625 + 0.775274i \(0.717612\pi\)
\(168\) 0 0
\(169\) 2.66998 + 12.7229i 0.205383 + 0.978682i
\(170\) 0 0
\(171\) −1.56333 + 1.56333i −0.119551 + 0.119551i
\(172\) 0 0
\(173\) 5.70397i 0.433665i −0.976209 0.216832i \(-0.930427\pi\)
0.976209 0.216832i \(-0.0695725\pi\)
\(174\) 0 0
\(175\) −26.6467 + 26.6467i −2.01430 + 2.01430i
\(176\) 0 0
\(177\) −10.2871 + 10.2871i −0.773225 + 0.773225i
\(178\) 0 0
\(179\) 5.22887 0.390824 0.195412 0.980721i \(-0.437396\pi\)
0.195412 + 0.980721i \(0.437396\pi\)
\(180\) 0 0
\(181\) 6.50755i 0.483702i 0.970313 + 0.241851i \(0.0777546\pi\)
−0.970313 + 0.241851i \(0.922245\pi\)
\(182\) 0 0
\(183\) 12.2159i 0.903029i
\(184\) 0 0
\(185\) 38.0628 2.79843
\(186\) 0 0
\(187\) −2.64387 + 2.64387i −0.193339 + 0.193339i
\(188\) 0 0
\(189\) 2.78021 2.78021i 0.202231 0.202231i
\(190\) 0 0
\(191\) 4.16002i 0.301009i 0.988609 + 0.150504i \(0.0480897\pi\)
−0.988609 + 0.150504i \(0.951910\pi\)
\(192\) 0 0
\(193\) 7.65109 7.65109i 0.550738 0.550738i −0.375916 0.926654i \(-0.622672\pi\)
0.926654 + 0.375916i \(0.122672\pi\)
\(194\) 0 0
\(195\) −33.3735 + 3.46410i −2.38993 + 0.248069i
\(196\) 0 0
\(197\) 11.3444 + 11.3444i 0.808258 + 0.808258i 0.984370 0.176112i \(-0.0563522\pi\)
−0.176112 + 0.984370i \(0.556352\pi\)
\(198\) 0 0
\(199\) −6.23228 −0.441795 −0.220897 0.975297i \(-0.570899\pi\)
−0.220897 + 0.975297i \(0.570899\pi\)
\(200\) 0 0
\(201\) −0.473560 0.473560i −0.0334024 0.0334024i
\(202\) 0 0
\(203\) −6.35659 6.35659i −0.446145 0.446145i
\(204\) 0 0
\(205\) 6.00000i 0.419058i
\(206\) 0 0
\(207\) 15.7455 1.09439
\(208\) 0 0
\(209\) −2.14354 −0.148272
\(210\) 0 0
\(211\) 3.99130i 0.274772i 0.990518 + 0.137386i \(0.0438701\pi\)
−0.990518 + 0.137386i \(0.956130\pi\)
\(212\) 0 0
\(213\) 13.3255 + 13.3255i 0.913051 + 0.913051i
\(214\) 0 0
\(215\) 3.11614 + 3.11614i 0.212519 + 0.212519i
\(216\) 0 0
\(217\) −20.3928 −1.38436
\(218\) 0 0
\(219\) 1.23757 + 1.23757i 0.0836275 + 0.0836275i
\(220\) 0 0
\(221\) −3.46909 + 4.27267i −0.233356 + 0.287411i
\(222\) 0 0
\(223\) 3.73493 3.73493i 0.250109 0.250109i −0.570906 0.821015i \(-0.693408\pi\)
0.821015 + 0.570906i \(0.193408\pi\)
\(224\) 0 0
\(225\) 26.9571i 1.79714i
\(226\) 0 0
\(227\) 17.5364 17.5364i 1.16393 1.16393i 0.180325 0.983607i \(-0.442285\pi\)
0.983607 0.180325i \(-0.0577151\pi\)
\(228\) 0 0
\(229\) 1.30665 1.30665i 0.0863461 0.0863461i −0.662615 0.748961i \(-0.730553\pi\)
0.748961 + 0.662615i \(0.230553\pi\)
\(230\) 0 0
\(231\) −20.3373 −1.33810
\(232\) 0 0
\(233\) 21.6700i 1.41965i −0.704379 0.709824i \(-0.748775\pi\)
0.704379 0.709824i \(-0.251225\pi\)
\(234\) 0 0
\(235\) 31.7330i 2.07003i
\(236\) 0 0
\(237\) −15.5982 −1.01321
\(238\) 0 0
\(239\) −4.72388 + 4.72388i −0.305563 + 0.305563i −0.843185 0.537623i \(-0.819322\pi\)
0.537623 + 0.843185i \(0.319322\pi\)
\(240\) 0 0
\(241\) 3.07177 3.07177i 0.197870 0.197870i −0.601216 0.799086i \(-0.705317\pi\)
0.799086 + 0.601216i \(0.205317\pi\)
\(242\) 0 0
\(243\) 20.6303i 1.32344i
\(244\) 0 0
\(245\) −15.3211 + 15.3211i −0.978827 + 0.978827i
\(246\) 0 0
\(247\) −3.13835 + 0.325754i −0.199688 + 0.0207272i
\(248\) 0 0
\(249\) 12.2153 + 12.2153i 0.774114 + 0.774114i
\(250\) 0 0
\(251\) −1.64046 −0.103545 −0.0517725 0.998659i \(-0.516487\pi\)
−0.0517725 + 0.998659i \(0.516487\pi\)
\(252\) 0 0
\(253\) 10.7946 + 10.7946i 0.678653 + 0.678653i
\(254\) 0 0
\(255\) −10.0443 10.0443i −0.629001 0.629001i
\(256\) 0 0
\(257\) 5.38290i 0.335776i 0.985806 + 0.167888i \(0.0536947\pi\)
−0.985806 + 0.167888i \(0.946305\pi\)
\(258\) 0 0
\(259\) 33.9596 2.11014
\(260\) 0 0
\(261\) 6.43063 0.398046
\(262\) 0 0
\(263\) 17.3205i 1.06803i −0.845476 0.534014i \(-0.820683\pi\)
0.845476 0.534014i \(-0.179317\pi\)
\(264\) 0 0
\(265\) −15.6700 15.6700i −0.962599 0.962599i
\(266\) 0 0
\(267\) 9.69639 + 9.69639i 0.593409 + 0.593409i
\(268\) 0 0
\(269\) −17.1964 −1.04848 −0.524242 0.851569i \(-0.675651\pi\)
−0.524242 + 0.851569i \(0.675651\pi\)
\(270\) 0 0
\(271\) −13.1383 13.1383i −0.798094 0.798094i 0.184701 0.982795i \(-0.440868\pi\)
−0.982795 + 0.184701i \(0.940868\pi\)
\(272\) 0 0
\(273\) −29.7757 + 3.09066i −1.80211 + 0.187055i
\(274\) 0 0
\(275\) 18.4810 18.4810i 1.11444 1.11444i
\(276\) 0 0
\(277\) 31.3400i 1.88304i 0.336963 + 0.941518i \(0.390600\pi\)
−0.336963 + 0.941518i \(0.609400\pi\)
\(278\) 0 0
\(279\) 10.3152 10.3152i 0.617553 0.617553i
\(280\) 0 0
\(281\) 15.2153 15.2153i 0.907669 0.907669i −0.0884143 0.996084i \(-0.528180\pi\)
0.996084 + 0.0884143i \(0.0281799\pi\)
\(282\) 0 0
\(283\) −19.3928 −1.15278 −0.576390 0.817175i \(-0.695539\pi\)
−0.576390 + 0.817175i \(0.695539\pi\)
\(284\) 0 0
\(285\) 8.14354i 0.482382i
\(286\) 0 0
\(287\) 5.35318i 0.315988i
\(288\) 0 0
\(289\) 14.6700 0.862940
\(290\) 0 0
\(291\) 10.8096 10.8096i 0.633673 0.633673i
\(292\) 0 0
\(293\) 11.7462 11.7462i 0.686222 0.686222i −0.275173 0.961395i \(-0.588735\pi\)
0.961395 + 0.275173i \(0.0887351\pi\)
\(294\) 0 0
\(295\) 24.4973i 1.42629i
\(296\) 0 0
\(297\) −1.92823 + 1.92823i −0.111887 + 0.111887i
\(298\) 0 0
\(299\) 17.4448 + 14.1639i 1.00886 + 0.819119i
\(300\) 0 0
\(301\) 2.78021 + 2.78021i 0.160249 + 0.160249i
\(302\) 0 0
\(303\) 26.3210 1.51210
\(304\) 0 0
\(305\) 14.5453 + 14.5453i 0.832863 + 0.832863i
\(306\) 0 0
\(307\) −16.0058 16.0058i −0.913499 0.913499i 0.0830464 0.996546i \(-0.473535\pi\)
−0.996546 + 0.0830464i \(0.973535\pi\)
\(308\) 0 0
\(309\) 41.9911i 2.38879i
\(310\) 0 0
\(311\) −8.56866 −0.485884 −0.242942 0.970041i \(-0.578113\pi\)
−0.242942 + 0.970041i \(0.578113\pi\)
\(312\) 0 0
\(313\) −2.86640 −0.162019 −0.0810093 0.996713i \(-0.525814\pi\)
−0.0810093 + 0.996713i \(0.525814\pi\)
\(314\) 0 0
\(315\) 35.3214i 1.99014i
\(316\) 0 0
\(317\) 15.6171 + 15.6171i 0.877144 + 0.877144i 0.993238 0.116094i \(-0.0370375\pi\)
−0.116094 + 0.993238i \(0.537037\pi\)
\(318\) 0 0
\(319\) 4.40864 + 4.40864i 0.246837 + 0.246837i
\(320\) 0 0
\(321\) 37.4457 2.09002
\(322\) 0 0
\(323\) −0.944541 0.944541i −0.0525557 0.0525557i
\(324\) 0 0
\(325\) 24.2493 29.8664i 1.34511 1.65669i
\(326\) 0 0
\(327\) −10.3374 + 10.3374i −0.571658 + 0.571658i
\(328\) 0 0
\(329\) 28.3121i 1.56090i
\(330\) 0 0
\(331\) 6.43373 6.43373i 0.353630 0.353630i −0.507829 0.861458i \(-0.669552\pi\)
0.861458 + 0.507829i \(0.169552\pi\)
\(332\) 0 0
\(333\) −17.1775 + 17.1775i −0.941323 + 0.941323i
\(334\) 0 0
\(335\) 1.12772 0.0616140
\(336\) 0 0
\(337\) 22.7606i 1.23985i 0.784661 + 0.619926i \(0.212837\pi\)
−0.784661 + 0.619926i \(0.787163\pi\)
\(338\) 0 0
\(339\) 6.92820i 0.376288i
\(340\) 0 0
\(341\) 14.1435 0.765916
\(342\) 0 0
\(343\) 3.81206 3.81206i 0.205832 0.205832i
\(344\) 0 0
\(345\) −41.0099 + 41.0099i −2.20790 + 2.20790i
\(346\) 0 0
\(347\) 17.6280i 0.946321i 0.880976 + 0.473160i \(0.156887\pi\)
−0.880976 + 0.473160i \(0.843113\pi\)
\(348\) 0 0
\(349\) 7.34444 7.34444i 0.393139 0.393139i −0.482666 0.875805i \(-0.660331\pi\)
0.875805 + 0.482666i \(0.160331\pi\)
\(350\) 0 0
\(351\) −2.53008 + 3.11614i −0.135045 + 0.166327i
\(352\) 0 0
\(353\) −0.348910 0.348910i −0.0185706 0.0185706i 0.697761 0.716331i \(-0.254180\pi\)
−0.716331 + 0.697761i \(0.754180\pi\)
\(354\) 0 0
\(355\) −31.7330 −1.68421
\(356\) 0 0
\(357\) −8.96154 8.96154i −0.474295 0.474295i
\(358\) 0 0
\(359\) 21.0005 + 21.0005i 1.10836 + 1.10836i 0.993366 + 0.114999i \(0.0366865\pi\)
0.114999 + 0.993366i \(0.463314\pi\)
\(360\) 0 0
\(361\) 18.2342i 0.959695i
\(362\) 0 0
\(363\) −11.7542 −0.616935
\(364\) 0 0
\(365\) −2.94712 −0.154259
\(366\) 0 0
\(367\) 9.44776i 0.493169i 0.969121 + 0.246585i \(0.0793083\pi\)
−0.969121 + 0.246585i \(0.920692\pi\)
\(368\) 0 0
\(369\) 2.70776 + 2.70776i 0.140961 + 0.140961i
\(370\) 0 0
\(371\) −13.9807 13.9807i −0.725843 0.725843i
\(372\) 0 0
\(373\) 31.4457 1.62820 0.814099 0.580726i \(-0.197231\pi\)
0.814099 + 0.580726i \(0.197231\pi\)
\(374\) 0 0
\(375\) 37.3099 + 37.3099i 1.92667 + 1.92667i
\(376\) 0 0
\(377\) 7.12465 + 5.78469i 0.366938 + 0.297927i
\(378\) 0 0
\(379\) −8.36722 + 8.36722i −0.429795 + 0.429795i −0.888559 0.458763i \(-0.848293\pi\)
0.458763 + 0.888559i \(0.348293\pi\)
\(380\) 0 0
\(381\) 47.2253i 2.41942i
\(382\) 0 0
\(383\) 2.90024 2.90024i 0.148195 0.148195i −0.629116 0.777311i \(-0.716583\pi\)
0.777311 + 0.629116i \(0.216583\pi\)
\(384\) 0 0
\(385\) 24.2153 24.2153i 1.23413 1.23413i
\(386\) 0 0
\(387\) −2.81259 −0.142972
\(388\) 0 0
\(389\) 27.4835i 1.39347i 0.717329 + 0.696735i \(0.245364\pi\)
−0.717329 + 0.696735i \(0.754636\pi\)
\(390\) 0 0
\(391\) 9.51321i 0.481103i
\(392\) 0 0
\(393\) −45.2970 −2.28493
\(394\) 0 0
\(395\) 18.5725 18.5725i 0.934486 0.934486i
\(396\) 0 0
\(397\) −11.5793 + 11.5793i −0.581149 + 0.581149i −0.935219 0.354070i \(-0.884798\pi\)
0.354070 + 0.935219i \(0.384798\pi\)
\(398\) 0 0
\(399\) 7.26565i 0.363737i
\(400\) 0 0
\(401\) −11.9471 + 11.9471i −0.596611 + 0.596611i −0.939409 0.342798i \(-0.888625\pi\)
0.342798 + 0.939409i \(0.388625\pi\)
\(402\) 0 0
\(403\) 20.7075 2.14939i 1.03151 0.107069i
\(404\) 0 0
\(405\) −28.5409 28.5409i −1.41821 1.41821i
\(406\) 0 0
\(407\) −23.5528 −1.16747
\(408\) 0 0
\(409\) −24.4457 24.4457i −1.20876 1.20876i −0.971428 0.237335i \(-0.923726\pi\)
−0.237335 0.971428i \(-0.576274\pi\)
\(410\) 0 0
\(411\) −12.0916 12.0916i −0.596436 0.596436i
\(412\) 0 0
\(413\) 21.8565i 1.07549i
\(414\) 0 0
\(415\) −29.0892 −1.42793
\(416\) 0 0
\(417\) −12.7229 −0.623041
\(418\) 0 0
\(419\) 1.51615i 0.0740688i −0.999314 0.0370344i \(-0.988209\pi\)
0.999314 0.0370344i \(-0.0117911\pi\)
\(420\) 0 0
\(421\) −12.1391 12.1391i −0.591622 0.591622i 0.346447 0.938069i \(-0.387388\pi\)
−0.938069 + 0.346447i \(0.887388\pi\)
\(422\) 0 0
\(423\) −14.3209 14.3209i −0.696307 0.696307i
\(424\) 0 0
\(425\) 16.2871 0.790040
\(426\) 0 0
\(427\) 12.9773 + 12.9773i 0.628016 + 0.628016i
\(428\) 0 0
\(429\) 20.6511 2.14354i 0.997044 0.103491i
\(430\) 0 0
\(431\) 9.13252 9.13252i 0.439898 0.439898i −0.452079 0.891978i \(-0.649318\pi\)
0.891978 + 0.452079i \(0.149318\pi\)
\(432\) 0 0
\(433\) 4.51134i 0.216801i 0.994107 + 0.108401i \(0.0345729\pi\)
−0.994107 + 0.108401i \(0.965427\pi\)
\(434\) 0 0
\(435\) −16.7489 + 16.7489i −0.803048 + 0.803048i
\(436\) 0 0
\(437\) −3.85646 + 3.85646i −0.184479 + 0.184479i
\(438\) 0 0
\(439\) 3.06122 0.146104 0.0730519 0.997328i \(-0.476726\pi\)
0.0730519 + 0.997328i \(0.476726\pi\)
\(440\) 0 0
\(441\) 13.8286i 0.658506i
\(442\) 0 0
\(443\) 5.41205i 0.257134i −0.991701 0.128567i \(-0.958962\pi\)
0.991701 0.128567i \(-0.0410378\pi\)
\(444\) 0 0
\(445\) −23.0907 −1.09460
\(446\) 0 0
\(447\) −17.8178 + 17.8178i −0.842751 + 0.842751i
\(448\) 0 0
\(449\) 16.7418 16.7418i 0.790092 0.790092i −0.191417 0.981509i \(-0.561308\pi\)
0.981509 + 0.191417i \(0.0613082\pi\)
\(450\) 0 0
\(451\) 3.71272i 0.174825i
\(452\) 0 0
\(453\) 5.87088 5.87088i 0.275838 0.275838i
\(454\) 0 0
\(455\) 31.7735 39.1335i 1.48956 1.83461i
\(456\) 0 0
\(457\) −13.2153 13.2153i −0.618186 0.618186i 0.326880 0.945066i \(-0.394003\pi\)
−0.945066 + 0.326880i \(0.894003\pi\)
\(458\) 0 0
\(459\) −1.69933 −0.0793179
\(460\) 0 0
\(461\) 13.5937 + 13.5937i 0.633123 + 0.633123i 0.948850 0.315727i \(-0.102248\pi\)
−0.315727 + 0.948850i \(0.602248\pi\)
\(462\) 0 0
\(463\) 11.2597 + 11.2597i 0.523283 + 0.523283i 0.918561 0.395278i \(-0.129352\pi\)
−0.395278 + 0.918561i \(0.629352\pi\)
\(464\) 0 0
\(465\) 53.7328i 2.49180i
\(466\) 0 0
\(467\) −26.0724 −1.20648 −0.603242 0.797558i \(-0.706125\pi\)
−0.603242 + 0.797558i \(0.706125\pi\)
\(468\) 0 0
\(469\) 1.00615 0.0464597
\(470\) 0 0
\(471\) 50.1668i 2.31156i
\(472\) 0 0
\(473\) −1.92823 1.92823i −0.0886601 0.0886601i
\(474\) 0 0
\(475\) 6.60245 + 6.60245i 0.302941 + 0.302941i
\(476\) 0 0
\(477\) 14.1435 0.647588
\(478\) 0 0
\(479\) −7.74069 7.74069i −0.353681 0.353681i 0.507796 0.861477i \(-0.330460\pi\)
−0.861477 + 0.507796i \(0.830460\pi\)
\(480\) 0 0
\(481\) −34.4835 + 3.57932i −1.57231 + 0.163203i
\(482\) 0 0
\(483\) −36.5890 + 36.5890i −1.66486 + 1.66486i
\(484\) 0 0
\(485\) 25.7418i 1.16887i
\(486\) 0 0
\(487\) 16.9503 16.9503i 0.768093 0.768093i −0.209677 0.977771i \(-0.567241\pi\)
0.977771 + 0.209677i \(0.0672413\pi\)
\(488\) 0 0
\(489\) 37.9193 37.9193i 1.71477 1.71477i
\(490\) 0 0
\(491\) −40.1185 −1.81052 −0.905262 0.424855i \(-0.860325\pi\)
−0.905262 + 0.424855i \(0.860325\pi\)
\(492\) 0 0
\(493\) 3.88529i 0.174985i
\(494\) 0 0
\(495\) 24.4973i 1.10107i
\(496\) 0 0
\(497\) −28.3121 −1.26997
\(498\) 0 0
\(499\) −19.0226 + 19.0226i −0.851569 + 0.851569i −0.990326 0.138758i \(-0.955689\pi\)
0.138758 + 0.990326i \(0.455689\pi\)
\(500\) 0 0
\(501\) 4.36401 4.36401i 0.194969 0.194969i
\(502\) 0 0
\(503\) 29.7851i 1.32805i −0.747710 0.664025i \(-0.768847\pi\)
0.747710 0.664025i \(-0.231153\pi\)
\(504\) 0 0
\(505\) −31.3400 + 31.3400i −1.39461 + 1.39461i
\(506\) 0 0
\(507\) 29.9094 6.27669i 1.32832 0.278758i
\(508\) 0 0
\(509\) −23.0628 23.0628i −1.02224 1.02224i −0.999747 0.0224948i \(-0.992839\pi\)
−0.0224948 0.999747i \(-0.507161\pi\)
\(510\) 0 0
\(511\) −2.62941 −0.116318
\(512\) 0 0
\(513\) −0.688873 0.688873i −0.0304145 0.0304145i
\(514\) 0 0
\(515\) 49.9981 + 49.9981i 2.20318 + 2.20318i
\(516\) 0 0
\(517\) 19.6360i 0.863590i
\(518\) 0 0
\(519\) −13.4091 −0.588595
\(520\) 0 0
\(521\) 12.6171 0.552765 0.276383 0.961048i \(-0.410864\pi\)
0.276383 + 0.961048i \(0.410864\pi\)
\(522\) 0 0
\(523\) 15.9287i 0.696512i 0.937399 + 0.348256i \(0.113226\pi\)
−0.937399 + 0.348256i \(0.886774\pi\)
\(524\) 0 0
\(525\) 62.6421 + 62.6421i 2.73393 + 2.73393i
\(526\) 0 0
\(527\) 6.23228 + 6.23228i 0.271483 + 0.271483i
\(528\) 0 0
\(529\) 15.8414 0.688755
\(530\) 0 0
\(531\) 11.0555 + 11.0555i 0.479768 + 0.479768i
\(532\) 0 0
\(533\) 0.564223 + 5.43578i 0.0244392 + 0.235450i
\(534\) 0 0
\(535\) −44.5860 + 44.5860i −1.92762 + 1.92762i
\(536\) 0 0
\(537\) 12.2922i 0.530449i
\(538\) 0 0
\(539\) 9.48048 9.48048i 0.408353 0.408353i
\(540\) 0 0
\(541\) −2.35953 + 2.35953i −0.101444 + 0.101444i −0.756007 0.654563i \(-0.772853\pi\)
0.654563 + 0.756007i \(0.272853\pi\)
\(542\) 0 0
\(543\) 15.2982 0.656508
\(544\) 0 0
\(545\) 24.6171i 1.05448i
\(546\) 0 0
\(547\) 33.6221i 1.43758i −0.695228 0.718789i \(-0.744697\pi\)
0.695228 0.718789i \(-0.255303\pi\)
\(548\) 0 0
\(549\) −13.1284 −0.560308
\(550\) 0 0
\(551\) −1.57502 + 1.57502i −0.0670980 + 0.0670980i
\(552\) 0 0
\(553\) 16.5704 16.5704i 0.704644 0.704644i
\(554\) 0 0
\(555\) 89.4795i 3.79819i
\(556\) 0 0
\(557\) 17.0484 17.0484i 0.722364 0.722364i −0.246722 0.969086i \(-0.579353\pi\)
0.969086 + 0.246722i \(0.0793535\pi\)
\(558\) 0 0
\(559\) −3.11614 2.53008i −0.131799 0.107011i
\(560\) 0 0
\(561\) 6.21531 + 6.21531i 0.262411 + 0.262411i
\(562\) 0 0
\(563\) 21.0921 0.888926 0.444463 0.895797i \(-0.353395\pi\)
0.444463 + 0.895797i \(0.353395\pi\)
\(564\) 0 0
\(565\) −8.24930 8.24930i −0.347051 0.347051i
\(566\) 0 0
\(567\) −25.4641 25.4641i −1.06939 1.06939i
\(568\) 0 0
\(569\) 1.52644i 0.0639917i −0.999488 0.0319958i \(-0.989814\pi\)
0.999488 0.0319958i \(-0.0101863\pi\)
\(570\) 0 0
\(571\) 24.3730 1.01998 0.509990 0.860181i \(-0.329649\pi\)
0.509990 + 0.860181i \(0.329649\pi\)
\(572\) 0 0
\(573\) 9.77954 0.408546
\(574\) 0 0
\(575\) 66.4984i 2.77317i
\(576\) 0 0
\(577\) 21.0628 + 21.0628i 0.876857 + 0.876857i 0.993208 0.116351i \(-0.0371198\pi\)
−0.116351 + 0.993208i \(0.537120\pi\)
\(578\) 0 0
\(579\) −17.9865 17.9865i −0.747492 0.747492i
\(580\) 0 0
\(581\) −25.9533 −1.07672
\(582\) 0 0
\(583\) 9.69639 + 9.69639i 0.401583 + 0.401583i
\(584\) 0 0
\(585\) 3.72286 + 35.8664i 0.153921 + 1.48289i
\(586\) 0 0
\(587\) 14.8925 14.8925i 0.614681 0.614681i −0.329481 0.944162i \(-0.606874\pi\)
0.944162 + 0.329481i \(0.106874\pi\)
\(588\) 0 0
\(589\) 5.05288i 0.208200i
\(590\) 0 0
\(591\) 26.6689 26.6689i 1.09701 1.09701i
\(592\) 0 0
\(593\) −2.59821 + 2.59821i −0.106696 + 0.106696i −0.758439 0.651744i \(-0.774038\pi\)
0.651744 + 0.758439i \(0.274038\pi\)
\(594\) 0 0
\(595\) 21.3407 0.874884
\(596\) 0 0
\(597\) 14.6511i 0.599629i
\(598\) 0 0
\(599\) 15.6800i 0.640669i 0.947304 + 0.320335i \(0.103795\pi\)
−0.947304 + 0.320335i \(0.896205\pi\)
\(600\) 0 0
\(601\) 11.0099 0.449105 0.224553 0.974462i \(-0.427908\pi\)
0.224553 + 0.974462i \(0.427908\pi\)
\(602\) 0 0
\(603\) −0.508934 + 0.508934i −0.0207254 + 0.0207254i
\(604\) 0 0
\(605\) 13.9955 13.9955i 0.568999 0.568999i
\(606\) 0 0
\(607\) 16.1773i 0.656616i 0.944571 + 0.328308i \(0.106478\pi\)
−0.944571 + 0.328308i \(0.893522\pi\)
\(608\) 0 0
\(609\) −14.9433 + 14.9433i −0.605534 + 0.605534i
\(610\) 0 0
\(611\) −2.98408 28.7489i −0.120723 1.16306i
\(612\) 0 0
\(613\) −27.1775 27.1775i −1.09769 1.09769i −0.994680 0.103010i \(-0.967153\pi\)
−0.103010 0.994680i \(-0.532847\pi\)
\(614\) 0 0
\(615\) −14.1050 −0.568770
\(616\) 0 0
\(617\) 13.5793 + 13.5793i 0.546683 + 0.546683i 0.925480 0.378797i \(-0.123662\pi\)
−0.378797 + 0.925480i \(0.623662\pi\)
\(618\) 0 0
\(619\) −16.1157 16.1157i −0.647743 0.647743i 0.304704 0.952447i \(-0.401442\pi\)
−0.952447 + 0.304704i \(0.901442\pi\)
\(620\) 0 0
\(621\) 6.93817i 0.278419i
\(622\) 0 0
\(623\) −20.6014 −0.825379
\(624\) 0 0
\(625\) −35.4986 −1.41994
\(626\) 0 0
\(627\) 5.03912i 0.201243i
\(628\) 0 0
\(629\) −10.3784 10.3784i −0.413815 0.413815i
\(630\) 0 0
\(631\) 1.21537 + 1.21537i 0.0483831 + 0.0483831i 0.730884 0.682501i \(-0.239108\pi\)
−0.682501 + 0.730884i \(0.739108\pi\)
\(632\) 0 0
\(633\) 9.38290 0.372937
\(634\) 0 0
\(635\) 56.2304 + 56.2304i 2.23143 + 2.23143i
\(636\) 0 0
\(637\) 12.4396 15.3211i 0.492874 0.607043i
\(638\) 0 0
\(639\) 14.3209 14.3209i 0.566527 0.566527i
\(640\) 0 0
\(641\) 39.4835i 1.55950i −0.626088 0.779752i \(-0.715345\pi\)
0.626088 0.779752i \(-0.284655\pi\)
\(642\) 0 0
\(643\) −15.5440 + 15.5440i −0.612997 + 0.612997i −0.943726 0.330729i \(-0.892706\pi\)
0.330729 + 0.943726i \(0.392706\pi\)
\(644\) 0 0
\(645\) 7.32555 7.32555i 0.288443 0.288443i
\(646\) 0 0
\(647\) −13.8564 −0.544752 −0.272376 0.962191i \(-0.587809\pi\)
−0.272376 + 0.962191i \(0.587809\pi\)
\(648\) 0 0
\(649\) 15.1586i 0.595029i
\(650\) 0 0
\(651\) 47.9403i 1.87893i
\(652\) 0 0
\(653\) 20.0378 0.784139 0.392070 0.919936i \(-0.371759\pi\)
0.392070 + 0.919936i \(0.371759\pi\)
\(654\) 0 0
\(655\) 53.9344 53.9344i 2.10739 2.10739i
\(656\) 0 0
\(657\) 1.33002 1.33002i 0.0518890 0.0518890i
\(658\) 0 0
\(659\) 22.8569i 0.890377i −0.895437 0.445189i \(-0.853137\pi\)
0.895437 0.445189i \(-0.146863\pi\)
\(660\) 0 0
\(661\) −25.3589 + 25.3589i −0.986345 + 0.986345i −0.999908 0.0135629i \(-0.995683\pi\)
0.0135629 + 0.999908i \(0.495683\pi\)
\(662\) 0 0
\(663\) 10.0443 + 8.15526i 0.390090 + 0.316724i
\(664\) 0 0
\(665\) 8.65109 + 8.65109i 0.335475 + 0.335475i
\(666\) 0 0
\(667\) 15.8632 0.614227
\(668\) 0 0
\(669\) −8.78021 8.78021i −0.339463 0.339463i
\(670\) 0 0
\(671\) −9.00047 9.00047i −0.347459 0.347459i
\(672\) 0 0
\(673\) 7.63220i 0.294200i 0.989122 + 0.147100i \(0.0469939\pi\)
−0.989122 + 0.147100i \(0.953006\pi\)
\(674\) 0 0
\(675\) 11.8785 0.457204
\(676\) 0 0
\(677\) −42.8324 −1.64618 −0.823092 0.567908i \(-0.807753\pi\)
−0.823092 + 0.567908i \(0.807753\pi\)
\(678\) 0 0
\(679\) 22.9667i 0.881382i
\(680\) 0 0
\(681\) −41.2253 41.2253i −1.57976 1.57976i
\(682\) 0 0
\(683\) −7.01979 7.01979i −0.268605 0.268605i 0.559933 0.828538i \(-0.310827\pi\)
−0.828538 + 0.559933i \(0.810827\pi\)
\(684\) 0 0
\(685\) 28.7946 1.10019
\(686\) 0 0
\(687\) −3.07173 3.07173i −0.117194 0.117194i
\(688\) 0 0
\(689\) 15.6700 + 12.7229i 0.596979 + 0.484702i
\(690\) 0 0
\(691\) 22.5966 22.5966i 0.859614 0.859614i −0.131679 0.991292i \(-0.542037\pi\)
0.991292 + 0.131679i \(0.0420367\pi\)
\(692\) 0 0
\(693\) 21.8565i 0.830258i
\(694\) 0 0
\(695\) 15.1489 15.1489i 0.574631 0.574631i
\(696\) 0 0
\(697\) −1.63599 + 1.63599i −0.0619677 + 0.0619677i
\(698\) 0 0
\(699\) −50.9426 −1.92683
\(700\) 0 0
\(701\) 25.8475i 0.976247i 0.872775 + 0.488124i \(0.162318\pi\)
−0.872775 + 0.488124i \(0.837682\pi\)
\(702\) 0 0
\(703\) 8.41440i 0.317355i
\(704\) 0 0
\(705\) 74.5992 2.80957
\(706\) 0 0
\(707\) −27.9614 + 27.9614i −1.05160 + 1.05160i
\(708\) 0 0
\(709\) −10.7757 + 10.7757i −0.404691 + 0.404691i −0.879883 0.475191i \(-0.842379\pi\)
0.475191 + 0.879883i \(0.342379\pi\)
\(710\) 0 0
\(711\) 16.7634i 0.628675i
\(712\) 0 0
\(713\) 25.4457 25.4457i 0.952950 0.952950i
\(714\) 0 0
\(715\) −22.0366 + 27.1412i −0.824124 + 1.01502i
\(716\) 0 0
\(717\) 11.1051 + 11.1051i 0.414727 + 0.414727i
\(718\) 0 0
\(719\) −30.6642 −1.14358 −0.571790 0.820400i \(-0.693751\pi\)
−0.571790 + 0.820400i \(0.693751\pi\)
\(720\) 0 0
\(721\) 44.6082 + 44.6082i 1.66129 + 1.66129i
\(722\) 0 0
\(723\) −7.22124 7.22124i −0.268561 0.268561i
\(724\) 0 0
\(725\) 27.1586i 1.00865i
\(726\) 0 0
\(727\) −13.4091 −0.497316 −0.248658 0.968591i \(-0.579990\pi\)
−0.248658 + 0.968591i \(0.579990\pi\)
\(728\) 0 0
\(729\) 17.9093 0.663309
\(730\) 0 0
\(731\) 1.69933i 0.0628520i
\(732\) 0 0
\(733\) 11.6027 + 11.6027i 0.428555 + 0.428555i 0.888136 0.459581i \(-0.152000\pi\)
−0.459581 + 0.888136i \(0.652000\pi\)
\(734\) 0 0
\(735\) 36.0174 + 36.0174i 1.32852 + 1.32852i
\(736\) 0 0
\(737\) −0.697820 −0.0257045
\(738\) 0 0
\(739\) 1.02167 + 1.02167i 0.0375829 + 0.0375829i 0.725648 0.688066i \(-0.241540\pi\)
−0.688066 + 0.725648i \(0.741540\pi\)
\(740\) 0 0
\(741\) 0.765795 + 7.37775i 0.0281322 + 0.271028i
\(742\) 0 0
\(743\) −27.6462 + 27.6462i −1.01424 + 1.01424i −0.0143435 + 0.999897i \(0.504566\pi\)
−0.999897 + 0.0143435i \(0.995434\pi\)
\(744\) 0 0
\(745\) 42.4306i 1.55454i
\(746\) 0 0
\(747\) 13.1278 13.1278i 0.480320 0.480320i
\(748\) 0 0
\(749\) −39.7795 + 39.7795i −1.45351 + 1.45351i
\(750\) 0 0
\(751\) −47.1345 −1.71996 −0.859981 0.510326i \(-0.829525\pi\)
−0.859981 + 0.510326i \(0.829525\pi\)
\(752\) 0 0
\(753\) 3.85646i 0.140537i
\(754\) 0 0
\(755\) 13.9807i 0.508810i
\(756\) 0 0
\(757\) 0.507548 0.0184472 0.00922358 0.999957i \(-0.497064\pi\)
0.00922358 + 0.999957i \(0.497064\pi\)
\(758\) 0 0
\(759\) 25.3764 25.3764i 0.921106 0.921106i
\(760\) 0 0
\(761\) −35.8664 + 35.8664i −1.30016 + 1.30016i −0.371872 + 0.928284i \(0.621284\pi\)
−0.928284 + 0.371872i \(0.878716\pi\)
\(762\) 0 0
\(763\) 21.9633i 0.795125i
\(764\) 0 0
\(765\) −10.7946 + 10.7946i −0.390281 + 0.390281i
\(766\) 0 0
\(767\) 2.30366 + 22.1937i 0.0831803 + 0.801367i
\(768\) 0 0
\(769\) 4.77574 + 4.77574i 0.172218 + 0.172218i 0.787953 0.615735i \(-0.211141\pi\)
−0.615735 + 0.787953i \(0.711141\pi\)
\(770\) 0 0
\(771\) 12.6543 0.455734
\(772\) 0 0
\(773\) 29.0484 + 29.0484i 1.04480 + 1.04480i 0.998948 + 0.0458502i \(0.0145997\pi\)
0.0458502 + 0.998948i \(0.485400\pi\)
\(774\) 0 0
\(775\) −43.5644 43.5644i −1.56488 1.56488i
\(776\) 0 0
\(777\) 79.8334i 2.86401i
\(778\) 0 0
\(779\) −1.32640 −0.0475231
\(780\) 0 0
\(781\) 19.6360 0.702631
\(782\) 0 0
\(783\) 2.83362i 0.101265i
\(784\) 0 0
\(785\) −59.7328 59.7328i −2.13196 2.13196i
\(786\) 0 0
\(787\) −8.38168 8.38168i −0.298775 0.298775i 0.541759 0.840534i \(-0.317758\pi\)
−0.840534 + 0.541759i \(0.817758\pi\)
\(788\) 0 0
\(789\) −40.7177 −1.44959
\(790\) 0 0
\(791\) −7.36001 7.36001i −0.261692 0.261692i
\(792\) 0 0
\(793\) −14.5453 11.8097i −0.516520 0.419376i
\(794\) 0 0
\(795\) −36.8376 + 36.8376i −1.30649 + 1.30649i
\(796\) 0 0
\(797\) 6.53638i 0.231531i 0.993277 + 0.115765i \(0.0369321\pi\)
−0.993277 + 0.115765i \(0.963068\pi\)
\(798\) 0 0
\(799\) 8.65251 8.65251i 0.306104 0.306104i
\(800\) 0 0
\(801\) 10.4207 10.4207i 0.368197 0.368197i
\(802\) 0 0
\(803\) 1.82364 0.0643549
\(804\) 0 0
\(805\) 87.1318i 3.07099i
\(806\) 0 0
\(807\) 40.4260i 1.42306i
\(808\) 0 0
\(809\) −16.6851 −0.586616 −0.293308 0.956018i \(-0.594756\pi\)
−0.293308 + 0.956018i \(0.594756\pi\)
\(810\) 0 0
\(811\) 27.8843 27.8843i 0.979150 0.979150i −0.0206367 0.999787i \(-0.506569\pi\)
0.999787 + 0.0206367i \(0.00656934\pi\)
\(812\) 0 0
\(813\) −30.8860 + 30.8860i −1.08322 + 1.08322i
\(814\) 0 0
\(815\) 90.2998i 3.16306i
\(816\) 0 0
\(817\) 0.688873 0.688873i 0.0241006 0.0241006i
\(818\) 0 0
\(819\) 3.32153 + 31.9999i 0.116064 + 1.11817i
\(820\) 0 0
\(821\) 29.0484 + 29.0484i 1.01380 + 1.01380i 0.999903 + 0.0138929i \(0.00442238\pi\)
0.0138929 + 0.999903i \(0.495578\pi\)
\(822\) 0 0
\(823\) 37.1162 1.29379 0.646894 0.762580i \(-0.276068\pi\)
0.646894 + 0.762580i \(0.276068\pi\)
\(824\) 0 0
\(825\) −43.4457 43.4457i −1.51259 1.51259i
\(826\) 0 0
\(827\) −3.92862 3.92862i −0.136612 0.136612i 0.635494 0.772106i \(-0.280796\pi\)
−0.772106 + 0.635494i \(0.780796\pi\)
\(828\) 0 0
\(829\) 34.1346i 1.18554i −0.805371 0.592772i \(-0.798034\pi\)
0.805371 0.592772i \(-0.201966\pi\)
\(830\) 0 0
\(831\) 73.6752 2.55576
\(832\) 0 0
\(833\) 8.35506 0.289486
\(834\) 0 0
\(835\) 10.3923i 0.359641i
\(836\) 0 0
\(837\) 4.54533 + 4.54533i 0.157110 + 0.157110i
\(838\) 0 0
\(839\) 40.6419 + 40.6419i 1.40311 + 1.40311i 0.789974 + 0.613140i \(0.210094\pi\)
0.613140 + 0.789974i \(0.289906\pi\)
\(840\) 0 0
\(841\) −22.5213 −0.776596
\(842\) 0 0
\(843\) −35.7687 35.7687i −1.23194 1.23194i
\(844\) 0 0
\(845\) −28.1391 + 43.0862i −0.968013 + 1.48221i
\(846\) 0 0
\(847\) 12.4868 12.4868i 0.429051 0.429051i
\(848\) 0 0
\(849\) 45.5893i 1.56462i
\(850\) 0 0
\(851\) −42.3740 + 42.3740i −1.45256 + 1.45256i
\(852\) 0 0
\(853\) −24.1391 + 24.1391i −0.826506 + 0.826506i −0.987032 0.160526i \(-0.948681\pi\)
0.160526 + 0.987032i \(0.448681\pi\)
\(854\) 0 0
\(855\) −8.75184 −0.299307
\(856\) 0 0
\(857\) 41.0907i 1.40363i −0.712359 0.701815i \(-0.752373\pi\)
0.712359 0.701815i \(-0.247627\pi\)
\(858\) 0 0
\(859\) 24.0290i 0.819859i −0.912117 0.409930i \(-0.865553\pi\)
0.912117 0.409930i \(-0.134447\pi\)
\(860\) 0 0
\(861\) −12.5845 −0.428878
\(862\) 0 0
\(863\) −32.9339 + 32.9339i −1.12108 + 1.12108i −0.129506 + 0.991579i \(0.541339\pi\)
−0.991579 + 0.129506i \(0.958661\pi\)
\(864\) 0 0
\(865\) 15.9660 15.9660i 0.542861 0.542861i
\(866\) 0 0
\(867\) 34.4868i 1.17123i
\(868\) 0 0
\(869\) −11.4925 + 11.4925i −0.389855 + 0.389855i
\(870\) 0 0
\(871\) −1.02167 + 0.106048i −0.0346181 + 0.00359329i
\(872\) 0 0
\(873\) −11.6171 11.6171i −0.393179 0.393179i
\(874\) 0 0
\(875\) −79.2704 −2.67983
\(876\) 0 0
\(877\) −8.25377 8.25377i −0.278710 0.278710i 0.553884 0.832594i \(-0.313145\pi\)
−0.832594 + 0.553884i \(0.813145\pi\)
\(878\) 0 0
\(879\) −27.6135 27.6135i −0.931379 0.931379i
\(880\) 0 0
\(881\) 12.9344i 0.435770i −0.975974 0.217885i \(-0.930084\pi\)
0.975974 0.217885i \(-0.0699158\pi\)
\(882\) 0 0
\(883\) 5.22887 0.175966 0.0879828 0.996122i \(-0.471958\pi\)
0.0879828 + 0.996122i \(0.471958\pi\)
\(884\) 0 0
\(885\) −57.5893 −1.93584
\(886\) 0 0
\(887\) 40.3606i 1.35517i −0.735442 0.677587i \(-0.763026\pi\)
0.735442 0.677587i \(-0.236974\pi\)
\(888\) 0 0
\(889\) 50.1686 + 50.1686i 1.68260 + 1.68260i
\(890\) 0 0
\(891\) 17.6607 + 17.6607i 0.591656 + 0.591656i
\(892\) 0 0
\(893\) 7.01510 0.234751
\(894\) 0 0
\(895\) 14.6362 + 14.6362i 0.489233 + 0.489233i
\(896\) 0 0
\(897\) 33.2970 41.0099i 1.11176 1.36928i
\(898\) 0 0
\(899\) 10.3923 10.3923i 0.346603 0.346603i
\(900\) 0 0
\(901\) 8.54533i 0.284686i
\(902\) 0 0
\(903\) 6.53583 6.53583i 0.217499 0.217499i
\(904\) 0 0
\(905\) −18.2153 + 18.2153i −0.605497 + 0.605497i
\(906\) 0 0
\(907\) −10.5166 −0.349198 −0.174599 0.984640i \(-0.555863\pi\)
−0.174599 + 0.984640i \(0.555863\pi\)
\(908\) 0 0
\(909\) 28.2871i 0.938223i
\(910\) 0 0
\(911\) 30.9782i 1.02635i 0.858283 + 0.513177i \(0.171532\pi\)
−0.858283 + 0.513177i \(0.828468\pi\)
\(912\) 0 0
\(913\) 18.0000 0.595713
\(914\) 0 0
\(915\) 34.1937 34.1937i 1.13041 1.13041i
\(916\) 0 0
\(917\) 48.1202 48.1202i 1.58907 1.58907i
\(918\) 0 0
\(919\) 20.0443i 0.661200i −0.943771 0.330600i \(-0.892749\pi\)
0.943771 0.330600i \(-0.107251\pi\)
\(920\) 0 0
\(921\) −37.6270 + 37.6270i −1.23985 + 1.23985i
\(922\) 0 0
\(923\) 28.7489 2.98408i 0.946283 0.0982223i
\(924\) 0 0
\(925\) 72.5463 + 72.5463i 2.38531 + 2.38531i
\(926\) 0 0
\(927\) −45.1277 −1.48219
\(928\) 0 0
\(929\) 33.7229 + 33.7229i 1.10641 + 1.10641i 0.993619 + 0.112793i \(0.0359796\pi\)
0.112793 + 0.993619i \(0.464020\pi\)
\(930\) 0 0
\(931\) 3.38697 + 3.38697i 0.111003 + 0.111003i
\(932\) 0 0
\(933\) 20.1435i 0.659470i
\(934\) 0 0
\(935\) −14.8009 −0.484043
\(936\) 0 0
\(937\) 49.5515 1.61878 0.809388 0.587274i \(-0.199799\pi\)
0.809388 + 0.587274i \(0.199799\pi\)
\(938\) 0 0
\(939\) 6.73845i 0.219901i
\(940\) 0 0
\(941\) −32.8279 32.8279i −1.07016 1.07016i −0.997345 0.0728149i \(-0.976802\pi\)
−0.0728149 0.997345i \(-0.523198\pi\)
\(942\) 0 0
\(943\) 6.67958 + 6.67958i 0.217517 + 0.217517i
\(944\) 0 0
\(945\) 15.5642 0.506304
\(946\) 0 0
\(947\) −1.73205 1.73205i −0.0562841 0.0562841i 0.678405 0.734689i \(-0.262672\pi\)
−0.734689 + 0.678405i \(0.762672\pi\)
\(948\) 0 0
\(949\) 2.66998 0.277139i 0.0866713 0.00899631i
\(950\) 0 0
\(951\) 36.7133 36.7133i 1.19051 1.19051i
\(952\) 0 0
\(953\) 34.1006i 1.10463i −0.833636 0.552314i \(-0.813745\pi\)
0.833636 0.552314i \(-0.186255\pi\)
\(954\) 0 0
\(955\) −11.6443 + 11.6443i −0.376802 + 0.376802i
\(956\) 0 0
\(957\) 10.3640 10.3640i 0.335021 0.335021i
\(958\) 0 0
\(959\) 25.6905 0.829589
\(960\) 0 0
\(961\) 2.33996i 0.0754827i
\(962\) 0 0
\(963\) 40.2428i 1.29681i
\(964\) 0 0
\(965\) 42.8324 1.37882
\(966\) 0 0
\(967\) 9.96721 9.96721i 0.320524 0.320524i −0.528444 0.848968i \(-0.677224\pi\)
0.848968 + 0.528444i \(0.177224\pi\)
\(968\) 0 0
\(969\) −2.22046 + 2.22046i −0.0713316 + 0.0713316i
\(970\) 0 0
\(971\) 27.5885i 0.885357i 0.896680 + 0.442679i \(0.145972\pi\)
−0.896680 + 0.442679i \(0.854028\pi\)
\(972\) 0 0
\(973\) 13.5158 13.5158i 0.433297 0.433297i
\(974\) 0 0
\(975\) −70.2111 57.0062i −2.24855 1.82566i
\(976\) 0 0
\(977\) 2.89424 + 2.89424i 0.0925950 + 0.0925950i 0.751887 0.659292i \(-0.229144\pi\)
−0.659292 + 0.751887i \(0.729144\pi\)
\(978\) 0 0
\(979\) 14.2882 0.456653
\(980\) 0 0
\(981\) 11.1096 + 11.1096i 0.354701 + 0.354701i
\(982\) 0 0
\(983\) 12.3480 + 12.3480i 0.393840 + 0.393840i 0.876054 0.482214i \(-0.160167\pi\)
−0.482214 + 0.876054i \(0.660167\pi\)
\(984\) 0 0
\(985\) 63.5085i 2.02355i
\(986\) 0 0
\(987\) 66.5572 2.11854
\(988\) 0 0
\(989\) −6.93817 −0.220621
\(990\) 0 0
\(991\) 47.2888i 1.50218i 0.660201 + 0.751089i \(0.270471\pi\)
−0.660201 + 0.751089i \(0.729529\pi\)
\(992\) 0 0
\(993\) −15.1247 15.1247i −0.479966 0.479966i
\(994\) 0 0
\(995\) −17.4448 17.4448i −0.553038 0.553038i
\(996\) 0 0
\(997\) −17.4547 −0.552795 −0.276397 0.961043i \(-0.589141\pi\)
−0.276397 + 0.961043i \(0.589141\pi\)
\(998\) 0 0
\(999\) −7.56920 7.56920i −0.239479 0.239479i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.2.k.b.47.2 yes 12
3.2 odd 2 1872.2.bf.o.1711.2 12
4.3 odd 2 inner 208.2.k.b.47.5 yes 12
8.3 odd 2 832.2.k.j.255.2 12
8.5 even 2 832.2.k.j.255.5 12
12.11 even 2 1872.2.bf.o.1711.1 12
13.5 odd 4 inner 208.2.k.b.31.2 12
39.5 even 4 1872.2.bf.o.1279.1 12
52.31 even 4 inner 208.2.k.b.31.5 yes 12
104.5 odd 4 832.2.k.j.447.5 12
104.83 even 4 832.2.k.j.447.2 12
156.83 odd 4 1872.2.bf.o.1279.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
208.2.k.b.31.2 12 13.5 odd 4 inner
208.2.k.b.31.5 yes 12 52.31 even 4 inner
208.2.k.b.47.2 yes 12 1.1 even 1 trivial
208.2.k.b.47.5 yes 12 4.3 odd 2 inner
832.2.k.j.255.2 12 8.3 odd 2
832.2.k.j.255.5 12 8.5 even 2
832.2.k.j.447.2 12 104.83 even 4
832.2.k.j.447.5 12 104.5 odd 4
1872.2.bf.o.1279.1 12 39.5 even 4
1872.2.bf.o.1279.2 12 156.83 odd 4
1872.2.bf.o.1711.1 12 12.11 even 2
1872.2.bf.o.1711.2 12 3.2 odd 2