Properties

Label 208.2.k.b.47.6
Level $208$
Weight $2$
Character 208.47
Analytic conductor $1.661$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,2,Mod(31,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 208.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66088836204\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 14x^{10} + 147x^{8} + 662x^{6} + 2233x^{4} + 588x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.6
Root \(-1.43257 + 2.48129i\) of defining polynomial
Character \(\chi\) \(=\) 208.47
Dual form 208.2.k.b.31.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.86514i q^{3} +(-0.376763 - 0.376763i) q^{5} +(2.21257 + 2.21257i) q^{7} -5.20905 q^{9} +(-1.73205 - 1.73205i) q^{11} +(0.376763 + 3.58581i) q^{13} +(1.07948 - 1.07948i) q^{15} -4.20905i q^{17} +(-4.59719 + 4.59719i) q^{19} +(-6.33934 + 6.33934i) q^{21} +4.76925 q^{23} -4.71610i q^{25} -6.32925i q^{27} +9.17162 q^{29} +(1.13309 - 1.13309i) q^{31} +(4.96257 - 4.96257i) q^{33} -1.66723i q^{35} +(3.62324 - 3.62324i) q^{37} +(-10.2739 + 1.07948i) q^{39} +(7.96257 + 7.96257i) q^{41} +6.32925 q^{43} +(1.96257 + 1.96257i) q^{45} +(-4.47876 - 4.47876i) q^{47} +2.79095i q^{49} +12.0595 q^{51} +0.753525 q^{53} +1.30514i q^{55} +(-13.1716 - 13.1716i) q^{57} +(-9.02234 - 9.02234i) q^{59} -7.50705 q^{61} +(-11.5254 - 11.5254i) q^{63} +(1.20905 - 1.49295i) q^{65} +(0.771008 - 0.771008i) q^{67} +13.6646i q^{69} +(4.47876 - 4.47876i) q^{71} +(-3.20905 + 3.20905i) q^{73} +13.5123 q^{75} -7.66457i q^{77} +3.22723i q^{79} +2.50705 q^{81} +(-5.19615 + 5.19615i) q^{83} +(-1.58581 + 1.58581i) q^{85} +26.2780i q^{87} +(-0.455525 + 0.455525i) q^{89} +(-7.10025 + 8.76748i) q^{91} +(3.24647 + 3.24647i) q^{93} +3.46410 q^{95} +(-1.75353 - 1.75353i) q^{97} +(9.02234 + 9.02234i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{5} - 20 q^{9} - 4 q^{13} - 8 q^{21} + 8 q^{29} + 52 q^{37} + 36 q^{41} - 36 q^{45} - 8 q^{53} - 56 q^{57} - 56 q^{61} - 28 q^{65} + 4 q^{73} - 4 q^{81} + 32 q^{85} + 20 q^{89} + 56 q^{93} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.86514i 1.65419i 0.562061 + 0.827096i \(0.310009\pi\)
−0.562061 + 0.827096i \(0.689991\pi\)
\(4\) 0 0
\(5\) −0.376763 0.376763i −0.168493 0.168493i 0.617823 0.786317i \(-0.288015\pi\)
−0.786317 + 0.617823i \(0.788015\pi\)
\(6\) 0 0
\(7\) 2.21257 + 2.21257i 0.836274 + 0.836274i 0.988366 0.152093i \(-0.0486012\pi\)
−0.152093 + 0.988366i \(0.548601\pi\)
\(8\) 0 0
\(9\) −5.20905 −1.73635
\(10\) 0 0
\(11\) −1.73205 1.73205i −0.522233 0.522233i 0.396012 0.918245i \(-0.370394\pi\)
−0.918245 + 0.396012i \(0.870394\pi\)
\(12\) 0 0
\(13\) 0.376763 + 3.58581i 0.104495 + 0.994525i
\(14\) 0 0
\(15\) 1.07948 1.07948i 0.278720 0.278720i
\(16\) 0 0
\(17\) 4.20905i 1.02084i −0.859924 0.510422i \(-0.829489\pi\)
0.859924 0.510422i \(-0.170511\pi\)
\(18\) 0 0
\(19\) −4.59719 + 4.59719i −1.05467 + 1.05467i −0.0562522 + 0.998417i \(0.517915\pi\)
−0.998417 + 0.0562522i \(0.982085\pi\)
\(20\) 0 0
\(21\) −6.33934 + 6.33934i −1.38336 + 1.38336i
\(22\) 0 0
\(23\) 4.76925 0.994456 0.497228 0.867620i \(-0.334351\pi\)
0.497228 + 0.867620i \(0.334351\pi\)
\(24\) 0 0
\(25\) 4.71610i 0.943220i
\(26\) 0 0
\(27\) 6.32925i 1.21806i
\(28\) 0 0
\(29\) 9.17162 1.70313 0.851564 0.524251i \(-0.175655\pi\)
0.851564 + 0.524251i \(0.175655\pi\)
\(30\) 0 0
\(31\) 1.13309 1.13309i 0.203510 0.203510i −0.597992 0.801502i \(-0.704035\pi\)
0.801502 + 0.597992i \(0.204035\pi\)
\(32\) 0 0
\(33\) 4.96257 4.96257i 0.863873 0.863873i
\(34\) 0 0
\(35\) 1.66723i 0.281813i
\(36\) 0 0
\(37\) 3.62324 3.62324i 0.595657 0.595657i −0.343497 0.939154i \(-0.611612\pi\)
0.939154 + 0.343497i \(0.111612\pi\)
\(38\) 0 0
\(39\) −10.2739 + 1.07948i −1.64514 + 0.172855i
\(40\) 0 0
\(41\) 7.96257 + 7.96257i 1.24355 + 1.24355i 0.958520 + 0.285025i \(0.0920020\pi\)
0.285025 + 0.958520i \(0.407998\pi\)
\(42\) 0 0
\(43\) 6.32925 0.965201 0.482600 0.875841i \(-0.339692\pi\)
0.482600 + 0.875841i \(0.339692\pi\)
\(44\) 0 0
\(45\) 1.96257 + 1.96257i 0.292563 + 0.292563i
\(46\) 0 0
\(47\) −4.47876 4.47876i −0.653294 0.653294i 0.300491 0.953785i \(-0.402850\pi\)
−0.953785 + 0.300491i \(0.902850\pi\)
\(48\) 0 0
\(49\) 2.79095i 0.398707i
\(50\) 0 0
\(51\) 12.0595 1.68867
\(52\) 0 0
\(53\) 0.753525 0.103505 0.0517523 0.998660i \(-0.483519\pi\)
0.0517523 + 0.998660i \(0.483519\pi\)
\(54\) 0 0
\(55\) 1.30514i 0.175986i
\(56\) 0 0
\(57\) −13.1716 13.1716i −1.74462 1.74462i
\(58\) 0 0
\(59\) −9.02234 9.02234i −1.17461 1.17461i −0.981098 0.193510i \(-0.938013\pi\)
−0.193510 0.981098i \(-0.561987\pi\)
\(60\) 0 0
\(61\) −7.50705 −0.961179 −0.480590 0.876946i \(-0.659577\pi\)
−0.480590 + 0.876946i \(0.659577\pi\)
\(62\) 0 0
\(63\) −11.5254 11.5254i −1.45206 1.45206i
\(64\) 0 0
\(65\) 1.20905 1.49295i 0.149964 0.185178i
\(66\) 0 0
\(67\) 0.771008 0.771008i 0.0941937 0.0941937i −0.658440 0.752633i \(-0.728783\pi\)
0.752633 + 0.658440i \(0.228783\pi\)
\(68\) 0 0
\(69\) 13.6646i 1.64502i
\(70\) 0 0
\(71\) 4.47876 4.47876i 0.531531 0.531531i −0.389497 0.921028i \(-0.627351\pi\)
0.921028 + 0.389497i \(0.127351\pi\)
\(72\) 0 0
\(73\) −3.20905 + 3.20905i −0.375591 + 0.375591i −0.869509 0.493918i \(-0.835564\pi\)
0.493918 + 0.869509i \(0.335564\pi\)
\(74\) 0 0
\(75\) 13.5123 1.56027
\(76\) 0 0
\(77\) 7.66457i 0.873459i
\(78\) 0 0
\(79\) 3.22723i 0.363092i 0.983382 + 0.181546i \(0.0581101\pi\)
−0.983382 + 0.181546i \(0.941890\pi\)
\(80\) 0 0
\(81\) 2.50705 0.278561
\(82\) 0 0
\(83\) −5.19615 + 5.19615i −0.570352 + 0.570352i −0.932227 0.361875i \(-0.882137\pi\)
0.361875 + 0.932227i \(0.382137\pi\)
\(84\) 0 0
\(85\) −1.58581 + 1.58581i −0.172005 + 0.172005i
\(86\) 0 0
\(87\) 26.2780i 2.81730i
\(88\) 0 0
\(89\) −0.455525 + 0.455525i −0.0482855 + 0.0482855i −0.730837 0.682552i \(-0.760870\pi\)
0.682552 + 0.730837i \(0.260870\pi\)
\(90\) 0 0
\(91\) −7.10025 + 8.76748i −0.744309 + 0.919082i
\(92\) 0 0
\(93\) 3.24647 + 3.24647i 0.336644 + 0.336644i
\(94\) 0 0
\(95\) 3.46410 0.355409
\(96\) 0 0
\(97\) −1.75353 1.75353i −0.178043 0.178043i 0.612459 0.790502i \(-0.290180\pi\)
−0.790502 + 0.612459i \(0.790180\pi\)
\(98\) 0 0
\(99\) 9.02234 + 9.02234i 0.906779 + 0.906779i
\(100\) 0 0
\(101\) 1.50705i 0.149957i −0.997185 0.0749785i \(-0.976111\pi\)
0.997185 0.0749785i \(-0.0238888\pi\)
\(102\) 0 0
\(103\) −3.57133 −0.351894 −0.175947 0.984400i \(-0.556299\pi\)
−0.175947 + 0.984400i \(0.556299\pi\)
\(104\) 0 0
\(105\) 4.77685 0.466173
\(106\) 0 0
\(107\) 6.07439i 0.587233i −0.955923 0.293617i \(-0.905141\pi\)
0.955923 0.293617i \(-0.0948589\pi\)
\(108\) 0 0
\(109\) 5.13029 + 5.13029i 0.491392 + 0.491392i 0.908745 0.417352i \(-0.137042\pi\)
−0.417352 + 0.908745i \(0.637042\pi\)
\(110\) 0 0
\(111\) 10.3811 + 10.3811i 0.985330 + 0.985330i
\(112\) 0 0
\(113\) 2.41810 0.227476 0.113738 0.993511i \(-0.463718\pi\)
0.113738 + 0.993511i \(0.463718\pi\)
\(114\) 0 0
\(115\) −1.79687 1.79687i −0.167559 0.167559i
\(116\) 0 0
\(117\) −1.96257 18.6787i −0.181440 1.72684i
\(118\) 0 0
\(119\) 9.31283 9.31283i 0.853705 0.853705i
\(120\) 0 0
\(121\) 5.00000i 0.454545i
\(122\) 0 0
\(123\) −22.8139 + 22.8139i −2.05706 + 2.05706i
\(124\) 0 0
\(125\) −3.66066 + 3.66066i −0.327420 + 0.327420i
\(126\) 0 0
\(127\) 9.08716 0.806355 0.403178 0.915122i \(-0.367906\pi\)
0.403178 + 0.915122i \(0.367906\pi\)
\(128\) 0 0
\(129\) 18.1342i 1.59663i
\(130\) 0 0
\(131\) 12.9133i 1.12824i −0.825691 0.564122i \(-0.809215\pi\)
0.825691 0.564122i \(-0.190785\pi\)
\(132\) 0 0
\(133\) −20.3432 −1.76398
\(134\) 0 0
\(135\) −2.38462 + 2.38462i −0.205236 + 0.205236i
\(136\) 0 0
\(137\) −12.9251 + 12.9251i −1.10427 + 1.10427i −0.110381 + 0.993889i \(0.535207\pi\)
−0.993889 + 0.110381i \(0.964793\pi\)
\(138\) 0 0
\(139\) 0.943059i 0.0799892i 0.999200 + 0.0399946i \(0.0127341\pi\)
−0.999200 + 0.0399946i \(0.987266\pi\)
\(140\) 0 0
\(141\) 12.8323 12.8323i 1.08067 1.08067i
\(142\) 0 0
\(143\) 5.55824 6.86338i 0.464803 0.573945i
\(144\) 0 0
\(145\) −3.45552 3.45552i −0.286966 0.286966i
\(146\) 0 0
\(147\) −7.99647 −0.659538
\(148\) 0 0
\(149\) −15.6271 15.6271i −1.28023 1.28023i −0.940538 0.339688i \(-0.889679\pi\)
−0.339688 0.940538i \(-0.610321\pi\)
\(150\) 0 0
\(151\) 2.21257 + 2.21257i 0.180057 + 0.180057i 0.791380 0.611324i \(-0.209363\pi\)
−0.611324 + 0.791380i \(0.709363\pi\)
\(152\) 0 0
\(153\) 21.9251i 1.77254i
\(154\) 0 0
\(155\) −0.853814 −0.0685800
\(156\) 0 0
\(157\) 9.43220 0.752772 0.376386 0.926463i \(-0.377167\pi\)
0.376386 + 0.926463i \(0.377167\pi\)
\(158\) 0 0
\(159\) 2.15896i 0.171216i
\(160\) 0 0
\(161\) 10.5523 + 10.5523i 0.831638 + 0.831638i
\(162\) 0 0
\(163\) −5.30338 5.30338i −0.415393 0.415393i 0.468219 0.883612i \(-0.344896\pi\)
−0.883612 + 0.468219i \(0.844896\pi\)
\(164\) 0 0
\(165\) −3.73942 −0.291114
\(166\) 0 0
\(167\) −13.7916 13.7916i −1.06722 1.06722i −0.997571 0.0696536i \(-0.977811\pi\)
−0.0696536 0.997571i \(-0.522189\pi\)
\(168\) 0 0
\(169\) −12.7161 + 2.70200i −0.978162 + 0.207846i
\(170\) 0 0
\(171\) 23.9470 23.9470i 1.83127 1.83127i
\(172\) 0 0
\(173\) 10.0827i 0.766572i −0.923630 0.383286i \(-0.874792\pi\)
0.923630 0.383286i \(-0.125208\pi\)
\(174\) 0 0
\(175\) 10.4347 10.4347i 0.788790 0.788790i
\(176\) 0 0
\(177\) 25.8503 25.8503i 1.94303 1.94303i
\(178\) 0 0
\(179\) −19.7119 −1.47334 −0.736669 0.676254i \(-0.763602\pi\)
−0.736669 + 0.676254i \(0.763602\pi\)
\(180\) 0 0
\(181\) 23.5897i 1.75341i 0.481028 + 0.876705i \(0.340264\pi\)
−0.481028 + 0.876705i \(0.659736\pi\)
\(182\) 0 0
\(183\) 21.5088i 1.58997i
\(184\) 0 0
\(185\) −2.73020 −0.200728
\(186\) 0 0
\(187\) −7.29029 + 7.29029i −0.533119 + 0.533119i
\(188\) 0 0
\(189\) 14.0039 14.0039i 1.01863 1.01863i
\(190\) 0 0
\(191\) 15.1616i 1.09705i 0.836134 + 0.548526i \(0.184811\pi\)
−0.836134 + 0.548526i \(0.815189\pi\)
\(192\) 0 0
\(193\) 6.66457 6.66457i 0.479727 0.479727i −0.425318 0.905044i \(-0.639838\pi\)
0.905044 + 0.425318i \(0.139838\pi\)
\(194\) 0 0
\(195\) 4.27752 + 3.46410i 0.306319 + 0.248069i
\(196\) 0 0
\(197\) −3.54839 3.54839i −0.252812 0.252812i 0.569310 0.822123i \(-0.307210\pi\)
−0.822123 + 0.569310i \(0.807210\pi\)
\(198\) 0 0
\(199\) 4.76925 0.338083 0.169041 0.985609i \(-0.445933\pi\)
0.169041 + 0.985609i \(0.445933\pi\)
\(200\) 0 0
\(201\) 2.20905 + 2.20905i 0.155814 + 0.155814i
\(202\) 0 0
\(203\) 20.2929 + 20.2929i 1.42428 + 1.42428i
\(204\) 0 0
\(205\) 6.00000i 0.419058i
\(206\) 0 0
\(207\) −24.8432 −1.72672
\(208\) 0 0
\(209\) 15.9251 1.10157
\(210\) 0 0
\(211\) 10.5175i 0.724056i −0.932167 0.362028i \(-0.882085\pi\)
0.932167 0.362028i \(-0.117915\pi\)
\(212\) 0 0
\(213\) 12.8323 + 12.8323i 0.879254 + 0.879254i
\(214\) 0 0
\(215\) −2.38462 2.38462i −0.162630 0.162630i
\(216\) 0 0
\(217\) 5.01410 0.340379
\(218\) 0 0
\(219\) −9.19439 9.19439i −0.621299 0.621299i
\(220\) 0 0
\(221\) 15.0929 1.58581i 1.01526 0.106673i
\(222\) 0 0
\(223\) −6.98182 + 6.98182i −0.467537 + 0.467537i −0.901116 0.433579i \(-0.857251\pi\)
0.433579 + 0.901116i \(0.357251\pi\)
\(224\) 0 0
\(225\) 24.5664i 1.63776i
\(226\) 0 0
\(227\) 11.1813 11.1813i 0.742129 0.742129i −0.230859 0.972987i \(-0.574153\pi\)
0.972987 + 0.230859i \(0.0741535\pi\)
\(228\) 0 0
\(229\) 15.2130 15.2130i 1.00530 1.00530i 0.00531493 0.999986i \(-0.498308\pi\)
0.999986 0.00531493i \(-0.00169180\pi\)
\(230\) 0 0
\(231\) 21.9601 1.44487
\(232\) 0 0
\(233\) 6.28390i 0.411672i −0.978587 0.205836i \(-0.934009\pi\)
0.978587 0.205836i \(-0.0659913\pi\)
\(234\) 0 0
\(235\) 3.37486i 0.220151i
\(236\) 0 0
\(237\) −9.24647 −0.600623
\(238\) 0 0
\(239\) −14.8711 + 14.8711i −0.961929 + 0.961929i −0.999301 0.0373723i \(-0.988101\pi\)
0.0373723 + 0.999301i \(0.488101\pi\)
\(240\) 0 0
\(241\) −5.96257 + 5.96257i −0.384083 + 0.384083i −0.872571 0.488488i \(-0.837549\pi\)
0.488488 + 0.872571i \(0.337549\pi\)
\(242\) 0 0
\(243\) 11.8047i 0.757270i
\(244\) 0 0
\(245\) 1.05153 1.05153i 0.0671795 0.0671795i
\(246\) 0 0
\(247\) −18.2167 14.7526i −1.15910 0.938687i
\(248\) 0 0
\(249\) −14.8877 14.8877i −0.943471 0.943471i
\(250\) 0 0
\(251\) 7.65237 0.483013 0.241507 0.970399i \(-0.422358\pi\)
0.241507 + 0.970399i \(0.422358\pi\)
\(252\) 0 0
\(253\) −8.26058 8.26058i −0.519338 0.519338i
\(254\) 0 0
\(255\) −4.54358 4.54358i −0.284530 0.284530i
\(256\) 0 0
\(257\) 26.1342i 1.63021i 0.579316 + 0.815103i \(0.303320\pi\)
−0.579316 + 0.815103i \(0.696680\pi\)
\(258\) 0 0
\(259\) 16.0333 0.996264
\(260\) 0 0
\(261\) −47.7754 −2.95723
\(262\) 0 0
\(263\) 17.3205i 1.06803i −0.845476 0.534014i \(-0.820683\pi\)
0.845476 0.534014i \(-0.179317\pi\)
\(264\) 0 0
\(265\) −0.283900 0.283900i −0.0174398 0.0174398i
\(266\) 0 0
\(267\) −1.30514 1.30514i −0.0798735 0.0798735i
\(268\) 0 0
\(269\) −4.49295 −0.273940 −0.136970 0.990575i \(-0.543736\pi\)
−0.136970 + 0.990575i \(0.543736\pi\)
\(270\) 0 0
\(271\) 18.4424 + 18.4424i 1.12030 + 1.12030i 0.991697 + 0.128599i \(0.0410480\pi\)
0.128599 + 0.991697i \(0.458952\pi\)
\(272\) 0 0
\(273\) −25.1201 20.3432i −1.52034 1.23123i
\(274\) 0 0
\(275\) −8.16852 + 8.16852i −0.492581 + 0.492581i
\(276\) 0 0
\(277\) 0.567800i 0.0341158i 0.999855 + 0.0170579i \(0.00542996\pi\)
−0.999855 + 0.0170579i \(0.994570\pi\)
\(278\) 0 0
\(279\) −5.90234 + 5.90234i −0.353364 + 0.353364i
\(280\) 0 0
\(281\) −11.8877 + 11.8877i −0.709162 + 0.709162i −0.966359 0.257197i \(-0.917201\pi\)
0.257197 + 0.966359i \(0.417201\pi\)
\(282\) 0 0
\(283\) 2.61029 0.155165 0.0775827 0.996986i \(-0.475280\pi\)
0.0775827 + 0.996986i \(0.475280\pi\)
\(284\) 0 0
\(285\) 9.92515i 0.587915i
\(286\) 0 0
\(287\) 35.2355i 2.07989i
\(288\) 0 0
\(289\) −0.716100 −0.0421235
\(290\) 0 0
\(291\) 5.02410 5.02410i 0.294518 0.294518i
\(292\) 0 0
\(293\) 3.20514 3.20514i 0.187246 0.187246i −0.607258 0.794504i \(-0.707731\pi\)
0.794504 + 0.607258i \(0.207731\pi\)
\(294\) 0 0
\(295\) 6.79856i 0.395827i
\(296\) 0 0
\(297\) −10.9626 + 10.9626i −0.636113 + 0.636113i
\(298\) 0 0
\(299\) 1.79687 + 17.1016i 0.103916 + 0.989012i
\(300\) 0 0
\(301\) 14.0039 + 14.0039i 0.807172 + 0.807172i
\(302\) 0 0
\(303\) 4.31792 0.248058
\(304\) 0 0
\(305\) 2.82838 + 2.82838i 0.161952 + 0.161952i
\(306\) 0 0
\(307\) −10.2203 10.2203i −0.583301 0.583301i 0.352508 0.935809i \(-0.385329\pi\)
−0.935809 + 0.352508i \(0.885329\pi\)
\(308\) 0 0
\(309\) 10.2324i 0.582099i
\(310\) 0 0
\(311\) 0.724170 0.0410639 0.0205319 0.999789i \(-0.493464\pi\)
0.0205319 + 0.999789i \(0.493464\pi\)
\(312\) 0 0
\(313\) 25.2232 1.42570 0.712848 0.701318i \(-0.247405\pi\)
0.712848 + 0.701318i \(0.247405\pi\)
\(314\) 0 0
\(315\) 8.68468i 0.489326i
\(316\) 0 0
\(317\) −5.13420 5.13420i −0.288365 0.288365i 0.548068 0.836434i \(-0.315363\pi\)
−0.836434 + 0.548068i \(0.815363\pi\)
\(318\) 0 0
\(319\) −15.8857 15.8857i −0.889430 0.889430i
\(320\) 0 0
\(321\) 17.4040 0.971397
\(322\) 0 0
\(323\) 19.3498 + 19.3498i 1.07665 + 1.07665i
\(324\) 0 0
\(325\) 16.9110 1.77685i 0.938056 0.0985619i
\(326\) 0 0
\(327\) −14.6990 + 14.6990i −0.812857 + 0.812857i
\(328\) 0 0
\(329\) 19.8192i 1.09267i
\(330\) 0 0
\(331\) −3.99824 + 3.99824i −0.219763 + 0.219763i −0.808399 0.588636i \(-0.799665\pi\)
0.588636 + 0.808399i \(0.299665\pi\)
\(332\) 0 0
\(333\) −18.8736 + 18.8736i −1.03427 + 1.03427i
\(334\) 0 0
\(335\) −0.580974 −0.0317420
\(336\) 0 0
\(337\) 16.0593i 0.874808i −0.899265 0.437404i \(-0.855898\pi\)
0.899265 0.437404i \(-0.144102\pi\)
\(338\) 0 0
\(339\) 6.92820i 0.376288i
\(340\) 0 0
\(341\) −3.92515 −0.212559
\(342\) 0 0
\(343\) 9.31283 9.31283i 0.502845 0.502845i
\(344\) 0 0
\(345\) 5.14830 5.14830i 0.277175 0.277175i
\(346\) 0 0
\(347\) 20.5657i 1.10403i 0.833836 + 0.552013i \(0.186140\pi\)
−0.833836 + 0.552013i \(0.813860\pi\)
\(348\) 0 0
\(349\) −7.54839 + 7.54839i −0.404056 + 0.404056i −0.879660 0.475604i \(-0.842230\pi\)
0.475604 + 0.879660i \(0.342230\pi\)
\(350\) 0 0
\(351\) 22.6955 2.38462i 1.21140 0.127282i
\(352\) 0 0
\(353\) −1.33543 1.33543i −0.0710775 0.0710775i 0.670674 0.741752i \(-0.266005\pi\)
−0.741752 + 0.670674i \(0.766005\pi\)
\(354\) 0 0
\(355\) −3.37486 −0.179119
\(356\) 0 0
\(357\) 26.6826 + 26.6826i 1.41219 + 1.41219i
\(358\) 0 0
\(359\) 14.6454 + 14.6454i 0.772955 + 0.772955i 0.978622 0.205667i \(-0.0659365\pi\)
−0.205667 + 0.978622i \(0.565937\pi\)
\(360\) 0 0
\(361\) 23.2684i 1.22465i
\(362\) 0 0
\(363\) 14.3257 0.751905
\(364\) 0 0
\(365\) 2.41810 0.126569
\(366\) 0 0
\(367\) 29.7421i 1.55253i 0.630409 + 0.776263i \(0.282887\pi\)
−0.630409 + 0.776263i \(0.717113\pi\)
\(368\) 0 0
\(369\) −41.4774 41.4774i −2.15923 2.15923i
\(370\) 0 0
\(371\) 1.66723 + 1.66723i 0.0865582 + 0.0865582i
\(372\) 0 0
\(373\) 11.4040 0.590477 0.295238 0.955424i \(-0.404601\pi\)
0.295238 + 0.955424i \(0.404601\pi\)
\(374\) 0 0
\(375\) −10.4883 10.4883i −0.541615 0.541615i
\(376\) 0 0
\(377\) 3.45552 + 32.8877i 0.177969 + 1.69380i
\(378\) 0 0
\(379\) 1.49518 1.49518i 0.0768021 0.0768021i −0.667662 0.744464i \(-0.732705\pi\)
0.744464 + 0.667662i \(0.232705\pi\)
\(380\) 0 0
\(381\) 26.0360i 1.33387i
\(382\) 0 0
\(383\) 3.75459 3.75459i 0.191851 0.191851i −0.604645 0.796495i \(-0.706685\pi\)
0.796495 + 0.604645i \(0.206685\pi\)
\(384\) 0 0
\(385\) −2.88772 + 2.88772i −0.147172 + 0.147172i
\(386\) 0 0
\(387\) −32.9694 −1.67593
\(388\) 0 0
\(389\) 21.3573i 1.08286i −0.840746 0.541430i \(-0.817883\pi\)
0.840746 0.541430i \(-0.182117\pi\)
\(390\) 0 0
\(391\) 20.0740i 1.01519i
\(392\) 0 0
\(393\) 36.9986 1.86633
\(394\) 0 0
\(395\) 1.21590 1.21590i 0.0611785 0.0611785i
\(396\) 0 0
\(397\) −19.6271 + 19.6271i −0.985058 + 0.985058i −0.999890 0.0148316i \(-0.995279\pi\)
0.0148316 + 0.999890i \(0.495279\pi\)
\(398\) 0 0
\(399\) 58.2863i 2.91797i
\(400\) 0 0
\(401\) −6.58190 + 6.58190i −0.328684 + 0.328684i −0.852086 0.523402i \(-0.824663\pi\)
0.523402 + 0.852086i \(0.324663\pi\)
\(402\) 0 0
\(403\) 4.48997 + 3.63615i 0.223661 + 0.181130i
\(404\) 0 0
\(405\) −0.944563 0.944563i −0.0469357 0.0469357i
\(406\) 0 0
\(407\) −12.5513 −0.622143
\(408\) 0 0
\(409\) −4.40400 4.40400i −0.217764 0.217764i 0.589792 0.807555i \(-0.299210\pi\)
−0.807555 + 0.589792i \(0.799210\pi\)
\(410\) 0 0
\(411\) −37.0324 37.0324i −1.82667 1.82667i
\(412\) 0 0
\(413\) 39.9251i 1.96459i
\(414\) 0 0
\(415\) 3.91543 0.192201
\(416\) 0 0
\(417\) −2.70200 −0.132317
\(418\) 0 0
\(419\) 7.87126i 0.384536i −0.981342 0.192268i \(-0.938416\pi\)
0.981342 0.192268i \(-0.0615843\pi\)
\(420\) 0 0
\(421\) 21.8090 + 21.8090i 1.06290 + 1.06290i 0.997884 + 0.0650198i \(0.0207111\pi\)
0.0650198 + 0.997884i \(0.479289\pi\)
\(422\) 0 0
\(423\) 23.3301 + 23.3301i 1.13435 + 1.13435i
\(424\) 0 0
\(425\) −19.8503 −0.962881
\(426\) 0 0
\(427\) −16.6099 16.6099i −0.803809 0.803809i
\(428\) 0 0
\(429\) 19.6646 + 15.9251i 0.949415 + 0.768873i
\(430\) 0 0
\(431\) −1.01466 + 1.01466i −0.0488743 + 0.0488743i −0.731122 0.682247i \(-0.761003\pi\)
0.682247 + 0.731122i \(0.261003\pi\)
\(432\) 0 0
\(433\) 26.9704i 1.29611i −0.761592 0.648057i \(-0.775582\pi\)
0.761592 0.648057i \(-0.224418\pi\)
\(434\) 0 0
\(435\) 9.90058 9.90058i 0.474696 0.474696i
\(436\) 0 0
\(437\) −21.9251 + 21.9251i −1.04882 + 1.04882i
\(438\) 0 0
\(439\) 1.92209 0.0917361 0.0458681 0.998948i \(-0.485395\pi\)
0.0458681 + 0.998948i \(0.485395\pi\)
\(440\) 0 0
\(441\) 14.5382i 0.692295i
\(442\) 0 0
\(443\) 0.943059i 0.0448061i 0.999749 + 0.0224030i \(0.00713171\pi\)
−0.999749 + 0.0224030i \(0.992868\pi\)
\(444\) 0 0
\(445\) 0.343249 0.0162716
\(446\) 0 0
\(447\) 44.7740 44.7740i 2.11774 2.11774i
\(448\) 0 0
\(449\) −7.67867 + 7.67867i −0.362379 + 0.362379i −0.864688 0.502309i \(-0.832484\pi\)
0.502309 + 0.864688i \(0.332484\pi\)
\(450\) 0 0
\(451\) 27.5832i 1.29884i
\(452\) 0 0
\(453\) −6.33934 + 6.33934i −0.297848 + 0.297848i
\(454\) 0 0
\(455\) 5.97837 0.628149i 0.280270 0.0294481i
\(456\) 0 0
\(457\) 13.8877 + 13.8877i 0.649640 + 0.649640i 0.952906 0.303266i \(-0.0980770\pi\)
−0.303266 + 0.952906i \(0.598077\pi\)
\(458\) 0 0
\(459\) −26.6401 −1.24345
\(460\) 0 0
\(461\) −8.63734 8.63734i −0.402281 0.402281i 0.476755 0.879036i \(-0.341813\pi\)
−0.879036 + 0.476755i \(0.841813\pi\)
\(462\) 0 0
\(463\) −25.2522 25.2522i −1.17357 1.17357i −0.981353 0.192214i \(-0.938433\pi\)
−0.192214 0.981353i \(-0.561567\pi\)
\(464\) 0 0
\(465\) 2.44630i 0.113444i
\(466\) 0 0
\(467\) −35.3652 −1.63651 −0.818253 0.574859i \(-0.805057\pi\)
−0.818253 + 0.574859i \(0.805057\pi\)
\(468\) 0 0
\(469\) 3.41182 0.157543
\(470\) 0 0
\(471\) 27.0246i 1.24523i
\(472\) 0 0
\(473\) −10.9626 10.9626i −0.504060 0.504060i
\(474\) 0 0
\(475\) 21.6808 + 21.6808i 0.994785 + 0.994785i
\(476\) 0 0
\(477\) −3.92515 −0.179720
\(478\) 0 0
\(479\) 24.4096 + 24.4096i 1.11530 + 1.11530i 0.992422 + 0.122879i \(0.0392128\pi\)
0.122879 + 0.992422i \(0.460787\pi\)
\(480\) 0 0
\(481\) 14.3573 + 11.6271i 0.654639 + 0.530152i
\(482\) 0 0
\(483\) −30.2339 + 30.2339i −1.37569 + 1.37569i
\(484\) 0 0
\(485\) 1.32133i 0.0599983i
\(486\) 0 0
\(487\) −9.12957 + 9.12957i −0.413700 + 0.413700i −0.883025 0.469325i \(-0.844497\pi\)
0.469325 + 0.883025i \(0.344497\pi\)
\(488\) 0 0
\(489\) 15.1949 15.1949i 0.687139 0.687139i
\(490\) 0 0
\(491\) 16.1182 0.727402 0.363701 0.931516i \(-0.381513\pi\)
0.363701 + 0.931516i \(0.381513\pi\)
\(492\) 0 0
\(493\) 38.6038i 1.73863i
\(494\) 0 0
\(495\) 6.79856i 0.305572i
\(496\) 0 0
\(497\) 19.8192 0.889010
\(498\) 0 0
\(499\) 29.0604 29.0604i 1.30092 1.30092i 0.373149 0.927771i \(-0.378278\pi\)
0.927771 0.373149i \(-0.121722\pi\)
\(500\) 0 0
\(501\) 39.5149 39.5149i 1.76539 1.76539i
\(502\) 0 0
\(503\) 7.78202i 0.346983i −0.984835 0.173492i \(-0.944495\pi\)
0.984835 0.173492i \(-0.0555049\pi\)
\(504\) 0 0
\(505\) −0.567800 + 0.567800i −0.0252668 + 0.0252668i
\(506\) 0 0
\(507\) −7.74162 36.4335i −0.343817 1.61807i
\(508\) 0 0
\(509\) 17.7302 + 17.7302i 0.785877 + 0.785877i 0.980816 0.194938i \(-0.0624506\pi\)
−0.194938 + 0.980816i \(0.562451\pi\)
\(510\) 0 0
\(511\) −14.2005 −0.628193
\(512\) 0 0
\(513\) 29.0968 + 29.0968i 1.28465 + 1.28465i
\(514\) 0 0
\(515\) 1.34554 + 1.34554i 0.0592917 + 0.0592917i
\(516\) 0 0
\(517\) 15.5149i 0.682343i
\(518\) 0 0
\(519\) 28.8883 1.26806
\(520\) 0 0
\(521\) −8.13420 −0.356366 −0.178183 0.983997i \(-0.557022\pi\)
−0.178183 + 0.983997i \(0.557022\pi\)
\(522\) 0 0
\(523\) 6.07439i 0.265614i −0.991142 0.132807i \(-0.957601\pi\)
0.991142 0.132807i \(-0.0423991\pi\)
\(524\) 0 0
\(525\) 29.8969 + 29.8969i 1.30481 + 1.30481i
\(526\) 0 0
\(527\) −4.76925 4.76925i −0.207752 0.207752i
\(528\) 0 0
\(529\) −0.254299 −0.0110565
\(530\) 0 0
\(531\) 46.9978 + 46.9978i 2.03953 + 2.03953i
\(532\) 0 0
\(533\) −25.5523 + 31.5523i −1.10679 + 1.36668i
\(534\) 0 0
\(535\) −2.28860 + 2.28860i −0.0989449 + 0.0989449i
\(536\) 0 0
\(537\) 56.4774i 2.43718i
\(538\) 0 0
\(539\) 4.83407 4.83407i 0.208218 0.208218i
\(540\) 0 0
\(541\) −21.6311 + 21.6311i −0.929992 + 0.929992i −0.997705 0.0677129i \(-0.978430\pi\)
0.0677129 + 0.997705i \(0.478430\pi\)
\(542\) 0 0
\(543\) −67.5880 −2.90048
\(544\) 0 0
\(545\) 3.86580i 0.165593i
\(546\) 0 0
\(547\) 35.3248i 1.51038i 0.655507 + 0.755189i \(0.272455\pi\)
−0.655507 + 0.755189i \(0.727545\pi\)
\(548\) 0 0
\(549\) 39.1046 1.66894
\(550\) 0 0
\(551\) −42.1637 + 42.1637i −1.79624 + 1.79624i
\(552\) 0 0
\(553\) −7.14048 + 7.14048i −0.303644 + 0.303644i
\(554\) 0 0
\(555\) 7.82242i 0.332043i
\(556\) 0 0
\(557\) 6.53429 6.53429i 0.276867 0.276867i −0.554990 0.831857i \(-0.687278\pi\)
0.831857 + 0.554990i \(0.187278\pi\)
\(558\) 0 0
\(559\) 2.38462 + 22.6955i 0.100859 + 0.959917i
\(560\) 0 0
\(561\) −20.8877 20.8877i −0.881880 0.881880i
\(562\) 0 0
\(563\) 24.0298 1.01274 0.506368 0.862317i \(-0.330988\pi\)
0.506368 + 0.862317i \(0.330988\pi\)
\(564\) 0 0
\(565\) −0.911049 0.911049i −0.0383281 0.0383281i
\(566\) 0 0
\(567\) 5.54703 + 5.54703i 0.232953 + 0.232953i
\(568\) 0 0
\(569\) 4.20905i 0.176453i −0.996100 0.0882263i \(-0.971880\pi\)
0.996100 0.0882263i \(-0.0281199\pi\)
\(570\) 0 0
\(571\) 8.72508 0.365133 0.182567 0.983194i \(-0.441560\pi\)
0.182567 + 0.983194i \(0.441560\pi\)
\(572\) 0 0
\(573\) −43.4400 −1.81473
\(574\) 0 0
\(575\) 22.4922i 0.937991i
\(576\) 0 0
\(577\) −19.7302 19.7302i −0.821379 0.821379i 0.164927 0.986306i \(-0.447261\pi\)
−0.986306 + 0.164927i \(0.947261\pi\)
\(578\) 0 0
\(579\) 19.0950 + 19.0950i 0.793560 + 0.793560i
\(580\) 0 0
\(581\) −22.9937 −0.953940
\(582\) 0 0
\(583\) −1.30514 1.30514i −0.0540535 0.0540535i
\(584\) 0 0
\(585\) −6.29800 + 7.77685i −0.260390 + 0.321533i
\(586\) 0 0
\(587\) 3.89101 3.89101i 0.160599 0.160599i −0.622233 0.782832i \(-0.713774\pi\)
0.782832 + 0.622233i \(0.213774\pi\)
\(588\) 0 0
\(589\) 10.4181i 0.429270i
\(590\) 0 0
\(591\) 10.1666 10.1666i 0.418200 0.418200i
\(592\) 0 0
\(593\) 3.75353 3.75353i 0.154139 0.154139i −0.625825 0.779964i \(-0.715238\pi\)
0.779964 + 0.625825i \(0.215238\pi\)
\(594\) 0 0
\(595\) −7.01745 −0.287687
\(596\) 0 0
\(597\) 13.6646i 0.559254i
\(598\) 0 0
\(599\) 24.9729i 1.02036i 0.860066 + 0.510182i \(0.170422\pi\)
−0.860066 + 0.510182i \(0.829578\pi\)
\(600\) 0 0
\(601\) −35.1483 −1.43373 −0.716865 0.697212i \(-0.754423\pi\)
−0.716865 + 0.697212i \(0.754423\pi\)
\(602\) 0 0
\(603\) −4.01622 + 4.01622i −0.163553 + 0.163553i
\(604\) 0 0
\(605\) −1.88381 + 1.88381i −0.0765879 + 0.0765879i
\(606\) 0 0
\(607\) 37.1217i 1.50672i −0.657607 0.753361i \(-0.728431\pi\)
0.657607 0.753361i \(-0.271569\pi\)
\(608\) 0 0
\(609\) −58.1420 + 58.1420i −2.35603 + 2.35603i
\(610\) 0 0
\(611\) 14.3726 17.7474i 0.581451 0.717984i
\(612\) 0 0
\(613\) −28.8736 28.8736i −1.16619 1.16619i −0.983094 0.183100i \(-0.941387\pi\)
−0.183100 0.983094i \(-0.558613\pi\)
\(614\) 0 0
\(615\) 17.1909 0.693203
\(616\) 0 0
\(617\) 21.6271 + 21.6271i 0.870676 + 0.870676i 0.992546 0.121870i \(-0.0388890\pi\)
−0.121870 + 0.992546i \(0.538889\pi\)
\(618\) 0 0
\(619\) −1.60684 1.60684i −0.0645843 0.0645843i 0.674077 0.738661i \(-0.264542\pi\)
−0.738661 + 0.674077i \(0.764542\pi\)
\(620\) 0 0
\(621\) 30.1857i 1.21131i
\(622\) 0 0
\(623\) −2.01576 −0.0807598
\(624\) 0 0
\(625\) −20.8221 −0.832884
\(626\) 0 0
\(627\) 45.6278i 1.82220i
\(628\) 0 0
\(629\) −15.2504 15.2504i −0.608073 0.608073i
\(630\) 0 0
\(631\) −29.7957 29.7957i −1.18615 1.18615i −0.978123 0.208027i \(-0.933296\pi\)
−0.208027 0.978123i \(-0.566704\pi\)
\(632\) 0 0
\(633\) 30.1342 1.19773
\(634\) 0 0
\(635\) −3.42370 3.42370i −0.135865 0.135865i
\(636\) 0 0
\(637\) −10.0078 + 1.05153i −0.396524 + 0.0416630i
\(638\) 0 0
\(639\) −23.3301 + 23.3301i −0.922924 + 0.922924i
\(640\) 0 0
\(641\) 9.35735i 0.369593i 0.982777 + 0.184797i \(0.0591626\pi\)
−0.982777 + 0.184797i \(0.940837\pi\)
\(642\) 0 0
\(643\) 25.6142 25.6142i 1.01013 1.01013i 0.0101790 0.999948i \(-0.496760\pi\)
0.999948 0.0101790i \(-0.00324014\pi\)
\(644\) 0 0
\(645\) 6.83229 6.83229i 0.269021 0.269021i
\(646\) 0 0
\(647\) −13.8564 −0.544752 −0.272376 0.962191i \(-0.587809\pi\)
−0.272376 + 0.962191i \(0.587809\pi\)
\(648\) 0 0
\(649\) 31.2543i 1.22684i
\(650\) 0 0
\(651\) 14.3661i 0.563053i
\(652\) 0 0
\(653\) −8.76135 −0.342858 −0.171429 0.985196i \(-0.554838\pi\)
−0.171429 + 0.985196i \(0.554838\pi\)
\(654\) 0 0
\(655\) −4.86527 + 4.86527i −0.190102 + 0.190102i
\(656\) 0 0
\(657\) 16.7161 16.7161i 0.652157 0.652157i
\(658\) 0 0
\(659\) 0.853814i 0.0332599i −0.999862 0.0166299i \(-0.994706\pi\)
0.999862 0.0166299i \(-0.00529372\pi\)
\(660\) 0 0
\(661\) 19.8129 19.8129i 0.770631 0.770631i −0.207585 0.978217i \(-0.566560\pi\)
0.978217 + 0.207585i \(0.0665605\pi\)
\(662\) 0 0
\(663\) 4.54358 + 43.2432i 0.176458 + 1.67943i
\(664\) 0 0
\(665\) 7.66457 + 7.66457i 0.297219 + 0.297219i
\(666\) 0 0
\(667\) 43.7417 1.69369
\(668\) 0 0
\(669\) −20.0039 20.0039i −0.773396 0.773396i
\(670\) 0 0
\(671\) 13.0026 + 13.0026i 0.501960 + 0.501960i
\(672\) 0 0
\(673\) 21.0452i 0.811235i 0.914043 + 0.405617i \(0.132943\pi\)
−0.914043 + 0.405617i \(0.867057\pi\)
\(674\) 0 0
\(675\) −29.8494 −1.14890
\(676\) 0 0
\(677\) 5.02192 0.193008 0.0965041 0.995333i \(-0.469234\pi\)
0.0965041 + 0.995333i \(0.469234\pi\)
\(678\) 0 0
\(679\) 7.75960i 0.297786i
\(680\) 0 0
\(681\) 32.0360 + 32.0360i 1.22762 + 1.22762i
\(682\) 0 0
\(683\) −16.3126 16.3126i −0.624185 0.624185i 0.322414 0.946599i \(-0.395506\pi\)
−0.946599 + 0.322414i \(0.895506\pi\)
\(684\) 0 0
\(685\) 9.73942 0.372124
\(686\) 0 0
\(687\) 43.5873 + 43.5873i 1.66296 + 1.66296i
\(688\) 0 0
\(689\) 0.283900 + 2.70200i 0.0108157 + 0.102938i
\(690\) 0 0
\(691\) −34.2097 + 34.2097i −1.30140 + 1.30140i −0.373948 + 0.927450i \(0.621996\pi\)
−0.927450 + 0.373948i \(0.878004\pi\)
\(692\) 0 0
\(693\) 39.9251i 1.51663i
\(694\) 0 0
\(695\) 0.355309 0.355309i 0.0134776 0.0134776i
\(696\) 0 0
\(697\) 33.5149 33.5149i 1.26947 1.26947i
\(698\) 0 0
\(699\) 18.0043 0.680984
\(700\) 0 0
\(701\) 12.1575i 0.459183i 0.973287 + 0.229592i \(0.0737391\pi\)
−0.973287 + 0.229592i \(0.926261\pi\)
\(702\) 0 0
\(703\) 33.3135i 1.25644i
\(704\) 0 0
\(705\) −9.66945 −0.364173
\(706\) 0 0
\(707\) 3.33446 3.33446i 0.125405 0.125405i
\(708\) 0 0
\(709\) −6.12010 + 6.12010i −0.229845 + 0.229845i −0.812628 0.582783i \(-0.801964\pi\)
0.582783 + 0.812628i \(0.301964\pi\)
\(710\) 0 0
\(711\) 16.8108i 0.630454i
\(712\) 0 0
\(713\) 5.40400 5.40400i 0.202381 0.202381i
\(714\) 0 0
\(715\) −4.68000 + 0.491729i −0.175022 + 0.0183896i
\(716\) 0 0
\(717\) −42.6077 42.6077i −1.59122 1.59122i
\(718\) 0 0
\(719\) −38.2483 −1.42642 −0.713211 0.700950i \(-0.752760\pi\)
−0.713211 + 0.700950i \(0.752760\pi\)
\(720\) 0 0
\(721\) −7.90182 7.90182i −0.294279 0.294279i
\(722\) 0 0
\(723\) −17.0836 17.0836i −0.635347 0.635347i
\(724\) 0 0
\(725\) 43.2543i 1.60642i
\(726\) 0 0
\(727\) 28.8883 1.07141 0.535704 0.844406i \(-0.320046\pi\)
0.535704 + 0.844406i \(0.320046\pi\)
\(728\) 0 0
\(729\) 41.3432 1.53123
\(730\) 0 0
\(731\) 26.6401i 0.985320i
\(732\) 0 0
\(733\) 21.1303 + 21.1303i 0.780465 + 0.780465i 0.979909 0.199444i \(-0.0639137\pi\)
−0.199444 + 0.979909i \(0.563914\pi\)
\(734\) 0 0
\(735\) 3.01277 + 3.01277i 0.111128 + 0.111128i
\(736\) 0 0
\(737\) −2.67085 −0.0983821
\(738\) 0 0
\(739\) −3.05518 3.05518i −0.112387 0.112387i 0.648677 0.761064i \(-0.275323\pi\)
−0.761064 + 0.648677i \(0.775323\pi\)
\(740\) 0 0
\(741\) 42.2684 52.1935i 1.55277 1.91738i
\(742\) 0 0
\(743\) 34.0912 34.0912i 1.25069 1.25069i 0.295274 0.955413i \(-0.404589\pi\)
0.955413 0.295274i \(-0.0954108\pi\)
\(744\) 0 0
\(745\) 11.7754i 0.431419i
\(746\) 0 0
\(747\) 27.0670 27.0670i 0.990330 0.990330i
\(748\) 0 0
\(749\) 13.4400 13.4400i 0.491088 0.491088i
\(750\) 0 0
\(751\) −11.2821 −0.411689 −0.205845 0.978585i \(-0.565994\pi\)
−0.205845 + 0.978585i \(0.565994\pi\)
\(752\) 0 0
\(753\) 21.9251i 0.798997i
\(754\) 0 0
\(755\) 1.66723i 0.0606767i
\(756\) 0 0
\(757\) 17.5897 0.639309 0.319655 0.947534i \(-0.396433\pi\)
0.319655 + 0.947534i \(0.396433\pi\)
\(758\) 0 0
\(759\) 23.6677 23.6677i 0.859084 0.859084i
\(760\) 0 0
\(761\) −7.77685 + 7.77685i −0.281911 + 0.281911i −0.833871 0.551960i \(-0.813880\pi\)
0.551960 + 0.833871i \(0.313880\pi\)
\(762\) 0 0
\(763\) 22.7023i 0.821877i
\(764\) 0 0
\(765\) 8.26058 8.26058i 0.298662 0.298662i
\(766\) 0 0
\(767\) 28.9531 35.7517i 1.04544 1.29092i
\(768\) 0 0
\(769\) 0.120099 + 0.120099i 0.00433088 + 0.00433088i 0.709269 0.704938i \(-0.249025\pi\)
−0.704938 + 0.709269i \(0.749025\pi\)
\(770\) 0 0
\(771\) −74.8782 −2.69667
\(772\) 0 0
\(773\) 18.5343 + 18.5343i 0.666632 + 0.666632i 0.956935 0.290303i \(-0.0937560\pi\)
−0.290303 + 0.956935i \(0.593756\pi\)
\(774\) 0 0
\(775\) −5.34378 5.34378i −0.191954 0.191954i
\(776\) 0 0
\(777\) 45.9378i 1.64801i
\(778\) 0 0
\(779\) −73.2110 −2.62306
\(780\) 0 0
\(781\) −15.5149 −0.555166
\(782\) 0 0
\(783\) 58.0495i 2.07452i
\(784\) 0 0
\(785\) −3.55370 3.55370i −0.126837 0.126837i
\(786\) 0 0
\(787\) 8.40540 + 8.40540i 0.299620 + 0.299620i 0.840865 0.541245i \(-0.182047\pi\)
−0.541245 + 0.840865i \(0.682047\pi\)
\(788\) 0 0
\(789\) 49.6257 1.76672
\(790\) 0 0
\(791\) 5.35022 + 5.35022i 0.190232 + 0.190232i
\(792\) 0 0
\(793\) −2.82838 26.9189i −0.100439 0.955917i
\(794\) 0 0
\(795\) 0.813414 0.813414i 0.0288488 0.0288488i
\(796\) 0 0
\(797\) 36.9393i 1.30846i −0.756298 0.654228i \(-0.772994\pi\)
0.756298 0.654228i \(-0.227006\pi\)
\(798\) 0 0
\(799\) −18.8513 + 18.8513i −0.666912 + 0.666912i
\(800\) 0 0
\(801\) 2.37285 2.37285i 0.0838406 0.0838406i
\(802\) 0 0
\(803\) 11.1165 0.392292
\(804\) 0 0
\(805\) 7.95142i 0.280251i
\(806\) 0 0
\(807\) 12.8729i 0.453149i
\(808\) 0 0
\(809\) −35.4633 −1.24682 −0.623412 0.781893i \(-0.714254\pi\)
−0.623412 + 0.781893i \(0.714254\pi\)
\(810\) 0 0
\(811\) −19.6291 + 19.6291i −0.689271 + 0.689271i −0.962071 0.272800i \(-0.912050\pi\)
0.272800 + 0.962071i \(0.412050\pi\)
\(812\) 0 0
\(813\) −52.8401 + 52.8401i −1.85318 + 1.85318i
\(814\) 0 0
\(815\) 3.99623i 0.139982i
\(816\) 0 0
\(817\) −29.0968 + 29.0968i −1.01797 + 1.01797i
\(818\) 0 0
\(819\) 36.9856 45.6703i 1.29238 1.59585i
\(820\) 0 0
\(821\) 18.5343 + 18.5343i 0.646851 + 0.646851i 0.952231 0.305380i \(-0.0987834\pi\)
−0.305380 + 0.952231i \(0.598783\pi\)
\(822\) 0 0
\(823\) 16.2522 0.566517 0.283259 0.959044i \(-0.408584\pi\)
0.283259 + 0.959044i \(0.408584\pi\)
\(824\) 0 0
\(825\) −23.4040 23.4040i −0.814823 0.814823i
\(826\) 0 0
\(827\) 33.7224 + 33.7224i 1.17264 + 1.17264i 0.981577 + 0.191065i \(0.0611940\pi\)
0.191065 + 0.981577i \(0.438806\pi\)
\(828\) 0 0
\(829\) 15.6928i 0.545033i 0.962151 + 0.272516i \(0.0878559\pi\)
−0.962151 + 0.272516i \(0.912144\pi\)
\(830\) 0 0
\(831\) −1.62683 −0.0564341
\(832\) 0 0
\(833\) 11.7472 0.407018
\(834\) 0 0
\(835\) 10.3923i 0.359641i
\(836\) 0 0
\(837\) −7.17162 7.17162i −0.247888 0.247888i
\(838\) 0 0
\(839\) −19.0122 19.0122i −0.656373 0.656373i 0.298147 0.954520i \(-0.403631\pi\)
−0.954520 + 0.298147i \(0.903631\pi\)
\(840\) 0 0
\(841\) 55.1187 1.90064
\(842\) 0 0
\(843\) −34.0600 34.0600i −1.17309 1.17309i
\(844\) 0 0
\(845\) 5.80896 + 3.77294i 0.199834 + 0.129793i
\(846\) 0 0
\(847\) 11.0629 11.0629i 0.380124 0.380124i
\(848\) 0 0
\(849\) 7.47885i 0.256673i
\(850\) 0 0
\(851\) 17.2801 17.2801i 0.592354 0.592354i
\(852\) 0 0
\(853\) 9.80896 9.80896i 0.335852 0.335852i −0.518951 0.854804i \(-0.673677\pi\)
0.854804 + 0.518951i \(0.173677\pi\)
\(854\) 0 0
\(855\) −18.0447 −0.617115
\(856\) 0 0
\(857\) 17.6568i 0.603143i −0.953444 0.301572i \(-0.902489\pi\)
0.953444 0.301572i \(-0.0975112\pi\)
\(858\) 0 0
\(859\) 41.4755i 1.41513i −0.706650 0.707564i \(-0.749794\pi\)
0.706650 0.707564i \(-0.250206\pi\)
\(860\) 0 0
\(861\) −100.955 −3.44053
\(862\) 0 0
\(863\) 19.5107 19.5107i 0.664151 0.664151i −0.292205 0.956356i \(-0.594389\pi\)
0.956356 + 0.292205i \(0.0943890\pi\)
\(864\) 0 0
\(865\) −3.79877 + 3.79877i −0.129162 + 0.129162i
\(866\) 0 0
\(867\) 2.05173i 0.0696804i
\(868\) 0 0
\(869\) 5.58972 5.58972i 0.189618 0.189618i
\(870\) 0 0
\(871\) 3.05518 + 2.47420i 0.103521 + 0.0838352i
\(872\) 0 0
\(873\) 9.13420 + 9.13420i 0.309146 + 0.309146i
\(874\) 0 0
\(875\) −16.1990 −0.547625
\(876\) 0 0
\(877\) −16.7949 16.7949i −0.567122 0.567122i 0.364199 0.931321i \(-0.381343\pi\)
−0.931321 + 0.364199i \(0.881343\pi\)
\(878\) 0 0
\(879\) 9.18318 + 9.18318i 0.309741 + 0.309741i
\(880\) 0 0
\(881\) 24.3744i 0.821194i −0.911817 0.410597i \(-0.865320\pi\)
0.911817 0.410597i \(-0.134680\pi\)
\(882\) 0 0
\(883\) −19.7119 −0.663358 −0.331679 0.943392i \(-0.607615\pi\)
−0.331679 + 0.943392i \(0.607615\pi\)
\(884\) 0 0
\(885\) −19.4788 −0.654774
\(886\) 0 0
\(887\) 36.9432i 1.24043i −0.784432 0.620215i \(-0.787045\pi\)
0.784432 0.620215i \(-0.212955\pi\)
\(888\) 0 0
\(889\) 20.1060 + 20.1060i 0.674334 + 0.674334i
\(890\) 0 0
\(891\) −4.34234 4.34234i −0.145474 0.145474i
\(892\) 0 0
\(893\) 41.1794 1.37802
\(894\) 0 0
\(895\) 7.42671 + 7.42671i 0.248247 + 0.248247i
\(896\) 0 0
\(897\) −48.9986 + 5.14830i −1.63602 + 0.171897i
\(898\) 0 0
\(899\) 10.3923 10.3923i 0.346603 0.346603i
\(900\) 0 0
\(901\) 3.17162i 0.105662i
\(902\) 0 0
\(903\) −40.1232 + 40.1232i −1.33522 + 1.33522i
\(904\) 0 0
\(905\) 8.88772 8.88772i 0.295438 0.295438i
\(906\) 0 0
\(907\) 5.13133 0.170383 0.0851915 0.996365i \(-0.472850\pi\)
0.0851915 + 0.996365i \(0.472850\pi\)
\(908\) 0 0
\(909\) 7.85030i 0.260378i
\(910\) 0 0
\(911\) 42.6151i 1.41190i −0.708261 0.705950i \(-0.750520\pi\)
0.708261 0.705950i \(-0.249480\pi\)
\(912\) 0 0
\(913\) 18.0000 0.595713
\(914\) 0 0
\(915\) −8.10370 + 8.10370i −0.267900 + 0.267900i
\(916\) 0 0
\(917\) 28.5717 28.5717i 0.943521 0.943521i
\(918\) 0 0
\(919\) 32.1155i 1.05939i 0.848187 + 0.529697i \(0.177694\pi\)
−0.848187 + 0.529697i \(0.822306\pi\)
\(920\) 0 0
\(921\) 29.2825 29.2825i 0.964891 0.964891i
\(922\) 0 0
\(923\) 17.7474 + 14.3726i 0.584163 + 0.473079i
\(924\) 0 0
\(925\) −17.0876 17.0876i −0.561835 0.561835i
\(926\) 0 0
\(927\) 18.6032 0.611010
\(928\) 0 0
\(929\) 23.7020 + 23.7020i 0.777637 + 0.777637i 0.979429 0.201791i \(-0.0646762\pi\)
−0.201791 + 0.979429i \(0.564676\pi\)
\(930\) 0 0
\(931\) −12.8305 12.8305i −0.420504 0.420504i
\(932\) 0 0
\(933\) 2.07485i 0.0679275i
\(934\) 0 0
\(935\) 5.49342 0.179654
\(936\) 0 0
\(937\) 40.2402 1.31459 0.657295 0.753633i \(-0.271701\pi\)
0.657295 + 0.753633i \(0.271701\pi\)
\(938\) 0 0
\(939\) 72.2680i 2.35838i
\(940\) 0 0
\(941\) 30.9057 + 30.9057i 1.00750 + 1.00750i 0.999972 + 0.00752655i \(0.00239580\pi\)
0.00752655 + 0.999972i \(0.497604\pi\)
\(942\) 0 0
\(943\) 37.9755 + 37.9755i 1.23665 + 1.23665i
\(944\) 0 0
\(945\) −10.5523 −0.343266
\(946\) 0 0
\(947\) −1.73205 1.73205i −0.0562841 0.0562841i 0.678405 0.734689i \(-0.262672\pi\)
−0.734689 + 0.678405i \(0.762672\pi\)
\(948\) 0 0
\(949\) −12.7161 10.2980i −0.412782 0.334287i
\(950\) 0 0
\(951\) 14.7102 14.7102i 0.477012 0.477012i
\(952\) 0 0
\(953\) 35.4915i 1.14968i 0.818264 + 0.574842i \(0.194936\pi\)
−0.818264 + 0.574842i \(0.805064\pi\)
\(954\) 0 0
\(955\) 5.71230 5.71230i 0.184846 0.184846i
\(956\) 0 0
\(957\) 45.5149 45.5149i 1.47129 1.47129i
\(958\) 0 0
\(959\) −57.1957 −1.84694
\(960\) 0 0
\(961\) 28.4322i 0.917168i
\(962\) 0 0
\(963\) 31.6418i 1.01964i
\(964\) 0 0
\(965\) −5.02192 −0.161661
\(966\) 0 0
\(967\) −11.7511 + 11.7511i −0.377889 + 0.377889i −0.870340 0.492451i \(-0.836101\pi\)
0.492451 + 0.870340i \(0.336101\pi\)
\(968\) 0 0
\(969\) −55.4400 + 55.4400i −1.78099 + 1.78099i
\(970\) 0 0
\(971\) 43.2364i 1.38752i 0.720205 + 0.693762i \(0.244048\pi\)
−0.720205 + 0.693762i \(0.755952\pi\)
\(972\) 0 0
\(973\) −2.08659 + 2.08659i −0.0668929 + 0.0668929i
\(974\) 0 0
\(975\) 5.09093 + 48.4526i 0.163040 + 1.55172i
\(976\) 0 0
\(977\) −7.83620 7.83620i −0.250702 0.250702i 0.570556 0.821259i \(-0.306728\pi\)
−0.821259 + 0.570556i \(0.806728\pi\)
\(978\) 0 0
\(979\) 1.57798 0.0504326
\(980\) 0 0
\(981\) −26.7239 26.7239i −0.853229 0.853229i
\(982\) 0 0
\(983\) 33.4967 + 33.4967i 1.06838 + 1.06838i 0.997484 + 0.0708955i \(0.0225857\pi\)
0.0708955 + 0.997484i \(0.477414\pi\)
\(984\) 0 0
\(985\) 2.67380i 0.0851943i
\(986\) 0 0
\(987\) 56.7847 1.80748
\(988\) 0 0
\(989\) 30.1857 0.959850
\(990\) 0 0
\(991\) 43.8714i 1.39362i 0.717256 + 0.696810i \(0.245398\pi\)
−0.717256 + 0.696810i \(0.754602\pi\)
\(992\) 0 0
\(993\) −11.4555 11.4555i −0.363530 0.363530i
\(994\) 0 0
\(995\) −1.79687 1.79687i −0.0569647 0.0569647i
\(996\) 0 0
\(997\) −29.1716 −0.923875 −0.461937 0.886913i \(-0.652845\pi\)
−0.461937 + 0.886913i \(0.652845\pi\)
\(998\) 0 0
\(999\) −22.9324 22.9324i −0.725548 0.725548i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.2.k.b.47.6 yes 12
3.2 odd 2 1872.2.bf.o.1711.4 12
4.3 odd 2 inner 208.2.k.b.47.1 yes 12
8.3 odd 2 832.2.k.j.255.6 12
8.5 even 2 832.2.k.j.255.1 12
12.11 even 2 1872.2.bf.o.1711.3 12
13.5 odd 4 inner 208.2.k.b.31.6 yes 12
39.5 even 4 1872.2.bf.o.1279.3 12
52.31 even 4 inner 208.2.k.b.31.1 12
104.5 odd 4 832.2.k.j.447.1 12
104.83 even 4 832.2.k.j.447.6 12
156.83 odd 4 1872.2.bf.o.1279.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
208.2.k.b.31.1 12 52.31 even 4 inner
208.2.k.b.31.6 yes 12 13.5 odd 4 inner
208.2.k.b.47.1 yes 12 4.3 odd 2 inner
208.2.k.b.47.6 yes 12 1.1 even 1 trivial
832.2.k.j.255.1 12 8.5 even 2
832.2.k.j.255.6 12 8.3 odd 2
832.2.k.j.447.1 12 104.5 odd 4
832.2.k.j.447.6 12 104.83 even 4
1872.2.bf.o.1279.3 12 39.5 even 4
1872.2.bf.o.1279.4 12 156.83 odd 4
1872.2.bf.o.1711.3 12 12.11 even 2
1872.2.bf.o.1711.4 12 3.2 odd 2