Properties

Label 208.2.k.b.47.4
Level $208$
Weight $2$
Character 208.47
Analytic conductor $1.661$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,2,Mod(31,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 208.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66088836204\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 14x^{10} + 147x^{8} + 662x^{6} + 2233x^{4} + 588x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.4
Root \(-0.257153 - 0.445402i\) of defining polynomial
Character \(\chi\) \(=\) 208.47
Dual form 208.2.k.b.31.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.514306i q^{3} +(-1.42234 - 1.42234i) q^{5} +(2.97788 + 2.97788i) q^{7} +2.73549 q^{9} +(1.73205 + 1.73205i) q^{11} +(1.42234 - 3.31315i) q^{13} +(0.731519 - 0.731519i) q^{15} +3.73549i q^{17} +(1.21774 - 1.21774i) q^{19} +(-1.53154 + 1.53154i) q^{21} -8.39124 q^{23} -0.953882i q^{25} +2.94980i q^{27} -4.62629 q^{29} +(2.24636 - 2.24636i) q^{31} +(-0.890804 + 0.890804i) q^{33} -8.47112i q^{35} +(2.57766 - 2.57766i) q^{37} +(1.70397 + 0.731519i) q^{39} +(2.10920 + 2.10920i) q^{41} -2.94980 q^{43} +(-3.89080 - 3.89080i) q^{45} +(-7.47059 - 7.47059i) q^{47} +10.7355i q^{49} -1.92118 q^{51} +2.84469 q^{53} -4.92714i q^{55} +(0.626293 + 0.626293i) q^{57} +(-4.73801 - 4.73801i) q^{59} -11.6894 q^{61} +(8.14595 + 8.14595i) q^{63} +(-6.73549 + 2.68937i) q^{65} +(-11.1519 + 11.1519i) q^{67} -4.31566i q^{69} +(7.47059 - 7.47059i) q^{71} +(4.73549 - 4.73549i) q^{73} +0.490587 q^{75} +10.3157i q^{77} +13.9126i q^{79} +6.68937 q^{81} +(5.19615 - 5.19615i) q^{83} +(5.31315 - 5.31315i) q^{85} -2.37933i q^{87} +(9.58018 - 9.58018i) q^{89} +(14.1017 - 5.63058i) q^{91} +(1.15531 + 1.15531i) q^{93} -3.46410 q^{95} +(-3.84469 - 3.84469i) q^{97} +(4.73801 + 4.73801i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{5} - 20 q^{9} - 4 q^{13} - 8 q^{21} + 8 q^{29} + 52 q^{37} + 36 q^{41} - 36 q^{45} - 8 q^{53} - 56 q^{57} - 56 q^{61} - 28 q^{65} + 4 q^{73} - 4 q^{81} + 32 q^{85} + 20 q^{89} + 56 q^{93} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.514306i 0.296935i 0.988917 + 0.148467i \(0.0474340\pi\)
−0.988917 + 0.148467i \(0.952566\pi\)
\(4\) 0 0
\(5\) −1.42234 1.42234i −0.636091 0.636091i 0.313498 0.949589i \(-0.398499\pi\)
−0.949589 + 0.313498i \(0.898499\pi\)
\(6\) 0 0
\(7\) 2.97788 + 2.97788i 1.12553 + 1.12553i 0.990895 + 0.134636i \(0.0429866\pi\)
0.134636 + 0.990895i \(0.457013\pi\)
\(8\) 0 0
\(9\) 2.73549 0.911830
\(10\) 0 0
\(11\) 1.73205 + 1.73205i 0.522233 + 0.522233i 0.918245 0.396012i \(-0.129606\pi\)
−0.396012 + 0.918245i \(0.629606\pi\)
\(12\) 0 0
\(13\) 1.42234 3.31315i 0.394487 0.918902i
\(14\) 0 0
\(15\) 0.731519 0.731519i 0.188877 0.188877i
\(16\) 0 0
\(17\) 3.73549i 0.905989i 0.891513 + 0.452995i \(0.149644\pi\)
−0.891513 + 0.452995i \(0.850356\pi\)
\(18\) 0 0
\(19\) 1.21774 1.21774i 0.279370 0.279370i −0.553488 0.832857i \(-0.686703\pi\)
0.832857 + 0.553488i \(0.186703\pi\)
\(20\) 0 0
\(21\) −1.53154 + 1.53154i −0.334209 + 0.334209i
\(22\) 0 0
\(23\) −8.39124 −1.74969 −0.874847 0.484399i \(-0.839038\pi\)
−0.874847 + 0.484399i \(0.839038\pi\)
\(24\) 0 0
\(25\) 0.953882i 0.190776i
\(26\) 0 0
\(27\) 2.94980i 0.567688i
\(28\) 0 0
\(29\) −4.62629 −0.859081 −0.429541 0.903048i \(-0.641324\pi\)
−0.429541 + 0.903048i \(0.641324\pi\)
\(30\) 0 0
\(31\) 2.24636 2.24636i 0.403458 0.403458i −0.475992 0.879450i \(-0.657911\pi\)
0.879450 + 0.475992i \(0.157911\pi\)
\(32\) 0 0
\(33\) −0.890804 + 0.890804i −0.155069 + 0.155069i
\(34\) 0 0
\(35\) 8.47112i 1.43188i
\(36\) 0 0
\(37\) 2.57766 2.57766i 0.423764 0.423764i −0.462733 0.886498i \(-0.653131\pi\)
0.886498 + 0.462733i \(0.153131\pi\)
\(38\) 0 0
\(39\) 1.70397 + 0.731519i 0.272854 + 0.117137i
\(40\) 0 0
\(41\) 2.10920 + 2.10920i 0.329401 + 0.329401i 0.852359 0.522958i \(-0.175171\pi\)
−0.522958 + 0.852359i \(0.675171\pi\)
\(42\) 0 0
\(43\) −2.94980 −0.449840 −0.224920 0.974377i \(-0.572212\pi\)
−0.224920 + 0.974377i \(0.572212\pi\)
\(44\) 0 0
\(45\) −3.89080 3.89080i −0.580007 0.580007i
\(46\) 0 0
\(47\) −7.47059 7.47059i −1.08970 1.08970i −0.995559 0.0941383i \(-0.969990\pi\)
−0.0941383 0.995559i \(-0.530010\pi\)
\(48\) 0 0
\(49\) 10.7355i 1.53364i
\(50\) 0 0
\(51\) −1.92118 −0.269020
\(52\) 0 0
\(53\) 2.84469 0.390748 0.195374 0.980729i \(-0.437408\pi\)
0.195374 + 0.980729i \(0.437408\pi\)
\(54\) 0 0
\(55\) 4.92714i 0.664375i
\(56\) 0 0
\(57\) 0.626293 + 0.626293i 0.0829546 + 0.0829546i
\(58\) 0 0
\(59\) −4.73801 4.73801i −0.616836 0.616836i 0.327883 0.944718i \(-0.393665\pi\)
−0.944718 + 0.327883i \(0.893665\pi\)
\(60\) 0 0
\(61\) −11.6894 −1.49667 −0.748335 0.663321i \(-0.769147\pi\)
−0.748335 + 0.663321i \(0.769147\pi\)
\(62\) 0 0
\(63\) 8.14595 + 8.14595i 1.02629 + 1.02629i
\(64\) 0 0
\(65\) −6.73549 + 2.68937i −0.835435 + 0.333575i
\(66\) 0 0
\(67\) −11.1519 + 11.1519i −1.36242 + 1.36242i −0.491602 + 0.870820i \(0.663588\pi\)
−0.870820 + 0.491602i \(0.836412\pi\)
\(68\) 0 0
\(69\) 4.31566i 0.519545i
\(70\) 0 0
\(71\) 7.47059 7.47059i 0.886596 0.886596i −0.107599 0.994194i \(-0.534316\pi\)
0.994194 + 0.107599i \(0.0343161\pi\)
\(72\) 0 0
\(73\) 4.73549 4.73549i 0.554247 0.554247i −0.373417 0.927664i \(-0.621814\pi\)
0.927664 + 0.373417i \(0.121814\pi\)
\(74\) 0 0
\(75\) 0.490587 0.0566481
\(76\) 0 0
\(77\) 10.3157i 1.17558i
\(78\) 0 0
\(79\) 13.9126i 1.56529i 0.622471 + 0.782643i \(0.286129\pi\)
−0.622471 + 0.782643i \(0.713871\pi\)
\(80\) 0 0
\(81\) 6.68937 0.743263
\(82\) 0 0
\(83\) 5.19615 5.19615i 0.570352 0.570352i −0.361875 0.932227i \(-0.617863\pi\)
0.932227 + 0.361875i \(0.117863\pi\)
\(84\) 0 0
\(85\) 5.31315 5.31315i 0.576292 0.576292i
\(86\) 0 0
\(87\) 2.37933i 0.255091i
\(88\) 0 0
\(89\) 9.58018 9.58018i 1.01550 1.01550i 0.0156185 0.999878i \(-0.495028\pi\)
0.999878 0.0156185i \(-0.00497173\pi\)
\(90\) 0 0
\(91\) 14.1017 5.63058i 1.47826 0.590245i
\(92\) 0 0
\(93\) 1.15531 + 1.15531i 0.119801 + 0.119801i
\(94\) 0 0
\(95\) −3.46410 −0.355409
\(96\) 0 0
\(97\) −3.84469 3.84469i −0.390369 0.390369i 0.484450 0.874819i \(-0.339020\pi\)
−0.874819 + 0.484450i \(0.839020\pi\)
\(98\) 0 0
\(99\) 4.73801 + 4.73801i 0.476188 + 0.476188i
\(100\) 0 0
\(101\) 5.68937i 0.566114i −0.959103 0.283057i \(-0.908652\pi\)
0.959103 0.283057i \(-0.0913485\pi\)
\(102\) 0 0
\(103\) 0.434427 0.0428053 0.0214027 0.999771i \(-0.493187\pi\)
0.0214027 + 0.999771i \(0.493187\pi\)
\(104\) 0 0
\(105\) 4.35675 0.425175
\(106\) 0 0
\(107\) 13.3184i 1.28754i 0.765220 + 0.643768i \(0.222630\pi\)
−0.765220 + 0.643768i \(0.777370\pi\)
\(108\) 0 0
\(109\) 8.26703 + 8.26703i 0.791838 + 0.791838i 0.981793 0.189955i \(-0.0608342\pi\)
−0.189955 + 0.981793i \(0.560834\pi\)
\(110\) 0 0
\(111\) 1.32570 + 1.32570i 0.125830 + 0.125830i
\(112\) 0 0
\(113\) −13.4710 −1.26724 −0.633622 0.773643i \(-0.718432\pi\)
−0.633622 + 0.773643i \(0.718432\pi\)
\(114\) 0 0
\(115\) 11.9352 + 11.9352i 1.11297 + 1.11297i
\(116\) 0 0
\(117\) 3.89080 9.06308i 0.359705 0.837882i
\(118\) 0 0
\(119\) −11.1238 + 11.1238i −1.01972 + 1.01972i
\(120\) 0 0
\(121\) 5.00000i 0.454545i
\(122\) 0 0
\(123\) −1.08477 + 1.08477i −0.0978106 + 0.0978106i
\(124\) 0 0
\(125\) −8.46846 + 8.46846i −0.757442 + 0.757442i
\(126\) 0 0
\(127\) −5.46516 −0.484955 −0.242477 0.970157i \(-0.577960\pi\)
−0.242477 + 0.970157i \(0.577960\pi\)
\(128\) 0 0
\(129\) 1.51710i 0.133573i
\(130\) 0 0
\(131\) 4.46899i 0.390458i −0.980758 0.195229i \(-0.937455\pi\)
0.980758 0.195229i \(-0.0625450\pi\)
\(132\) 0 0
\(133\) 7.25259 0.628879
\(134\) 0 0
\(135\) 4.19562 4.19562i 0.361102 0.361102i
\(136\) 0 0
\(137\) −1.21839 + 1.21839i −0.104094 + 0.104094i −0.757236 0.653142i \(-0.773451\pi\)
0.653142 + 0.757236i \(0.273451\pi\)
\(138\) 0 0
\(139\) 18.3254i 1.55434i −0.629291 0.777170i \(-0.716654\pi\)
0.629291 0.777170i \(-0.283346\pi\)
\(140\) 0 0
\(141\) 3.84217 3.84217i 0.323569 0.323569i
\(142\) 0 0
\(143\) 8.20211 3.27497i 0.685895 0.273867i
\(144\) 0 0
\(145\) 6.58018 + 6.58018i 0.546454 + 0.546454i
\(146\) 0 0
\(147\) −5.52132 −0.455391
\(148\) 0 0
\(149\) 8.20647 + 8.20647i 0.672300 + 0.672300i 0.958246 0.285946i \(-0.0923077\pi\)
−0.285946 + 0.958246i \(0.592308\pi\)
\(150\) 0 0
\(151\) 2.97788 + 2.97788i 0.242336 + 0.242336i 0.817816 0.575480i \(-0.195185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(152\) 0 0
\(153\) 10.2184i 0.826108i
\(154\) 0 0
\(155\) −6.39018 −0.513271
\(156\) 0 0
\(157\) 1.90776 0.152256 0.0761281 0.997098i \(-0.475744\pi\)
0.0761281 + 0.997098i \(0.475744\pi\)
\(158\) 0 0
\(159\) 1.46304i 0.116026i
\(160\) 0 0
\(161\) −24.9881 24.9881i −1.96934 1.96934i
\(162\) 0 0
\(163\) 2.16648 + 2.16648i 0.169692 + 0.169692i 0.786844 0.617152i \(-0.211714\pi\)
−0.617152 + 0.786844i \(0.711714\pi\)
\(164\) 0 0
\(165\) 2.53406 0.197276
\(166\) 0 0
\(167\) 3.65323 + 3.65323i 0.282696 + 0.282696i 0.834183 0.551487i \(-0.185940\pi\)
−0.551487 + 0.834183i \(0.685940\pi\)
\(168\) 0 0
\(169\) −8.95388 9.42486i −0.688760 0.724989i
\(170\) 0 0
\(171\) 3.33113 3.33113i 0.254738 0.254738i
\(172\) 0 0
\(173\) 23.7866i 1.80847i 0.427040 + 0.904233i \(0.359556\pi\)
−0.427040 + 0.904233i \(0.640444\pi\)
\(174\) 0 0
\(175\) 2.84054 2.84054i 0.214725 0.214725i
\(176\) 0 0
\(177\) 2.43678 2.43678i 0.183160 0.183160i
\(178\) 0 0
\(179\) −17.9471 −1.34143 −0.670716 0.741714i \(-0.734013\pi\)
−0.670716 + 0.741714i \(0.734013\pi\)
\(180\) 0 0
\(181\) 6.09727i 0.453207i −0.973987 0.226603i \(-0.927238\pi\)
0.973987 0.226603i \(-0.0727621\pi\)
\(182\) 0 0
\(183\) 6.01191i 0.444413i
\(184\) 0 0
\(185\) −7.33262 −0.539105
\(186\) 0 0
\(187\) −6.47006 + 6.47006i −0.473137 + 0.473137i
\(188\) 0 0
\(189\) −8.78413 + 8.78413i −0.638951 + 0.638951i
\(190\) 0 0
\(191\) 18.7835i 1.35913i −0.733615 0.679565i \(-0.762169\pi\)
0.733615 0.679565i \(-0.237831\pi\)
\(192\) 0 0
\(193\) −11.3157 + 11.3157i −0.814519 + 0.814519i −0.985308 0.170788i \(-0.945369\pi\)
0.170788 + 0.985308i \(0.445369\pi\)
\(194\) 0 0
\(195\) −1.38316 3.46410i −0.0990501 0.248069i
\(196\) 0 0
\(197\) 9.20395 + 9.20395i 0.655754 + 0.655754i 0.954373 0.298618i \(-0.0965257\pi\)
−0.298618 + 0.954373i \(0.596526\pi\)
\(198\) 0 0
\(199\) −8.39124 −0.594839 −0.297420 0.954747i \(-0.596126\pi\)
−0.297420 + 0.954747i \(0.596126\pi\)
\(200\) 0 0
\(201\) −5.73549 5.73549i −0.404550 0.404550i
\(202\) 0 0
\(203\) −13.7765 13.7765i −0.966923 0.966923i
\(204\) 0 0
\(205\) 6.00000i 0.419058i
\(206\) 0 0
\(207\) −22.9542 −1.59542
\(208\) 0 0
\(209\) 4.21839 0.291792
\(210\) 0 0
\(211\) 20.3826i 1.40320i −0.712572 0.701599i \(-0.752470\pi\)
0.712572 0.701599i \(-0.247530\pi\)
\(212\) 0 0
\(213\) 3.84217 + 3.84217i 0.263261 + 0.263261i
\(214\) 0 0
\(215\) 4.19562 + 4.19562i 0.286139 + 0.286139i
\(216\) 0 0
\(217\) 13.3787 0.908208
\(218\) 0 0
\(219\) 2.43549 + 2.43549i 0.164575 + 0.164575i
\(220\) 0 0
\(221\) 12.3762 + 5.31315i 0.832515 + 0.357401i
\(222\) 0 0
\(223\) 5.41337 5.41337i 0.362506 0.362506i −0.502229 0.864735i \(-0.667487\pi\)
0.864735 + 0.502229i \(0.167487\pi\)
\(224\) 0 0
\(225\) 2.60933i 0.173956i
\(226\) 0 0
\(227\) 6.20105 6.20105i 0.411578 0.411578i −0.470710 0.882288i \(-0.656002\pi\)
0.882288 + 0.470710i \(0.156002\pi\)
\(228\) 0 0
\(229\) −15.5196 + 15.5196i −1.02557 + 1.02557i −0.0259005 + 0.999665i \(0.508245\pi\)
−0.999665 + 0.0259005i \(0.991755\pi\)
\(230\) 0 0
\(231\) −5.30541 −0.349070
\(232\) 0 0
\(233\) 10.0461i 0.658143i −0.944305 0.329072i \(-0.893264\pi\)
0.944305 0.329072i \(-0.106736\pi\)
\(234\) 0 0
\(235\) 21.2515i 1.38629i
\(236\) 0 0
\(237\) −7.15531 −0.464788
\(238\) 0 0
\(239\) 2.92172 2.92172i 0.188990 0.188990i −0.606269 0.795259i \(-0.707335\pi\)
0.795259 + 0.606269i \(0.207335\pi\)
\(240\) 0 0
\(241\) −0.109196 + 0.109196i −0.00703394 + 0.00703394i −0.710615 0.703581i \(-0.751583\pi\)
0.703581 + 0.710615i \(0.251583\pi\)
\(242\) 0 0
\(243\) 12.2898i 0.788389i
\(244\) 0 0
\(245\) 15.2695 15.2695i 0.975536 0.975536i
\(246\) 0 0
\(247\) −2.30252 5.76662i −0.146506 0.366921i
\(248\) 0 0
\(249\) 2.67241 + 2.67241i 0.169357 + 0.169357i
\(250\) 0 0
\(251\) 19.8683 1.25408 0.627039 0.778988i \(-0.284267\pi\)
0.627039 + 0.778988i \(0.284267\pi\)
\(252\) 0 0
\(253\) −14.5341 14.5341i −0.913748 0.913748i
\(254\) 0 0
\(255\) 2.73258 + 2.73258i 0.171121 + 0.171121i
\(256\) 0 0
\(257\) 6.48290i 0.404392i 0.979345 + 0.202196i \(0.0648079\pi\)
−0.979345 + 0.202196i \(0.935192\pi\)
\(258\) 0 0
\(259\) 15.3519 0.953920
\(260\) 0 0
\(261\) −12.6552 −0.783336
\(262\) 0 0
\(263\) 17.3205i 1.06803i 0.845476 + 0.534014i \(0.179317\pi\)
−0.845476 + 0.534014i \(0.820683\pi\)
\(264\) 0 0
\(265\) −4.04612 4.04612i −0.248551 0.248551i
\(266\) 0 0
\(267\) 4.92714 + 4.92714i 0.301536 + 0.301536i
\(268\) 0 0
\(269\) −0.310629 −0.0189394 −0.00946968 0.999955i \(-0.503014\pi\)
−0.00946968 + 0.999955i \(0.503014\pi\)
\(270\) 0 0
\(271\) −3.35614 3.35614i −0.203871 0.203871i 0.597785 0.801656i \(-0.296048\pi\)
−0.801656 + 0.597785i \(0.796048\pi\)
\(272\) 0 0
\(273\) 2.89584 + 7.25259i 0.175264 + 0.438947i
\(274\) 0 0
\(275\) 1.65217 1.65217i 0.0996297 0.0996297i
\(276\) 0 0
\(277\) 8.09224i 0.486215i 0.969999 + 0.243108i \(0.0781668\pi\)
−0.969999 + 0.243108i \(0.921833\pi\)
\(278\) 0 0
\(279\) 6.14489 6.14489i 0.367885 0.367885i
\(280\) 0 0
\(281\) 5.67241 5.67241i 0.338388 0.338388i −0.517373 0.855760i \(-0.673090\pi\)
0.855760 + 0.517373i \(0.173090\pi\)
\(282\) 0 0
\(283\) −9.85428 −0.585776 −0.292888 0.956147i \(-0.594616\pi\)
−0.292888 + 0.956147i \(0.594616\pi\)
\(284\) 0 0
\(285\) 1.78161i 0.105533i
\(286\) 0 0
\(287\) 12.5618i 0.741502i
\(288\) 0 0
\(289\) 3.04612 0.179183
\(290\) 0 0
\(291\) 1.97734 1.97734i 0.115914 0.115914i
\(292\) 0 0
\(293\) 18.0486 18.0486i 1.05441 1.05441i 0.0559807 0.998432i \(-0.482171\pi\)
0.998432 0.0559807i \(-0.0178285\pi\)
\(294\) 0 0
\(295\) 13.4781i 0.784728i
\(296\) 0 0
\(297\) −5.10920 + 5.10920i −0.296466 + 0.296466i
\(298\) 0 0
\(299\) −11.9352 + 27.8014i −0.690232 + 1.60780i
\(300\) 0 0
\(301\) −8.78413 8.78413i −0.506309 0.506309i
\(302\) 0 0
\(303\) 2.92608 0.168099
\(304\) 0 0
\(305\) 16.6263 + 16.6263i 0.952019 + 0.952019i
\(306\) 0 0
\(307\) 3.21881 + 3.21881i 0.183707 + 0.183707i 0.792969 0.609262i \(-0.208534\pi\)
−0.609262 + 0.792969i \(0.708534\pi\)
\(308\) 0 0
\(309\) 0.223428i 0.0127104i
\(310\) 0 0
\(311\) 26.7965 1.51949 0.759746 0.650220i \(-0.225323\pi\)
0.759746 + 0.650220i \(0.225323\pi\)
\(312\) 0 0
\(313\) 25.6433 1.44944 0.724721 0.689042i \(-0.241969\pi\)
0.724721 + 0.689042i \(0.241969\pi\)
\(314\) 0 0
\(315\) 23.1727i 1.30563i
\(316\) 0 0
\(317\) 14.5171 + 14.5171i 0.815361 + 0.815361i 0.985432 0.170070i \(-0.0543995\pi\)
−0.170070 + 0.985432i \(0.554400\pi\)
\(318\) 0 0
\(319\) −8.01298 8.01298i −0.448640 0.448640i
\(320\) 0 0
\(321\) −6.84972 −0.382314
\(322\) 0 0
\(323\) 4.54887 + 4.54887i 0.253106 + 0.253106i
\(324\) 0 0
\(325\) −3.16035 1.35675i −0.175305 0.0752588i
\(326\) 0 0
\(327\) −4.25178 + 4.25178i −0.235124 + 0.235124i
\(328\) 0 0
\(329\) 44.4930i 2.45298i
\(330\) 0 0
\(331\) −2.76066 + 2.76066i −0.151740 + 0.151740i −0.778895 0.627155i \(-0.784219\pi\)
0.627155 + 0.778895i \(0.284219\pi\)
\(332\) 0 0
\(333\) 7.05115 7.05115i 0.386401 0.386401i
\(334\) 0 0
\(335\) 31.7237 1.73325
\(336\) 0 0
\(337\) 15.2987i 0.833374i 0.909050 + 0.416687i \(0.136809\pi\)
−0.909050 + 0.416687i \(0.863191\pi\)
\(338\) 0 0
\(339\) 6.92820i 0.376288i
\(340\) 0 0
\(341\) 7.78161 0.421398
\(342\) 0 0
\(343\) −11.1238 + 11.1238i −0.600630 + 0.600630i
\(344\) 0 0
\(345\) −6.13835 + 6.13835i −0.330478 + 0.330478i
\(346\) 0 0
\(347\) 24.3373i 1.30650i 0.757144 + 0.653248i \(0.226594\pi\)
−0.757144 + 0.653248i \(0.773406\pi\)
\(348\) 0 0
\(349\) 5.20395 5.20395i 0.278561 0.278561i −0.553973 0.832534i \(-0.686889\pi\)
0.832534 + 0.553973i \(0.186889\pi\)
\(350\) 0 0
\(351\) 9.77311 + 4.19562i 0.521650 + 0.223946i
\(352\) 0 0
\(353\) −19.3157 19.3157i −1.02807 1.02807i −0.999595 0.0284746i \(-0.990935\pi\)
−0.0284746 0.999595i \(-0.509065\pi\)
\(354\) 0 0
\(355\) −21.2515 −1.12791
\(356\) 0 0
\(357\) −5.72105 5.72105i −0.302790 0.302790i
\(358\) 0 0
\(359\) 2.73694 + 2.73694i 0.144450 + 0.144450i 0.775634 0.631183i \(-0.217430\pi\)
−0.631183 + 0.775634i \(0.717430\pi\)
\(360\) 0 0
\(361\) 16.0342i 0.843905i
\(362\) 0 0
\(363\) 2.57153 0.134970
\(364\) 0 0
\(365\) −13.4710 −0.705103
\(366\) 0 0
\(367\) 5.84343i 0.305025i −0.988302 0.152512i \(-0.951264\pi\)
0.988302 0.152512i \(-0.0487364\pi\)
\(368\) 0 0
\(369\) 5.76968 + 5.76968i 0.300358 + 0.300358i
\(370\) 0 0
\(371\) 8.47112 + 8.47112i 0.439799 + 0.439799i
\(372\) 0 0
\(373\) −12.8497 −0.665333 −0.332667 0.943044i \(-0.607948\pi\)
−0.332667 + 0.943044i \(0.607948\pi\)
\(374\) 0 0
\(375\) −4.35538 4.35538i −0.224911 0.224911i
\(376\) 0 0
\(377\) −6.58018 + 15.3276i −0.338896 + 0.789411i
\(378\) 0 0
\(379\) 15.6446 15.6446i 0.803610 0.803610i −0.180048 0.983658i \(-0.557625\pi\)
0.983658 + 0.180048i \(0.0576253\pi\)
\(380\) 0 0
\(381\) 2.81077i 0.144000i
\(382\) 0 0
\(383\) −19.3259 + 19.3259i −0.987509 + 0.987509i −0.999923 0.0124139i \(-0.996048\pi\)
0.0124139 + 0.999923i \(0.496048\pi\)
\(384\) 0 0
\(385\) 14.6724 14.6724i 0.747775 0.747775i
\(386\) 0 0
\(387\) −8.06914 −0.410177
\(388\) 0 0
\(389\) 2.12616i 0.107800i −0.998546 0.0539002i \(-0.982835\pi\)
0.998546 0.0539002i \(-0.0171653\pi\)
\(390\) 0 0
\(391\) 31.3454i 1.58520i
\(392\) 0 0
\(393\) 2.29843 0.115940
\(394\) 0 0
\(395\) 19.7884 19.7884i 0.995664 0.995664i
\(396\) 0 0
\(397\) 4.20647 4.20647i 0.211117 0.211117i −0.593625 0.804742i \(-0.702304\pi\)
0.804742 + 0.593625i \(0.202304\pi\)
\(398\) 0 0
\(399\) 3.73005i 0.186736i
\(400\) 0 0
\(401\) −22.4710 + 22.4710i −1.12215 + 1.12215i −0.130729 + 0.991418i \(0.541732\pi\)
−0.991418 + 0.130729i \(0.958268\pi\)
\(402\) 0 0
\(403\) −4.24742 10.6376i −0.211579 0.529897i
\(404\) 0 0
\(405\) −9.51458 9.51458i −0.472783 0.472783i
\(406\) 0 0
\(407\) 8.92927 0.442607
\(408\) 0 0
\(409\) 19.8497 + 19.8497i 0.981506 + 0.981506i 0.999832 0.0183265i \(-0.00583383\pi\)
−0.0183265 + 0.999832i \(0.505834\pi\)
\(410\) 0 0
\(411\) −0.626626 0.626626i −0.0309092 0.0309092i
\(412\) 0 0
\(413\) 28.2184i 1.38854i
\(414\) 0 0
\(415\) −14.7814 −0.725591
\(416\) 0 0
\(417\) 9.42486 0.461537
\(418\) 0 0
\(419\) 25.2536i 1.23372i 0.787073 + 0.616860i \(0.211595\pi\)
−0.787073 + 0.616860i \(0.788405\pi\)
\(420\) 0 0
\(421\) 15.3301 + 15.3301i 0.747144 + 0.747144i 0.973942 0.226798i \(-0.0728258\pi\)
−0.226798 + 0.973942i \(0.572826\pi\)
\(422\) 0 0
\(423\) −20.4357 20.4357i −0.993619 0.993619i
\(424\) 0 0
\(425\) 3.56322 0.172841
\(426\) 0 0
\(427\) −34.8095 34.8095i −1.68455 1.68455i
\(428\) 0 0
\(429\) 1.68434 + 4.21839i 0.0813205 + 0.203666i
\(430\) 0 0
\(431\) −10.9347 + 10.9347i −0.526706 + 0.526706i −0.919588 0.392883i \(-0.871478\pi\)
0.392883 + 0.919588i \(0.371478\pi\)
\(432\) 0 0
\(433\) 24.4591i 1.17543i 0.809069 + 0.587714i \(0.199972\pi\)
−0.809069 + 0.587714i \(0.800028\pi\)
\(434\) 0 0
\(435\) −3.38422 + 3.38422i −0.162261 + 0.162261i
\(436\) 0 0
\(437\) −10.2184 + 10.2184i −0.488812 + 0.488812i
\(438\) 0 0
\(439\) 18.8397 0.899170 0.449585 0.893238i \(-0.351572\pi\)
0.449585 + 0.893238i \(0.351572\pi\)
\(440\) 0 0
\(441\) 29.3668i 1.39842i
\(442\) 0 0
\(443\) 18.3254i 0.870666i −0.900269 0.435333i \(-0.856631\pi\)
0.900269 0.435333i \(-0.143369\pi\)
\(444\) 0 0
\(445\) −27.2526 −1.29190
\(446\) 0 0
\(447\) −4.22063 + 4.22063i −0.199629 + 0.199629i
\(448\) 0 0
\(449\) 1.93692 1.93692i 0.0914090 0.0914090i −0.659924 0.751333i \(-0.729411\pi\)
0.751333 + 0.659924i \(0.229411\pi\)
\(450\) 0 0
\(451\) 7.30647i 0.344048i
\(452\) 0 0
\(453\) −1.53154 + 1.53154i −0.0719580 + 0.0719580i
\(454\) 0 0
\(455\) −28.0661 12.0488i −1.31576 0.564858i
\(456\) 0 0
\(457\) −3.67241 3.67241i −0.171788 0.171788i 0.615976 0.787765i \(-0.288762\pi\)
−0.787765 + 0.615976i \(0.788762\pi\)
\(458\) 0 0
\(459\) −11.0189 −0.514320
\(460\) 0 0
\(461\) −15.9564 15.9564i −0.743164 0.743164i 0.230022 0.973185i \(-0.426120\pi\)
−0.973185 + 0.230022i \(0.926120\pi\)
\(462\) 0 0
\(463\) 1.59601 + 1.59601i 0.0741729 + 0.0741729i 0.743220 0.669047i \(-0.233298\pi\)
−0.669047 + 0.743220i \(0.733298\pi\)
\(464\) 0 0
\(465\) 3.28651i 0.152408i
\(466\) 0 0
\(467\) 7.84449 0.363000 0.181500 0.983391i \(-0.441905\pi\)
0.181500 + 0.983391i \(0.441905\pi\)
\(468\) 0 0
\(469\) −66.4180 −3.06690
\(470\) 0 0
\(471\) 0.981174i 0.0452101i
\(472\) 0 0
\(473\) −5.10920 5.10920i −0.234921 0.234921i
\(474\) 0 0
\(475\) −1.16158 1.16158i −0.0532972 0.0532972i
\(476\) 0 0
\(477\) 7.78161 0.356295
\(478\) 0 0
\(479\) −19.7042 19.7042i −0.900308 0.900308i 0.0951547 0.995463i \(-0.469665\pi\)
−0.995463 + 0.0951547i \(0.969665\pi\)
\(480\) 0 0
\(481\) −4.87384 12.2065i −0.222228 0.556567i
\(482\) 0 0
\(483\) 12.8515 12.8515i 0.584764 0.584764i
\(484\) 0 0
\(485\) 10.9369i 0.496620i
\(486\) 0 0
\(487\) −7.76768 + 7.76768i −0.351987 + 0.351987i −0.860849 0.508861i \(-0.830067\pi\)
0.508861 + 0.860849i \(0.330067\pi\)
\(488\) 0 0
\(489\) −1.11423 + 1.11423i −0.0503873 + 0.0503873i
\(490\) 0 0
\(491\) 41.8176 1.88720 0.943600 0.331086i \(-0.107415\pi\)
0.943600 + 0.331086i \(0.107415\pi\)
\(492\) 0 0
\(493\) 17.2815i 0.778318i
\(494\) 0 0
\(495\) 13.4781i 0.605797i
\(496\) 0 0
\(497\) 44.4930 1.99578
\(498\) 0 0
\(499\) −19.4071 + 19.4071i −0.868781 + 0.868781i −0.992338 0.123556i \(-0.960570\pi\)
0.123556 + 0.992338i \(0.460570\pi\)
\(500\) 0 0
\(501\) −1.87888 + 1.87888i −0.0839422 + 0.0839422i
\(502\) 0 0
\(503\) 0.538025i 0.0239893i 0.999928 + 0.0119947i \(0.00381811\pi\)
−0.999928 + 0.0119947i \(0.996182\pi\)
\(504\) 0 0
\(505\) −8.09224 + 8.09224i −0.360100 + 0.360100i
\(506\) 0 0
\(507\) 4.84726 4.60503i 0.215274 0.204517i
\(508\) 0 0
\(509\) 22.3326 + 22.3326i 0.989876 + 0.989876i 0.999949 0.0100731i \(-0.00320642\pi\)
−0.0100731 + 0.999949i \(0.503206\pi\)
\(510\) 0 0
\(511\) 28.2034 1.24764
\(512\) 0 0
\(513\) 3.59210 + 3.59210i 0.158595 + 0.158595i
\(514\) 0 0
\(515\) −0.617904 0.617904i −0.0272281 0.0272281i
\(516\) 0 0
\(517\) 25.8789i 1.13815i
\(518\) 0 0
\(519\) −12.2336 −0.536996
\(520\) 0 0
\(521\) 11.5171 0.504573 0.252287 0.967653i \(-0.418817\pi\)
0.252287 + 0.967653i \(0.418817\pi\)
\(522\) 0 0
\(523\) 13.3184i 0.582372i 0.956666 + 0.291186i \(0.0940499\pi\)
−0.956666 + 0.291186i \(0.905950\pi\)
\(524\) 0 0
\(525\) 1.46091 + 1.46091i 0.0637592 + 0.0637592i
\(526\) 0 0
\(527\) 8.39124 + 8.39124i 0.365528 + 0.365528i
\(528\) 0 0
\(529\) 47.4129 2.06143
\(530\) 0 0
\(531\) −12.9608 12.9608i −0.562449 0.562449i
\(532\) 0 0
\(533\) 9.98808 3.98808i 0.432632 0.172743i
\(534\) 0 0
\(535\) 18.9433 18.9433i 0.818990 0.818990i
\(536\) 0 0
\(537\) 9.23032i 0.398318i
\(538\) 0 0
\(539\) −18.5944 + 18.5944i −0.800918 + 0.800918i
\(540\) 0 0
\(541\) 24.9906 24.9906i 1.07443 1.07443i 0.0774319 0.996998i \(-0.475328\pi\)
0.996998 0.0774319i \(-0.0246720\pi\)
\(542\) 0 0
\(543\) 3.13586 0.134573
\(544\) 0 0
\(545\) 23.5171i 1.00736i
\(546\) 0 0
\(547\) 12.1537i 0.519656i −0.965655 0.259828i \(-0.916334\pi\)
0.965655 0.259828i \(-0.0836659\pi\)
\(548\) 0 0
\(549\) −31.9762 −1.36471
\(550\) 0 0
\(551\) −5.63365 + 5.63365i −0.240001 + 0.240001i
\(552\) 0 0
\(553\) −41.4299 + 41.4299i −1.76178 + 1.76178i
\(554\) 0 0
\(555\) 3.77121i 0.160079i
\(556\) 0 0
\(557\) −14.5827 + 14.5827i −0.617889 + 0.617889i −0.944989 0.327101i \(-0.893928\pi\)
0.327101 + 0.944989i \(0.393928\pi\)
\(558\) 0 0
\(559\) −4.19562 + 9.77311i −0.177456 + 0.413358i
\(560\) 0 0
\(561\) −3.32759 3.32759i −0.140491 0.140491i
\(562\) 0 0
\(563\) 20.8732 0.879701 0.439850 0.898071i \(-0.355031\pi\)
0.439850 + 0.898071i \(0.355031\pi\)
\(564\) 0 0
\(565\) 19.1604 + 19.1604i 0.806082 + 0.806082i
\(566\) 0 0
\(567\) 19.9201 + 19.9201i 0.836566 + 0.836566i
\(568\) 0 0
\(569\) 3.73549i 0.156600i 0.996930 + 0.0782999i \(0.0249492\pi\)
−0.996930 + 0.0782999i \(0.975051\pi\)
\(570\) 0 0
\(571\) −18.8634 −0.789410 −0.394705 0.918808i \(-0.629153\pi\)
−0.394705 + 0.918808i \(0.629153\pi\)
\(572\) 0 0
\(573\) 9.66049 0.403573
\(574\) 0 0
\(575\) 8.00425i 0.333800i
\(576\) 0 0
\(577\) −24.3326 24.3326i −1.01298 1.01298i −0.999915 0.0130658i \(-0.995841\pi\)
−0.0130658 0.999915i \(-0.504159\pi\)
\(578\) 0 0
\(579\) −5.81971 5.81971i −0.241859 0.241859i
\(580\) 0 0
\(581\) 30.9470 1.28390
\(582\) 0 0
\(583\) 4.92714 + 4.92714i 0.204061 + 0.204061i
\(584\) 0 0
\(585\) −18.4249 + 7.35675i −0.761774 + 0.304164i
\(586\) 0 0
\(587\) −0.269012 + 0.269012i −0.0111033 + 0.0111033i −0.712637 0.701533i \(-0.752499\pi\)
0.701533 + 0.712637i \(0.252499\pi\)
\(588\) 0 0
\(589\) 5.47098i 0.225428i
\(590\) 0 0
\(591\) −4.73365 + 4.73365i −0.194716 + 0.194716i
\(592\) 0 0
\(593\) 5.84469 5.84469i 0.240012 0.240012i −0.576843 0.816855i \(-0.695715\pi\)
0.816855 + 0.576843i \(0.195715\pi\)
\(594\) 0 0
\(595\) 31.6438 1.29727
\(596\) 0 0
\(597\) 4.31566i 0.176628i
\(598\) 0 0
\(599\) 2.54781i 0.104101i 0.998644 + 0.0520504i \(0.0165756\pi\)
−0.998644 + 0.0520504i \(0.983424\pi\)
\(600\) 0 0
\(601\) −23.8616 −0.973337 −0.486668 0.873587i \(-0.661788\pi\)
−0.486668 + 0.873587i \(0.661788\pi\)
\(602\) 0 0
\(603\) −30.5059 + 30.5059i −1.24230 + 1.24230i
\(604\) 0 0
\(605\) −7.11171 + 7.11171i −0.289132 + 0.289132i
\(606\) 0 0
\(607\) 24.0890i 0.977740i 0.872357 + 0.488870i \(0.162591\pi\)
−0.872357 + 0.488870i \(0.837409\pi\)
\(608\) 0 0
\(609\) 7.08535 7.08535i 0.287113 0.287113i
\(610\) 0 0
\(611\) −35.3769 + 14.1254i −1.43120 + 0.571453i
\(612\) 0 0
\(613\) −2.94885 2.94885i −0.119103 0.119103i 0.645043 0.764146i \(-0.276839\pi\)
−0.764146 + 0.645043i \(0.776839\pi\)
\(614\) 0 0
\(615\) 3.08584 0.124433
\(616\) 0 0
\(617\) −2.20647 2.20647i −0.0888291 0.0888291i 0.661296 0.750125i \(-0.270007\pi\)
−0.750125 + 0.661296i \(0.770007\pi\)
\(618\) 0 0
\(619\) 32.5070 + 32.5070i 1.30657 + 1.30657i 0.923878 + 0.382688i \(0.125002\pi\)
0.382688 + 0.923878i \(0.374998\pi\)
\(620\) 0 0
\(621\) 24.7524i 0.993282i
\(622\) 0 0
\(623\) 57.0571 2.28595
\(624\) 0 0
\(625\) 19.3207 0.772828
\(626\) 0 0
\(627\) 2.16954i 0.0866432i
\(628\) 0 0
\(629\) 9.62881 + 9.62881i 0.383926 + 0.383926i
\(630\) 0 0
\(631\) 4.32859 + 4.32859i 0.172319 + 0.172319i 0.787997 0.615679i \(-0.211118\pi\)
−0.615679 + 0.787997i \(0.711118\pi\)
\(632\) 0 0
\(633\) 10.4829 0.416658
\(634\) 0 0
\(635\) 7.77334 + 7.77334i 0.308476 + 0.308476i
\(636\) 0 0
\(637\) 35.5683 + 15.2695i 1.40927 + 0.605001i
\(638\) 0 0
\(639\) 20.4357 20.4357i 0.808425 0.808425i
\(640\) 0 0
\(641\) 9.87384i 0.389993i −0.980804 0.194997i \(-0.937530\pi\)
0.980804 0.194997i \(-0.0624696\pi\)
\(642\) 0 0
\(643\) 11.8022 11.8022i 0.465435 0.465435i −0.434997 0.900432i \(-0.643250\pi\)
0.900432 + 0.434997i \(0.143250\pi\)
\(644\) 0 0
\(645\) −2.15783 + 2.15783i −0.0849646 + 0.0849646i
\(646\) 0 0
\(647\) 13.8564 0.544752 0.272376 0.962191i \(-0.412191\pi\)
0.272376 + 0.962191i \(0.412191\pi\)
\(648\) 0 0
\(649\) 16.4129i 0.644264i
\(650\) 0 0
\(651\) 6.88077i 0.269678i
\(652\) 0 0
\(653\) 34.7236 1.35884 0.679419 0.733750i \(-0.262232\pi\)
0.679419 + 0.733750i \(0.262232\pi\)
\(654\) 0 0
\(655\) −6.35644 + 6.35644i −0.248367 + 0.248367i
\(656\) 0 0
\(657\) 12.9539 12.9539i 0.505379 0.505379i
\(658\) 0 0
\(659\) 6.39018i 0.248926i −0.992224 0.124463i \(-0.960279\pi\)
0.992224 0.124463i \(-0.0397208\pi\)
\(660\) 0 0
\(661\) −9.45402 + 9.45402i −0.367719 + 0.367719i −0.866645 0.498926i \(-0.833728\pi\)
0.498926 + 0.866645i \(0.333728\pi\)
\(662\) 0 0
\(663\) −2.73258 + 6.36516i −0.106125 + 0.247203i
\(664\) 0 0
\(665\) −10.3157 10.3157i −0.400024 0.400024i
\(666\) 0 0
\(667\) 38.8203 1.50313
\(668\) 0 0
\(669\) 2.78413 + 2.78413i 0.107641 + 0.107641i
\(670\) 0 0
\(671\) −20.2466 20.2466i −0.781611 0.781611i
\(672\) 0 0
\(673\) 18.6774i 0.719963i −0.932960 0.359981i \(-0.882783\pi\)
0.932960 0.359981i \(-0.117217\pi\)
\(674\) 0 0
\(675\) 2.81376 0.108302
\(676\) 0 0
\(677\) −32.1895 −1.23714 −0.618572 0.785728i \(-0.712288\pi\)
−0.618572 + 0.785728i \(0.712288\pi\)
\(678\) 0 0
\(679\) 22.8980i 0.878744i
\(680\) 0 0
\(681\) 3.18923 + 3.18923i 0.122212 + 0.122212i
\(682\) 0 0
\(683\) −11.2081 11.2081i −0.428865 0.428865i 0.459377 0.888241i \(-0.348073\pi\)
−0.888241 + 0.459377i \(0.848073\pi\)
\(684\) 0 0
\(685\) 3.46594 0.132427
\(686\) 0 0
\(687\) −7.98183 7.98183i −0.304526 0.304526i
\(688\) 0 0
\(689\) 4.04612 9.42486i 0.154145 0.359059i
\(690\) 0 0
\(691\) −13.3452 + 13.3452i −0.507674 + 0.507674i −0.913812 0.406138i \(-0.866875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(692\) 0 0
\(693\) 28.2184i 1.07193i
\(694\) 0 0
\(695\) −26.0650 + 26.0650i −0.988702 + 0.988702i
\(696\) 0 0
\(697\) −7.87888 + 7.87888i −0.298434 + 0.298434i
\(698\) 0 0
\(699\) 5.16678 0.195425
\(700\) 0 0
\(701\) 10.0050i 0.377885i −0.981988 0.188942i \(-0.939494\pi\)
0.981988 0.188942i \(-0.0605060\pi\)
\(702\) 0 0
\(703\) 6.27786i 0.236774i
\(704\) 0 0
\(705\) −10.9298 −0.411639
\(706\) 0 0
\(707\) 16.9422 16.9422i 0.637179 0.637179i
\(708\) 0 0
\(709\) 21.8958 21.8958i 0.822316 0.822316i −0.164124 0.986440i \(-0.552480\pi\)
0.986440 + 0.164124i \(0.0524798\pi\)
\(710\) 0 0
\(711\) 38.0577i 1.42727i
\(712\) 0 0
\(713\) −18.8497 + 18.8497i −0.705928 + 0.705928i
\(714\) 0 0
\(715\) −16.3243 7.00808i −0.610496 0.262087i
\(716\) 0 0
\(717\) 1.50266 + 1.50266i 0.0561177 + 0.0561177i
\(718\) 0 0
\(719\) −20.4151 −0.761353 −0.380677 0.924708i \(-0.624309\pi\)
−0.380677 + 0.924708i \(0.624309\pi\)
\(720\) 0 0
\(721\) 1.29367 + 1.29367i 0.0481788 + 0.0481788i
\(722\) 0 0
\(723\) −0.0561602 0.0561602i −0.00208862 0.00208862i
\(724\) 0 0
\(725\) 4.41294i 0.163892i
\(726\) 0 0
\(727\) −12.2336 −0.453719 −0.226860 0.973927i \(-0.572846\pi\)
−0.226860 + 0.973927i \(0.572846\pi\)
\(728\) 0 0
\(729\) 13.7474 0.509163
\(730\) 0 0
\(731\) 11.0189i 0.407550i
\(732\) 0 0
\(733\) 24.2670 + 24.2670i 0.896323 + 0.896323i 0.995109 0.0987856i \(-0.0314958\pi\)
−0.0987856 + 0.995109i \(0.531496\pi\)
\(734\) 0 0
\(735\) 7.85322 + 7.85322i 0.289670 + 0.289670i
\(736\) 0 0
\(737\) −38.6313 −1.42300
\(738\) 0 0
\(739\) −21.0861 21.0861i −0.775663 0.775663i 0.203427 0.979090i \(-0.434792\pi\)
−0.979090 + 0.203427i \(0.934792\pi\)
\(740\) 0 0
\(741\) 2.96581 1.18420i 0.108952 0.0435026i
\(742\) 0 0
\(743\) 22.0335 22.0335i 0.808331 0.808331i −0.176050 0.984381i \(-0.556332\pi\)
0.984381 + 0.176050i \(0.0563322\pi\)
\(744\) 0 0
\(745\) 23.3448i 0.855288i
\(746\) 0 0
\(747\) 14.2140 14.2140i 0.520064 0.520064i
\(748\) 0 0
\(749\) −39.6605 + 39.6605i −1.44916 + 1.44916i
\(750\) 0 0
\(751\) −51.4884 −1.87884 −0.939419 0.342771i \(-0.888634\pi\)
−0.939419 + 0.342771i \(0.888634\pi\)
\(752\) 0 0
\(753\) 10.2184i 0.372379i
\(754\) 0 0
\(755\) 8.47112i 0.308296i
\(756\) 0 0
\(757\) −12.0973 −0.439683 −0.219841 0.975536i \(-0.570554\pi\)
−0.219841 + 0.975536i \(0.570554\pi\)
\(758\) 0 0
\(759\) 7.47495 7.47495i 0.271324 0.271324i
\(760\) 0 0
\(761\) −7.35675 + 7.35675i −0.266682 + 0.266682i −0.827762 0.561080i \(-0.810386\pi\)
0.561080 + 0.827762i \(0.310386\pi\)
\(762\) 0 0
\(763\) 49.2364i 1.78248i
\(764\) 0 0
\(765\) 14.5341 14.5341i 0.525480 0.525480i
\(766\) 0 0
\(767\) −22.4368 + 8.95864i −0.810145 + 0.323478i
\(768\) 0 0
\(769\) −27.8958 27.8958i −1.00595 1.00595i −0.999982 0.00596752i \(-0.998100\pi\)
−0.00596752 0.999982i \(-0.501900\pi\)
\(770\) 0 0
\(771\) −3.33419 −0.120078
\(772\) 0 0
\(773\) −2.58269 2.58269i −0.0928930 0.0928930i 0.659133 0.752026i \(-0.270923\pi\)
−0.752026 + 0.659133i \(0.770923\pi\)
\(774\) 0 0
\(775\) −2.14276 2.14276i −0.0769702 0.0769702i
\(776\) 0 0
\(777\) 7.89556i 0.283252i
\(778\) 0 0
\(779\) 5.13693 0.184049
\(780\) 0 0
\(781\) 25.8789 0.926019
\(782\) 0 0
\(783\) 13.6466i 0.487690i
\(784\) 0 0
\(785\) −2.71349 2.71349i −0.0968487 0.0968487i
\(786\) 0 0
\(787\) −19.0288 19.0288i −0.678305 0.678305i 0.281312 0.959616i \(-0.409231\pi\)
−0.959616 + 0.281312i \(0.909231\pi\)
\(788\) 0 0
\(789\) −8.90804 −0.317135
\(790\) 0 0
\(791\) −40.1149 40.1149i −1.42632 1.42632i
\(792\) 0 0
\(793\) −16.6263 + 38.7286i −0.590417 + 1.37529i
\(794\) 0 0
\(795\) 2.08094 2.08094i 0.0738034 0.0738034i
\(796\) 0 0
\(797\) 33.5971i 1.19007i −0.803699 0.595036i \(-0.797138\pi\)
0.803699 0.595036i \(-0.202862\pi\)
\(798\) 0 0
\(799\) 27.9063 27.9063i 0.987254 0.987254i
\(800\) 0 0
\(801\) 26.2065 26.2065i 0.925960 0.925960i
\(802\) 0 0
\(803\) 16.4042 0.578892
\(804\) 0 0
\(805\) 71.0832i 2.50535i
\(806\) 0 0
\(807\) 0.159758i 0.00562375i
\(808\) 0 0
\(809\) 20.1484 0.708381 0.354190 0.935173i \(-0.384756\pi\)
0.354190 + 0.935173i \(0.384756\pi\)
\(810\) 0 0
\(811\) −0.405052 + 0.405052i −0.0142233 + 0.0142233i −0.714183 0.699959i \(-0.753201\pi\)
0.699959 + 0.714183i \(0.253201\pi\)
\(812\) 0 0
\(813\) 1.72608 1.72608i 0.0605364 0.0605364i
\(814\) 0 0
\(815\) 6.16295i 0.215879i
\(816\) 0 0
\(817\) −3.59210 + 3.59210i −0.125672 + 0.125672i
\(818\) 0 0
\(819\) 38.5751 15.4024i 1.34792 0.538203i
\(820\) 0 0
\(821\) −2.58269 2.58269i −0.0901366 0.0901366i 0.660601 0.750737i \(-0.270302\pi\)
−0.750737 + 0.660601i \(0.770302\pi\)
\(822\) 0 0
\(823\) −29.7700 −1.03772 −0.518859 0.854860i \(-0.673643\pi\)
−0.518859 + 0.854860i \(0.673643\pi\)
\(824\) 0 0
\(825\) 0.849722 + 0.849722i 0.0295835 + 0.0295835i
\(826\) 0 0
\(827\) −30.8280 30.8280i −1.07200 1.07200i −0.997199 0.0747966i \(-0.976169\pi\)
−0.0747966 0.997199i \(-0.523831\pi\)
\(828\) 0 0
\(829\) 14.4418i 0.501585i 0.968041 + 0.250793i \(0.0806912\pi\)
−0.968041 + 0.250793i \(0.919309\pi\)
\(830\) 0 0
\(831\) −4.16188 −0.144374
\(832\) 0 0
\(833\) −40.1023 −1.38946
\(834\) 0 0
\(835\) 10.3923i 0.359641i
\(836\) 0 0
\(837\) 6.62629 + 6.62629i 0.229038 + 0.229038i
\(838\) 0 0
\(839\) 23.3618 + 23.3618i 0.806539 + 0.806539i 0.984108 0.177570i \(-0.0568235\pi\)
−0.177570 + 0.984108i \(0.556823\pi\)
\(840\) 0 0
\(841\) −7.59741 −0.261980
\(842\) 0 0
\(843\) 2.91735 + 2.91735i 0.100479 + 0.100479i
\(844\) 0 0
\(845\) −0.669894 + 26.1409i −0.0230450 + 0.899273i
\(846\) 0 0
\(847\) 14.8894 14.8894i 0.511605 0.511605i
\(848\) 0 0
\(849\) 5.06811i 0.173937i
\(850\) 0 0
\(851\) −21.6297 + 21.6297i −0.741458 + 0.741458i
\(852\) 0 0
\(853\) 3.33011 3.33011i 0.114021 0.114021i −0.647794 0.761815i \(-0.724308\pi\)
0.761815 + 0.647794i \(0.224308\pi\)
\(854\) 0 0
\(855\) −9.47601 −0.324073
\(856\) 0 0
\(857\) 45.2526i 1.54580i −0.634529 0.772899i \(-0.718806\pi\)
0.634529 0.772899i \(-0.281194\pi\)
\(858\) 0 0
\(859\) 34.3276i 1.17124i −0.810584 0.585622i \(-0.800850\pi\)
0.810584 0.585622i \(-0.199150\pi\)
\(860\) 0 0
\(861\) −6.46063 −0.220178
\(862\) 0 0
\(863\) 9.09339 9.09339i 0.309542 0.309542i −0.535190 0.844732i \(-0.679760\pi\)
0.844732 + 0.535190i \(0.179760\pi\)
\(864\) 0 0
\(865\) 33.8328 33.8328i 1.15035 1.15035i
\(866\) 0 0
\(867\) 1.56664i 0.0532058i
\(868\) 0 0
\(869\) −24.0973 + 24.0973i −0.817444 + 0.817444i
\(870\) 0 0
\(871\) 21.0861 + 52.8097i 0.714474 + 1.78939i
\(872\) 0 0
\(873\) −10.5171 10.5171i −0.355950 0.355950i
\(874\) 0 0
\(875\) −50.4361 −1.70505
\(876\) 0 0
\(877\) −1.95136 1.95136i −0.0658929 0.0658929i 0.673392 0.739285i \(-0.264836\pi\)
−0.739285 + 0.673392i \(0.764836\pi\)
\(878\) 0 0
\(879\) 9.28252 + 9.28252i 0.313092 + 0.313092i
\(880\) 0 0
\(881\) 51.3088i 1.72864i 0.502945 + 0.864318i \(0.332250\pi\)
−0.502945 + 0.864318i \(0.667750\pi\)
\(882\) 0 0
\(883\) −17.9471 −0.603969 −0.301985 0.953313i \(-0.597649\pi\)
−0.301985 + 0.953313i \(0.597649\pi\)
\(884\) 0 0
\(885\) −6.93189 −0.233013
\(886\) 0 0
\(887\) 25.3422i 0.850908i −0.904980 0.425454i \(-0.860114\pi\)
0.904980 0.425454i \(-0.139886\pi\)
\(888\) 0 0
\(889\) −16.2746 16.2746i −0.545832 0.545832i
\(890\) 0 0
\(891\) 11.5863 + 11.5863i 0.388157 + 0.388157i
\(892\) 0 0
\(893\) −18.1945 −0.608857
\(894\) 0 0
\(895\) 25.5270 + 25.5270i 0.853273 + 0.853273i
\(896\) 0 0
\(897\) −14.2984 6.13835i −0.477411 0.204954i
\(898\) 0 0
\(899\) −10.3923 + 10.3923i −0.346603 + 0.346603i
\(900\) 0 0
\(901\) 10.6263i 0.354013i
\(902\) 0 0
\(903\) 4.51773 4.51773i 0.150341 0.150341i
\(904\) 0 0
\(905\) −8.67241 + 8.67241i −0.288281 + 0.288281i
\(906\) 0 0
\(907\) 5.00702 0.166255 0.0831277 0.996539i \(-0.473509\pi\)
0.0831277 + 0.996539i \(0.473509\pi\)
\(908\) 0 0
\(909\) 15.5632i 0.516199i
\(910\) 0 0
\(911\) 5.68367i 0.188308i 0.995558 + 0.0941542i \(0.0300147\pi\)
−0.995558 + 0.0941542i \(0.969985\pi\)
\(912\) 0 0
\(913\) 18.0000 0.595713
\(914\) 0 0
\(915\) −8.55100 + 8.55100i −0.282687 + 0.282687i
\(916\) 0 0
\(917\) 13.3081 13.3081i 0.439473 0.439473i
\(918\) 0 0
\(919\) 1.67896i 0.0553837i 0.999617 + 0.0276918i \(0.00881571\pi\)
−0.999617 + 0.0276918i \(0.991184\pi\)
\(920\) 0 0
\(921\) −1.65545 + 1.65545i −0.0545490 + 0.0545490i
\(922\) 0 0
\(923\) −14.1254 35.3769i −0.464944 1.16444i
\(924\) 0 0
\(925\) −2.45878 2.45878i −0.0808442 0.0808442i
\(926\) 0 0
\(927\) 1.18837 0.0390312
\(928\) 0 0
\(929\) 11.5751 + 11.5751i 0.379768 + 0.379768i 0.871018 0.491250i \(-0.163460\pi\)
−0.491250 + 0.871018i \(0.663460\pi\)
\(930\) 0 0
\(931\) 13.0731 + 13.0731i 0.428453 + 0.428453i
\(932\) 0 0
\(933\) 13.7816i 0.451190i
\(934\) 0 0
\(935\) 18.4053 0.601917
\(936\) 0 0
\(937\) −15.7917 −0.515892 −0.257946 0.966159i \(-0.583046\pi\)
−0.257946 + 0.966159i \(0.583046\pi\)
\(938\) 0 0
\(939\) 13.1885i 0.430390i
\(940\) 0 0
\(941\) −1.07779 1.07779i −0.0351351 0.0351351i 0.689321 0.724456i \(-0.257909\pi\)
−0.724456 + 0.689321i \(0.757909\pi\)
\(942\) 0 0
\(943\) −17.6988 17.6988i −0.576351 0.576351i
\(944\) 0 0
\(945\) 24.9881 0.812862
\(946\) 0 0
\(947\) 1.73205 + 1.73205i 0.0562841 + 0.0562841i 0.734689 0.678405i \(-0.237328\pi\)
−0.678405 + 0.734689i \(0.737328\pi\)
\(948\) 0 0
\(949\) −8.95388 22.4249i −0.290655 0.727942i
\(950\) 0 0
\(951\) −7.46623 + 7.46623i −0.242109 + 0.242109i
\(952\) 0 0
\(953\) 3.39094i 0.109843i −0.998491 0.0549217i \(-0.982509\pi\)
0.998491 0.0549217i \(-0.0174909\pi\)
\(954\) 0 0
\(955\) −26.7166 + 26.7166i −0.864530 + 0.864530i
\(956\) 0 0
\(957\) 4.12112 4.12112i 0.133217 0.133217i
\(958\) 0 0
\(959\) −7.25644 −0.234323
\(960\) 0 0
\(961\) 20.9078i 0.674444i
\(962\) 0 0
\(963\) 36.4323i 1.17401i
\(964\) 0 0
\(965\) 32.1895 1.03622
\(966\) 0 0
\(967\) 13.8046 13.8046i 0.443926 0.443926i −0.449403 0.893329i \(-0.648363\pi\)
0.893329 + 0.449403i \(0.148363\pi\)
\(968\) 0 0
\(969\) −2.33951 + 2.33951i −0.0751560 + 0.0751560i
\(970\) 0 0
\(971\) 33.0981i 1.06217i −0.847319 0.531084i \(-0.821785\pi\)
0.847319 0.531084i \(-0.178215\pi\)
\(972\) 0 0
\(973\) 54.5708 54.5708i 1.74946 1.74946i
\(974\) 0 0
\(975\) 0.697783 1.62539i 0.0223469 0.0520540i
\(976\) 0 0
\(977\) 23.9420 + 23.9420i 0.765971 + 0.765971i 0.977395 0.211423i \(-0.0678099\pi\)
−0.211423 + 0.977395i \(0.567810\pi\)
\(978\) 0 0
\(979\) 33.1867 1.06065
\(980\) 0 0
\(981\) 22.6144 + 22.6144i 0.722021 + 0.722021i
\(982\) 0 0
\(983\) −25.1694 25.1694i −0.802778 0.802778i 0.180751 0.983529i \(-0.442147\pi\)
−0.983529 + 0.180751i \(0.942147\pi\)
\(984\) 0 0
\(985\) 26.1823i 0.834239i
\(986\) 0 0
\(987\) 22.8830 0.728374
\(988\) 0 0
\(989\) 24.7524 0.787082
\(990\) 0 0
\(991\) 18.4140i 0.584940i 0.956275 + 0.292470i \(0.0944772\pi\)
−0.956275 + 0.292470i \(0.905523\pi\)
\(992\) 0 0
\(993\) −1.41982 1.41982i −0.0450568 0.0450568i
\(994\) 0 0
\(995\) 11.9352 + 11.9352i 0.378372 + 0.378372i
\(996\) 0 0
\(997\) −15.3737 −0.486890 −0.243445 0.969915i \(-0.578278\pi\)
−0.243445 + 0.969915i \(0.578278\pi\)
\(998\) 0 0
\(999\) 7.60356 + 7.60356i 0.240566 + 0.240566i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.2.k.b.47.4 yes 12
3.2 odd 2 1872.2.bf.o.1711.6 12
4.3 odd 2 inner 208.2.k.b.47.3 yes 12
8.3 odd 2 832.2.k.j.255.4 12
8.5 even 2 832.2.k.j.255.3 12
12.11 even 2 1872.2.bf.o.1711.5 12
13.5 odd 4 inner 208.2.k.b.31.4 yes 12
39.5 even 4 1872.2.bf.o.1279.5 12
52.31 even 4 inner 208.2.k.b.31.3 12
104.5 odd 4 832.2.k.j.447.3 12
104.83 even 4 832.2.k.j.447.4 12
156.83 odd 4 1872.2.bf.o.1279.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
208.2.k.b.31.3 12 52.31 even 4 inner
208.2.k.b.31.4 yes 12 13.5 odd 4 inner
208.2.k.b.47.3 yes 12 4.3 odd 2 inner
208.2.k.b.47.4 yes 12 1.1 even 1 trivial
832.2.k.j.255.3 12 8.5 even 2
832.2.k.j.255.4 12 8.3 odd 2
832.2.k.j.447.3 12 104.5 odd 4
832.2.k.j.447.4 12 104.83 even 4
1872.2.bf.o.1279.5 12 39.5 even 4
1872.2.bf.o.1279.6 12 156.83 odd 4
1872.2.bf.o.1711.5 12 12.11 even 2
1872.2.bf.o.1711.6 12 3.2 odd 2