Properties

Label 208.2.w.a
Level $208$
Weight $2$
Character orbit 208.w
Analytic conductor $1.661$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,2,Mod(17,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 208.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66088836204\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{3} + ( - \zeta_{6} + 2) q^{7} + 2 \zeta_{6} q^{9} + (3 \zeta_{6} + 3) q^{11} + (4 \zeta_{6} - 3) q^{13} - 3 \zeta_{6} q^{17} + (3 \zeta_{6} - 6) q^{19} + (2 \zeta_{6} - 1) q^{21} + \cdots + (12 \zeta_{6} - 6) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 3 q^{7} + 2 q^{9} + 9 q^{11} - 2 q^{13} - 3 q^{17} - 9 q^{19} + 3 q^{23} + 10 q^{25} - 10 q^{27} + 9 q^{29} - 9 q^{33} - 9 q^{37} - 5 q^{39} - 9 q^{41} + 5 q^{43} - 4 q^{49} + 6 q^{51} - 12 q^{53}+ \cdots - 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −0.500000 + 0.866025i 0 0 0 1.50000 0.866025i 0 1.00000 + 1.73205i 0
49.1 0 −0.500000 0.866025i 0 0 0 1.50000 + 0.866025i 0 1.00000 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.2.w.a 2
3.b odd 2 1 1872.2.by.e 2
4.b odd 2 1 52.2.h.a 2
8.b even 2 1 832.2.w.c 2
8.d odd 2 1 832.2.w.b 2
12.b even 2 1 468.2.t.a 2
13.c even 3 1 2704.2.f.h 2
13.e even 6 1 inner 208.2.w.a 2
13.e even 6 1 2704.2.f.h 2
13.f odd 12 2 2704.2.a.u 2
20.d odd 2 1 1300.2.y.a 2
20.e even 4 2 1300.2.ba.a 4
28.d even 2 1 2548.2.u.a 2
28.f even 6 1 2548.2.bb.a 2
28.f even 6 1 2548.2.bq.b 2
28.g odd 6 1 2548.2.bb.b 2
28.g odd 6 1 2548.2.bq.a 2
39.h odd 6 1 1872.2.by.e 2
52.b odd 2 1 676.2.h.a 2
52.f even 4 2 676.2.e.e 4
52.i odd 6 1 52.2.h.a 2
52.i odd 6 1 676.2.d.b 2
52.j odd 6 1 676.2.d.b 2
52.j odd 6 1 676.2.h.a 2
52.l even 12 2 676.2.a.f 2
52.l even 12 2 676.2.e.e 4
104.p odd 6 1 832.2.w.b 2
104.s even 6 1 832.2.w.c 2
156.p even 6 1 6084.2.b.d 2
156.r even 6 1 468.2.t.a 2
156.r even 6 1 6084.2.b.d 2
156.v odd 12 2 6084.2.a.t 2
260.w odd 6 1 1300.2.y.a 2
260.bg even 12 2 1300.2.ba.a 4
364.s odd 6 1 2548.2.bb.b 2
364.w even 6 1 2548.2.bq.b 2
364.bc even 6 1 2548.2.u.a 2
364.bk odd 6 1 2548.2.bq.a 2
364.bp even 6 1 2548.2.bb.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.2.h.a 2 4.b odd 2 1
52.2.h.a 2 52.i odd 6 1
208.2.w.a 2 1.a even 1 1 trivial
208.2.w.a 2 13.e even 6 1 inner
468.2.t.a 2 12.b even 2 1
468.2.t.a 2 156.r even 6 1
676.2.a.f 2 52.l even 12 2
676.2.d.b 2 52.i odd 6 1
676.2.d.b 2 52.j odd 6 1
676.2.e.e 4 52.f even 4 2
676.2.e.e 4 52.l even 12 2
676.2.h.a 2 52.b odd 2 1
676.2.h.a 2 52.j odd 6 1
832.2.w.b 2 8.d odd 2 1
832.2.w.b 2 104.p odd 6 1
832.2.w.c 2 8.b even 2 1
832.2.w.c 2 104.s even 6 1
1300.2.y.a 2 20.d odd 2 1
1300.2.y.a 2 260.w odd 6 1
1300.2.ba.a 4 20.e even 4 2
1300.2.ba.a 4 260.bg even 12 2
1872.2.by.e 2 3.b odd 2 1
1872.2.by.e 2 39.h odd 6 1
2548.2.u.a 2 28.d even 2 1
2548.2.u.a 2 364.bc even 6 1
2548.2.bb.a 2 28.f even 6 1
2548.2.bb.a 2 364.bp even 6 1
2548.2.bb.b 2 28.g odd 6 1
2548.2.bb.b 2 364.s odd 6 1
2548.2.bq.a 2 28.g odd 6 1
2548.2.bq.a 2 364.bk odd 6 1
2548.2.bq.b 2 28.f even 6 1
2548.2.bq.b 2 364.w even 6 1
2704.2.a.u 2 13.f odd 12 2
2704.2.f.h 2 13.c even 3 1
2704.2.f.h 2 13.e even 6 1
6084.2.a.t 2 156.v odd 12 2
6084.2.b.d 2 156.p even 6 1
6084.2.b.d 2 156.r even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(208, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$11$ \( T^{2} - 9T + 27 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T + 13 \) Copy content Toggle raw display
$17$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$23$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$29$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$31$ \( T^{2} + 12 \) Copy content Toggle raw display
$37$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$41$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$43$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$47$ \( T^{2} + 108 \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$61$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$67$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$71$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$73$ \( T^{2} + 48 \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 108 \) Copy content Toggle raw display
$89$ \( T^{2} - 27T + 243 \) Copy content Toggle raw display
$97$ \( T^{2} + 21T + 147 \) Copy content Toggle raw display
show more
show less