Properties

Label 208.3.bd.e.145.2
Level $208$
Weight $3$
Character 208.145
Analytic conductor $5.668$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,3,Mod(33,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 0, 11]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.33");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 208.bd (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.66758949869\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.44991500544.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 38x^{6} + 555x^{4} - 3674x^{2} + 9409 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 145.2
Root \(2.83160 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 208.145
Dual form 208.3.bd.e.33.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.982786 + 1.70224i) q^{3} +(5.05105 - 5.05105i) q^{5} +(-0.383239 + 0.102689i) q^{7} +(2.56826 - 4.44836i) q^{9} +(3.51976 - 13.1359i) q^{11} +(-9.67036 + 8.68816i) q^{13} +(13.5622 + 3.63397i) q^{15} +(12.3415 + 7.12539i) q^{17} +(-0.873186 - 3.25878i) q^{19} +(-0.551442 - 0.551442i) q^{21} +(14.3562 - 8.28854i) q^{23} -26.0262i q^{25} +27.7864 q^{27} +(22.3938 + 38.7872i) q^{29} +(-35.2730 + 35.2730i) q^{31} +(25.8196 - 6.91835i) q^{33} +(-1.41707 + 2.45444i) q^{35} +(9.58504 - 35.7719i) q^{37} +(-24.2932 - 7.92262i) q^{39} +(-10.8895 - 2.91782i) q^{41} +(51.5199 + 29.7450i) q^{43} +(-9.49646 - 35.4413i) q^{45} +(-54.6357 - 54.6357i) q^{47} +(-42.2989 + 24.4213i) q^{49} +28.0110i q^{51} -63.3563 q^{53} +(-48.5717 - 84.1287i) q^{55} +(4.68905 - 4.68905i) q^{57} +(-31.1381 + 8.34343i) q^{59} +(-29.0686 + 50.3483i) q^{61} +(-0.527462 + 1.96852i) q^{63} +(-4.96111 + 92.7298i) q^{65} +(100.204 + 26.8497i) q^{67} +(28.2181 + 16.2917i) q^{69} +(19.7845 + 73.8369i) q^{71} +(-53.5296 - 53.5296i) q^{73} +(44.3027 - 25.5782i) q^{75} +5.39564i q^{77} -129.990 q^{79} +(4.19371 + 7.26372i) q^{81} +(-48.6837 + 48.6837i) q^{83} +(98.3284 - 26.3470i) q^{85} +(-44.0166 + 76.2390i) q^{87} +(-4.08744 + 15.2545i) q^{89} +(2.81388 - 4.32268i) q^{91} +(-94.7089 - 25.3772i) q^{93} +(-20.8707 - 12.0497i) q^{95} +(-3.73635 - 13.9442i) q^{97} +(-49.3937 - 49.3937i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{5} - 4 q^{7} - 6 q^{9} - 24 q^{11} + 18 q^{13} + 60 q^{15} - 54 q^{17} + 50 q^{19} - 54 q^{21} + 24 q^{23} - 36 q^{27} + 108 q^{29} - 176 q^{31} + 114 q^{33} + 30 q^{35} + 104 q^{37} - 120 q^{39}+ \cdots + 182 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.982786 + 1.70224i 0.327595 + 0.567412i 0.982034 0.188703i \(-0.0604284\pi\)
−0.654439 + 0.756115i \(0.727095\pi\)
\(4\) 0 0
\(5\) 5.05105 5.05105i 1.01021 1.01021i 0.0102623 0.999947i \(-0.496733\pi\)
0.999947 0.0102623i \(-0.00326663\pi\)
\(6\) 0 0
\(7\) −0.383239 + 0.102689i −0.0547484 + 0.0146698i −0.286089 0.958203i \(-0.592355\pi\)
0.231341 + 0.972873i \(0.425689\pi\)
\(8\) 0 0
\(9\) 2.56826 4.44836i 0.285362 0.494262i
\(10\) 0 0
\(11\) 3.51976 13.1359i 0.319978 1.19418i −0.599286 0.800535i \(-0.704549\pi\)
0.919264 0.393641i \(-0.128785\pi\)
\(12\) 0 0
\(13\) −9.67036 + 8.68816i −0.743874 + 0.668320i
\(14\) 0 0
\(15\) 13.5622 + 3.63397i 0.904145 + 0.242265i
\(16\) 0 0
\(17\) 12.3415 + 7.12539i 0.725973 + 0.419141i 0.816947 0.576712i \(-0.195665\pi\)
−0.0909741 + 0.995853i \(0.528998\pi\)
\(18\) 0 0
\(19\) −0.873186 3.25878i −0.0459572 0.171514i 0.939133 0.343554i \(-0.111631\pi\)
−0.985090 + 0.172040i \(0.944964\pi\)
\(20\) 0 0
\(21\) −0.551442 0.551442i −0.0262592 0.0262592i
\(22\) 0 0
\(23\) 14.3562 8.28854i 0.624181 0.360371i −0.154314 0.988022i \(-0.549317\pi\)
0.778495 + 0.627651i \(0.215983\pi\)
\(24\) 0 0
\(25\) 26.0262i 1.04105i
\(26\) 0 0
\(27\) 27.7864 1.02912
\(28\) 0 0
\(29\) 22.3938 + 38.7872i 0.772199 + 1.33749i 0.936355 + 0.351054i \(0.114177\pi\)
−0.164156 + 0.986434i \(0.552490\pi\)
\(30\) 0 0
\(31\) −35.2730 + 35.2730i −1.13784 + 1.13784i −0.149004 + 0.988837i \(0.547607\pi\)
−0.988837 + 0.149004i \(0.952393\pi\)
\(32\) 0 0
\(33\) 25.8196 6.91835i 0.782413 0.209647i
\(34\) 0 0
\(35\) −1.41707 + 2.45444i −0.0404878 + 0.0701269i
\(36\) 0 0
\(37\) 9.58504 35.7719i 0.259055 0.966807i −0.706734 0.707479i \(-0.749832\pi\)
0.965789 0.259328i \(-0.0835010\pi\)
\(38\) 0 0
\(39\) −24.2932 7.92262i −0.622903 0.203144i
\(40\) 0 0
\(41\) −10.8895 2.91782i −0.265597 0.0711665i 0.123563 0.992337i \(-0.460568\pi\)
−0.389160 + 0.921170i \(0.627235\pi\)
\(42\) 0 0
\(43\) 51.5199 + 29.7450i 1.19814 + 0.691745i 0.960140 0.279521i \(-0.0901756\pi\)
0.237998 + 0.971266i \(0.423509\pi\)
\(44\) 0 0
\(45\) −9.49646 35.4413i −0.211033 0.787584i
\(46\) 0 0
\(47\) −54.6357 54.6357i −1.16246 1.16246i −0.983935 0.178527i \(-0.942867\pi\)
−0.178527 0.983935i \(-0.557133\pi\)
\(48\) 0 0
\(49\) −42.2989 + 24.4213i −0.863243 + 0.498394i
\(50\) 0 0
\(51\) 28.0110i 0.549235i
\(52\) 0 0
\(53\) −63.3563 −1.19540 −0.597701 0.801719i \(-0.703919\pi\)
−0.597701 + 0.801719i \(0.703919\pi\)
\(54\) 0 0
\(55\) −48.5717 84.1287i −0.883122 1.52961i
\(56\) 0 0
\(57\) 4.68905 4.68905i 0.0822640 0.0822640i
\(58\) 0 0
\(59\) −31.1381 + 8.34343i −0.527765 + 0.141414i −0.512856 0.858475i \(-0.671412\pi\)
−0.0149089 + 0.999889i \(0.504746\pi\)
\(60\) 0 0
\(61\) −29.0686 + 50.3483i −0.476534 + 0.825382i −0.999638 0.0268870i \(-0.991441\pi\)
0.523104 + 0.852269i \(0.324774\pi\)
\(62\) 0 0
\(63\) −0.527462 + 1.96852i −0.00837242 + 0.0312463i
\(64\) 0 0
\(65\) −4.96111 + 92.7298i −0.0763247 + 1.42661i
\(66\) 0 0
\(67\) 100.204 + 26.8497i 1.49559 + 0.400741i 0.911619 0.411035i \(-0.134833\pi\)
0.583968 + 0.811777i \(0.301499\pi\)
\(68\) 0 0
\(69\) 28.2181 + 16.2917i 0.408958 + 0.236112i
\(70\) 0 0
\(71\) 19.7845 + 73.8369i 0.278656 + 1.03996i 0.953352 + 0.301861i \(0.0976079\pi\)
−0.674696 + 0.738095i \(0.735725\pi\)
\(72\) 0 0
\(73\) −53.5296 53.5296i −0.733282 0.733282i 0.237987 0.971268i \(-0.423513\pi\)
−0.971268 + 0.237987i \(0.923513\pi\)
\(74\) 0 0
\(75\) 44.3027 25.5782i 0.590703 0.341042i
\(76\) 0 0
\(77\) 5.39564i 0.0700732i
\(78\) 0 0
\(79\) −129.990 −1.64544 −0.822719 0.568449i \(-0.807544\pi\)
−0.822719 + 0.568449i \(0.807544\pi\)
\(80\) 0 0
\(81\) 4.19371 + 7.26372i 0.0517742 + 0.0896756i
\(82\) 0 0
\(83\) −48.6837 + 48.6837i −0.586551 + 0.586551i −0.936696 0.350145i \(-0.886132\pi\)
0.350145 + 0.936696i \(0.386132\pi\)
\(84\) 0 0
\(85\) 98.3284 26.3470i 1.15681 0.309965i
\(86\) 0 0
\(87\) −44.0166 + 76.2390i −0.505938 + 0.876310i
\(88\) 0 0
\(89\) −4.08744 + 15.2545i −0.0459263 + 0.171399i −0.985080 0.172099i \(-0.944945\pi\)
0.939153 + 0.343498i \(0.111612\pi\)
\(90\) 0 0
\(91\) 2.81388 4.32268i 0.0309218 0.0475020i
\(92\) 0 0
\(93\) −94.7089 25.3772i −1.01838 0.272873i
\(94\) 0 0
\(95\) −20.8707 12.0497i −0.219692 0.126839i
\(96\) 0 0
\(97\) −3.73635 13.9442i −0.0385190 0.143755i 0.943988 0.329979i \(-0.107042\pi\)
−0.982507 + 0.186224i \(0.940375\pi\)
\(98\) 0 0
\(99\) −49.3937 49.3937i −0.498926 0.498926i
\(100\) 0 0
\(101\) −0.332715 + 0.192093i −0.00329421 + 0.00190191i −0.501646 0.865073i \(-0.667272\pi\)
0.498352 + 0.866975i \(0.333939\pi\)
\(102\) 0 0
\(103\) 10.1674i 0.0987130i 0.998781 + 0.0493565i \(0.0157170\pi\)
−0.998781 + 0.0493565i \(0.984283\pi\)
\(104\) 0 0
\(105\) −5.57072 −0.0530545
\(106\) 0 0
\(107\) 28.2273 + 48.8911i 0.263806 + 0.456926i 0.967250 0.253825i \(-0.0816886\pi\)
−0.703444 + 0.710751i \(0.748355\pi\)
\(108\) 0 0
\(109\) 86.1609 86.1609i 0.790467 0.790467i −0.191103 0.981570i \(-0.561206\pi\)
0.981570 + 0.191103i \(0.0612065\pi\)
\(110\) 0 0
\(111\) 70.3122 18.8401i 0.633443 0.169731i
\(112\) 0 0
\(113\) 33.5007 58.0250i 0.296467 0.513495i −0.678858 0.734269i \(-0.737525\pi\)
0.975325 + 0.220774i \(0.0708583\pi\)
\(114\) 0 0
\(115\) 30.6479 114.380i 0.266503 0.994605i
\(116\) 0 0
\(117\) 13.8121 + 65.3307i 0.118052 + 0.558382i
\(118\) 0 0
\(119\) −5.46146 1.46339i −0.0458946 0.0122974i
\(120\) 0 0
\(121\) −55.3749 31.9707i −0.457644 0.264221i
\(122\) 0 0
\(123\) −5.73520 21.4040i −0.0466276 0.174017i
\(124\) 0 0
\(125\) −5.18324 5.18324i −0.0414659 0.0414659i
\(126\) 0 0
\(127\) 12.2590 7.07775i 0.0965277 0.0557303i −0.450959 0.892545i \(-0.648918\pi\)
0.547487 + 0.836814i \(0.315585\pi\)
\(128\) 0 0
\(129\) 116.932i 0.906450i
\(130\) 0 0
\(131\) 134.167 1.02418 0.512089 0.858932i \(-0.328872\pi\)
0.512089 + 0.858932i \(0.328872\pi\)
\(132\) 0 0
\(133\) 0.669278 + 1.15922i 0.00503216 + 0.00871596i
\(134\) 0 0
\(135\) 140.350 140.350i 1.03963 1.03963i
\(136\) 0 0
\(137\) −61.0842 + 16.3675i −0.445870 + 0.119470i −0.474766 0.880112i \(-0.657467\pi\)
0.0288964 + 0.999582i \(0.490801\pi\)
\(138\) 0 0
\(139\) 134.588 233.114i 0.968261 1.67708i 0.267676 0.963509i \(-0.413744\pi\)
0.700586 0.713568i \(-0.252922\pi\)
\(140\) 0 0
\(141\) 39.3076 146.698i 0.278778 1.04041i
\(142\) 0 0
\(143\) 80.0898 + 157.609i 0.560068 + 1.10216i
\(144\) 0 0
\(145\) 309.028 + 82.8038i 2.13123 + 0.571060i
\(146\) 0 0
\(147\) −83.1416 48.0018i −0.565589 0.326543i
\(148\) 0 0
\(149\) 46.0924 + 172.019i 0.309345 + 1.15449i 0.929141 + 0.369727i \(0.120549\pi\)
−0.619796 + 0.784763i \(0.712785\pi\)
\(150\) 0 0
\(151\) 18.9917 + 18.9917i 0.125773 + 0.125773i 0.767191 0.641418i \(-0.221654\pi\)
−0.641418 + 0.767191i \(0.721654\pi\)
\(152\) 0 0
\(153\) 63.3926 36.5997i 0.414331 0.239214i
\(154\) 0 0
\(155\) 356.332i 2.29891i
\(156\) 0 0
\(157\) −99.6292 −0.634581 −0.317291 0.948328i \(-0.602773\pi\)
−0.317291 + 0.948328i \(0.602773\pi\)
\(158\) 0 0
\(159\) −62.2657 107.847i −0.391608 0.678285i
\(160\) 0 0
\(161\) −4.65071 + 4.65071i −0.0288864 + 0.0288864i
\(162\) 0 0
\(163\) 32.2814 8.64978i 0.198045 0.0530661i −0.158433 0.987370i \(-0.550644\pi\)
0.356478 + 0.934304i \(0.383977\pi\)
\(164\) 0 0
\(165\) 95.4713 165.361i 0.578614 1.00219i
\(166\) 0 0
\(167\) −5.23878 + 19.5514i −0.0313699 + 0.117074i −0.979835 0.199806i \(-0.935969\pi\)
0.948465 + 0.316880i \(0.102635\pi\)
\(168\) 0 0
\(169\) 18.0316 168.035i 0.106696 0.994292i
\(170\) 0 0
\(171\) −16.7388 4.48514i −0.0978876 0.0262289i
\(172\) 0 0
\(173\) −92.5187 53.4157i −0.534790 0.308761i 0.208175 0.978092i \(-0.433248\pi\)
−0.742965 + 0.669330i \(0.766581\pi\)
\(174\) 0 0
\(175\) 2.67259 + 9.97424i 0.0152719 + 0.0569957i
\(176\) 0 0
\(177\) −44.8046 44.8046i −0.253133 0.253133i
\(178\) 0 0
\(179\) −247.149 + 142.692i −1.38072 + 0.797159i −0.992245 0.124299i \(-0.960332\pi\)
−0.388476 + 0.921459i \(0.626998\pi\)
\(180\) 0 0
\(181\) 286.491i 1.58282i 0.611285 + 0.791411i \(0.290653\pi\)
−0.611285 + 0.791411i \(0.709347\pi\)
\(182\) 0 0
\(183\) −114.273 −0.624442
\(184\) 0 0
\(185\) −132.271 229.100i −0.714978 1.23838i
\(186\) 0 0
\(187\) 137.038 137.038i 0.732823 0.732823i
\(188\) 0 0
\(189\) −10.6488 + 2.85334i −0.0563430 + 0.0150970i
\(190\) 0 0
\(191\) −24.0138 + 41.5931i −0.125727 + 0.217765i −0.922017 0.387150i \(-0.873460\pi\)
0.796290 + 0.604915i \(0.206793\pi\)
\(192\) 0 0
\(193\) 14.1623 52.8544i 0.0733798 0.273857i −0.919481 0.393134i \(-0.871391\pi\)
0.992861 + 0.119277i \(0.0380576\pi\)
\(194\) 0 0
\(195\) −162.724 + 82.6886i −0.834480 + 0.424044i
\(196\) 0 0
\(197\) 216.454 + 57.9987i 1.09875 + 0.294410i 0.762256 0.647275i \(-0.224092\pi\)
0.336496 + 0.941685i \(0.390758\pi\)
\(198\) 0 0
\(199\) −139.201 80.3674i −0.699500 0.403857i 0.107661 0.994188i \(-0.465664\pi\)
−0.807161 + 0.590331i \(0.798997\pi\)
\(200\) 0 0
\(201\) 52.7750 + 196.959i 0.262562 + 0.979895i
\(202\) 0 0
\(203\) −12.5652 12.5652i −0.0618974 0.0618974i
\(204\) 0 0
\(205\) −69.7413 + 40.2652i −0.340202 + 0.196415i
\(206\) 0 0
\(207\) 85.1485i 0.411346i
\(208\) 0 0
\(209\) −45.8805 −0.219524
\(210\) 0 0
\(211\) 168.202 + 291.334i 0.797164 + 1.38073i 0.921456 + 0.388483i \(0.127001\pi\)
−0.124292 + 0.992246i \(0.539666\pi\)
\(212\) 0 0
\(213\) −106.244 + 106.244i −0.498798 + 0.498798i
\(214\) 0 0
\(215\) 410.473 109.986i 1.90918 0.511562i
\(216\) 0 0
\(217\) 9.89587 17.1401i 0.0456031 0.0789868i
\(218\) 0 0
\(219\) 38.5118 143.728i 0.175853 0.656293i
\(220\) 0 0
\(221\) −181.254 + 38.3202i −0.820153 + 0.173395i
\(222\) 0 0
\(223\) 58.5729 + 15.6946i 0.262659 + 0.0703792i 0.387745 0.921767i \(-0.373254\pi\)
−0.125086 + 0.992146i \(0.539921\pi\)
\(224\) 0 0
\(225\) −115.774 66.8420i −0.514550 0.297076i
\(226\) 0 0
\(227\) −14.8051 55.2535i −0.0652208 0.243407i 0.925618 0.378460i \(-0.123546\pi\)
−0.990838 + 0.135053i \(0.956880\pi\)
\(228\) 0 0
\(229\) −100.531 100.531i −0.439000 0.439000i 0.452675 0.891675i \(-0.350470\pi\)
−0.891675 + 0.452675i \(0.850470\pi\)
\(230\) 0 0
\(231\) −9.18465 + 5.30276i −0.0397604 + 0.0229557i
\(232\) 0 0
\(233\) 366.815i 1.57431i 0.616754 + 0.787156i \(0.288448\pi\)
−0.616754 + 0.787156i \(0.711552\pi\)
\(234\) 0 0
\(235\) −551.935 −2.34866
\(236\) 0 0
\(237\) −127.752 221.273i −0.539038 0.933641i
\(238\) 0 0
\(239\) −15.4013 + 15.4013i −0.0644407 + 0.0644407i −0.738593 0.674152i \(-0.764509\pi\)
0.674152 + 0.738593i \(0.264509\pi\)
\(240\) 0 0
\(241\) 153.249 41.0631i 0.635890 0.170386i 0.0735487 0.997292i \(-0.476568\pi\)
0.562341 + 0.826906i \(0.309901\pi\)
\(242\) 0 0
\(243\) 116.796 202.296i 0.480640 0.832494i
\(244\) 0 0
\(245\) −90.3007 + 337.007i −0.368574 + 1.37554i
\(246\) 0 0
\(247\) 36.7568 + 23.9271i 0.148813 + 0.0968710i
\(248\) 0 0
\(249\) −130.717 35.0255i −0.524967 0.140665i
\(250\) 0 0
\(251\) −234.064 135.137i −0.932527 0.538395i −0.0449172 0.998991i \(-0.514302\pi\)
−0.887610 + 0.460596i \(0.847636\pi\)
\(252\) 0 0
\(253\) −58.3474 217.755i −0.230622 0.860693i
\(254\) 0 0
\(255\) 141.485 + 141.485i 0.554842 + 0.554842i
\(256\) 0 0
\(257\) 211.966 122.378i 0.824769 0.476180i −0.0272894 0.999628i \(-0.508688\pi\)
0.852058 + 0.523447i \(0.175354\pi\)
\(258\) 0 0
\(259\) 14.6934i 0.0567314i
\(260\) 0 0
\(261\) 230.052 0.881426
\(262\) 0 0
\(263\) 26.0425 + 45.1070i 0.0990211 + 0.171509i 0.911280 0.411788i \(-0.135096\pi\)
−0.812259 + 0.583297i \(0.801762\pi\)
\(264\) 0 0
\(265\) −320.016 + 320.016i −1.20761 + 1.20761i
\(266\) 0 0
\(267\) −29.9839 + 8.03417i −0.112299 + 0.0300905i
\(268\) 0 0
\(269\) 27.7456 48.0568i 0.103144 0.178650i −0.809835 0.586658i \(-0.800443\pi\)
0.912978 + 0.408008i \(0.133777\pi\)
\(270\) 0 0
\(271\) −53.8417 + 200.940i −0.198678 + 0.741476i 0.792606 + 0.609734i \(0.208724\pi\)
−0.991284 + 0.131742i \(0.957943\pi\)
\(272\) 0 0
\(273\) 10.1237 + 0.541623i 0.0370830 + 0.00198397i
\(274\) 0 0
\(275\) −341.878 91.6059i −1.24319 0.333112i
\(276\) 0 0
\(277\) −139.256 80.3992i −0.502728 0.290250i 0.227112 0.973869i \(-0.427072\pi\)
−0.729839 + 0.683619i \(0.760405\pi\)
\(278\) 0 0
\(279\) 66.3168 + 247.498i 0.237695 + 0.887088i
\(280\) 0 0
\(281\) −132.843 132.843i −0.472752 0.472752i 0.430052 0.902804i \(-0.358495\pi\)
−0.902804 + 0.430052i \(0.858495\pi\)
\(282\) 0 0
\(283\) −218.526 + 126.166i −0.772176 + 0.445816i −0.833650 0.552293i \(-0.813753\pi\)
0.0614742 + 0.998109i \(0.480420\pi\)
\(284\) 0 0
\(285\) 47.3692i 0.166208i
\(286\) 0 0
\(287\) 4.47290 0.0155850
\(288\) 0 0
\(289\) −42.9575 74.4046i −0.148642 0.257456i
\(290\) 0 0
\(291\) 20.0643 20.0643i 0.0689496 0.0689496i
\(292\) 0 0
\(293\) 287.318 76.9867i 0.980608 0.262753i 0.267308 0.963611i \(-0.413866\pi\)
0.713301 + 0.700858i \(0.247199\pi\)
\(294\) 0 0
\(295\) −115.137 + 199.423i −0.390295 + 0.676011i
\(296\) 0 0
\(297\) 97.8014 365.000i 0.329298 1.22896i
\(298\) 0 0
\(299\) −66.8171 + 204.882i −0.223469 + 0.685224i
\(300\) 0 0
\(301\) −22.7989 6.10895i −0.0757439 0.0202955i
\(302\) 0 0
\(303\) −0.653976 0.377573i −0.00215834 0.00124612i
\(304\) 0 0
\(305\) 107.485 + 401.139i 0.352409 + 1.31521i
\(306\) 0 0
\(307\) −385.654 385.654i −1.25620 1.25620i −0.952892 0.303310i \(-0.901908\pi\)
−0.303310 0.952892i \(-0.598092\pi\)
\(308\) 0 0
\(309\) −17.3074 + 9.99242i −0.0560109 + 0.0323379i
\(310\) 0 0
\(311\) 91.9643i 0.295705i 0.989009 + 0.147853i \(0.0472361\pi\)
−0.989009 + 0.147853i \(0.952764\pi\)
\(312\) 0 0
\(313\) −324.502 −1.03675 −0.518374 0.855154i \(-0.673462\pi\)
−0.518374 + 0.855154i \(0.673462\pi\)
\(314\) 0 0
\(315\) 7.27883 + 12.6073i 0.0231074 + 0.0400232i
\(316\) 0 0
\(317\) 125.476 125.476i 0.395825 0.395825i −0.480933 0.876757i \(-0.659702\pi\)
0.876757 + 0.480933i \(0.159702\pi\)
\(318\) 0 0
\(319\) 588.326 157.642i 1.84428 0.494174i
\(320\) 0 0
\(321\) −55.4828 + 96.0990i −0.172844 + 0.299374i
\(322\) 0 0
\(323\) 12.4436 46.4401i 0.0385250 0.143777i
\(324\) 0 0
\(325\) 226.120 + 251.682i 0.695753 + 0.774407i
\(326\) 0 0
\(327\) 231.344 + 61.9884i 0.707474 + 0.189567i
\(328\) 0 0
\(329\) 26.5490 + 15.3281i 0.0806960 + 0.0465899i
\(330\) 0 0
\(331\) 28.5043 + 106.380i 0.0861158 + 0.321389i 0.995523 0.0945179i \(-0.0301310\pi\)
−0.909407 + 0.415907i \(0.863464\pi\)
\(332\) 0 0
\(333\) −134.509 134.509i −0.403932 0.403932i
\(334\) 0 0
\(335\) 641.756 370.518i 1.91569 1.10602i
\(336\) 0 0
\(337\) 70.0627i 0.207901i 0.994582 + 0.103951i \(0.0331484\pi\)
−0.994582 + 0.103951i \(0.966852\pi\)
\(338\) 0 0
\(339\) 131.696 0.388484
\(340\) 0 0
\(341\) 339.192 + 587.497i 0.994697 + 1.72287i
\(342\) 0 0
\(343\) 27.4498 27.4498i 0.0800285 0.0800285i
\(344\) 0 0
\(345\) 224.821 60.2407i 0.651656 0.174611i
\(346\) 0 0
\(347\) 198.543 343.887i 0.572170 0.991027i −0.424173 0.905581i \(-0.639435\pi\)
0.996343 0.0854462i \(-0.0272316\pi\)
\(348\) 0 0
\(349\) 37.1748 138.738i 0.106518 0.397531i −0.891995 0.452045i \(-0.850694\pi\)
0.998513 + 0.0545146i \(0.0173612\pi\)
\(350\) 0 0
\(351\) −268.704 + 241.413i −0.765539 + 0.687785i
\(352\) 0 0
\(353\) 347.277 + 93.0527i 0.983789 + 0.263605i 0.714639 0.699493i \(-0.246591\pi\)
0.269149 + 0.963098i \(0.413258\pi\)
\(354\) 0 0
\(355\) 472.887 + 273.021i 1.33207 + 0.769074i
\(356\) 0 0
\(357\) −2.87641 10.7349i −0.00805716 0.0300697i
\(358\) 0 0
\(359\) −136.661 136.661i −0.380670 0.380670i 0.490673 0.871344i \(-0.336751\pi\)
−0.871344 + 0.490673i \(0.836751\pi\)
\(360\) 0 0
\(361\) 302.778 174.809i 0.838720 0.484235i
\(362\) 0 0
\(363\) 125.681i 0.346230i
\(364\) 0 0
\(365\) −540.761 −1.48154
\(366\) 0 0
\(367\) −73.2216 126.823i −0.199514 0.345568i 0.748857 0.662732i \(-0.230603\pi\)
−0.948371 + 0.317163i \(0.897270\pi\)
\(368\) 0 0
\(369\) −40.9465 + 40.9465i −0.110966 + 0.110966i
\(370\) 0 0
\(371\) 24.2806 6.50597i 0.0654464 0.0175363i
\(372\) 0 0
\(373\) 107.966 187.002i 0.289452 0.501345i −0.684227 0.729269i \(-0.739860\pi\)
0.973679 + 0.227924i \(0.0731937\pi\)
\(374\) 0 0
\(375\) 3.72908 13.9171i 0.00994421 0.0371123i
\(376\) 0 0
\(377\) −553.545 180.525i −1.46829 0.478846i
\(378\) 0 0
\(379\) 306.392 + 82.0974i 0.808422 + 0.216616i 0.639278 0.768976i \(-0.279233\pi\)
0.169143 + 0.985591i \(0.445900\pi\)
\(380\) 0 0
\(381\) 24.0960 + 13.9118i 0.0632441 + 0.0365140i
\(382\) 0 0
\(383\) −159.079 593.690i −0.415349 1.55010i −0.784136 0.620590i \(-0.786893\pi\)
0.368786 0.929514i \(-0.379773\pi\)
\(384\) 0 0
\(385\) 27.2536 + 27.2536i 0.0707887 + 0.0707887i
\(386\) 0 0
\(387\) 264.633 152.786i 0.683807 0.394796i
\(388\) 0 0
\(389\) 738.319i 1.89799i −0.315286 0.948997i \(-0.602101\pi\)
0.315286 0.948997i \(-0.397899\pi\)
\(390\) 0 0
\(391\) 236.236 0.604185
\(392\) 0 0
\(393\) 131.858 + 228.385i 0.335516 + 0.581131i
\(394\) 0 0
\(395\) −656.584 + 656.584i −1.66224 + 1.66224i
\(396\) 0 0
\(397\) 418.554 112.151i 1.05429 0.282497i 0.310268 0.950649i \(-0.399581\pi\)
0.744025 + 0.668152i \(0.232914\pi\)
\(398\) 0 0
\(399\) −1.31551 + 2.27854i −0.00329703 + 0.00571062i
\(400\) 0 0
\(401\) −88.4912 + 330.254i −0.220676 + 0.823575i 0.763414 + 0.645909i \(0.223521\pi\)
−0.984091 + 0.177666i \(0.943145\pi\)
\(402\) 0 0
\(403\) 34.6450 647.561i 0.0859677 1.60685i
\(404\) 0 0
\(405\) 57.8721 + 15.5068i 0.142894 + 0.0382883i
\(406\) 0 0
\(407\) −436.160 251.817i −1.07165 0.618715i
\(408\) 0 0
\(409\) −194.342 725.295i −0.475164 1.77334i −0.620769 0.783994i \(-0.713179\pi\)
0.145605 0.989343i \(-0.453487\pi\)
\(410\) 0 0
\(411\) −87.8940 87.8940i −0.213854 0.213854i
\(412\) 0 0
\(413\) 11.0766 6.39506i 0.0268198 0.0154844i
\(414\) 0 0
\(415\) 491.807i 1.18508i
\(416\) 0 0
\(417\) 529.086 1.26879
\(418\) 0 0
\(419\) 22.5991 + 39.1428i 0.0539358 + 0.0934196i 0.891733 0.452562i \(-0.149490\pi\)
−0.837797 + 0.545982i \(0.816157\pi\)
\(420\) 0 0
\(421\) 114.370 114.370i 0.271664 0.271664i −0.558106 0.829770i \(-0.688472\pi\)
0.829770 + 0.558106i \(0.188472\pi\)
\(422\) 0 0
\(423\) −383.358 + 102.720i −0.906284 + 0.242838i
\(424\) 0 0
\(425\) 185.447 321.203i 0.436345 0.755772i
\(426\) 0 0
\(427\) 5.97003 22.2804i 0.0139813 0.0521790i
\(428\) 0 0
\(429\) −189.577 + 291.228i −0.441905 + 0.678853i
\(430\) 0 0
\(431\) 476.518 + 127.683i 1.10561 + 0.296247i 0.765047 0.643975i \(-0.222716\pi\)
0.340563 + 0.940222i \(0.389382\pi\)
\(432\) 0 0
\(433\) 479.798 + 277.012i 1.10808 + 0.639750i 0.938331 0.345738i \(-0.112371\pi\)
0.169748 + 0.985488i \(0.445705\pi\)
\(434\) 0 0
\(435\) 162.757 + 607.417i 0.374154 + 1.39636i
\(436\) 0 0
\(437\) −39.5461 39.5461i −0.0904945 0.0904945i
\(438\) 0 0
\(439\) −216.740 + 125.135i −0.493712 + 0.285045i −0.726113 0.687575i \(-0.758675\pi\)
0.232401 + 0.972620i \(0.425342\pi\)
\(440\) 0 0
\(441\) 250.881i 0.568891i
\(442\) 0 0
\(443\) 351.926 0.794415 0.397207 0.917729i \(-0.369979\pi\)
0.397207 + 0.917729i \(0.369979\pi\)
\(444\) 0 0
\(445\) 56.4056 + 97.6973i 0.126754 + 0.219545i
\(446\) 0 0
\(447\) −247.518 + 247.518i −0.553732 + 0.553732i
\(448\) 0 0
\(449\) −230.991 + 61.8939i −0.514457 + 0.137848i −0.506701 0.862122i \(-0.669135\pi\)
−0.00775542 + 0.999970i \(0.502469\pi\)
\(450\) 0 0
\(451\) −76.6567 + 132.773i −0.169970 + 0.294398i
\(452\) 0 0
\(453\) −13.6636 + 50.9933i −0.0301625 + 0.112568i
\(454\) 0 0
\(455\) −7.62100 36.0471i −0.0167494 0.0792244i
\(456\) 0 0
\(457\) −595.464 159.554i −1.30298 0.349133i −0.460406 0.887708i \(-0.652296\pi\)
−0.842578 + 0.538575i \(0.818963\pi\)
\(458\) 0 0
\(459\) 342.927 + 197.989i 0.747117 + 0.431348i
\(460\) 0 0
\(461\) 58.2997 + 217.577i 0.126464 + 0.471968i 0.999888 0.0149920i \(-0.00477229\pi\)
−0.873424 + 0.486960i \(0.838106\pi\)
\(462\) 0 0
\(463\) −31.6428 31.6428i −0.0683430 0.0683430i 0.672109 0.740452i \(-0.265389\pi\)
−0.740452 + 0.672109i \(0.765389\pi\)
\(464\) 0 0
\(465\) −606.561 + 350.198i −1.30443 + 0.753114i
\(466\) 0 0
\(467\) 228.839i 0.490018i 0.969521 + 0.245009i \(0.0787910\pi\)
−0.969521 + 0.245009i \(0.921209\pi\)
\(468\) 0 0
\(469\) −41.1594 −0.0877598
\(470\) 0 0
\(471\) −97.9143 169.593i −0.207886 0.360069i
\(472\) 0 0
\(473\) 572.066 572.066i 1.20944 1.20944i
\(474\) 0 0
\(475\) −84.8134 + 22.7257i −0.178555 + 0.0478436i
\(476\) 0 0
\(477\) −162.716 + 281.832i −0.341123 + 0.590842i
\(478\) 0 0
\(479\) 159.775 596.288i 0.333559 1.24486i −0.571863 0.820349i \(-0.693779\pi\)
0.905423 0.424511i \(-0.139554\pi\)
\(480\) 0 0
\(481\) 218.101 + 429.203i 0.453432 + 0.892314i
\(482\) 0 0
\(483\) −12.4872 3.34595i −0.0258535 0.00692743i
\(484\) 0 0
\(485\) −89.3054 51.5605i −0.184135 0.106310i
\(486\) 0 0
\(487\) −133.652 498.797i −0.274440 1.02422i −0.956216 0.292663i \(-0.905459\pi\)
0.681776 0.731561i \(-0.261208\pi\)
\(488\) 0 0
\(489\) 46.4497 + 46.4497i 0.0949892 + 0.0949892i
\(490\) 0 0
\(491\) 186.731 107.809i 0.380307 0.219571i −0.297645 0.954677i \(-0.596201\pi\)
0.677952 + 0.735106i \(0.262868\pi\)
\(492\) 0 0
\(493\) 638.258i 1.29464i
\(494\) 0 0
\(495\) −498.980 −1.00804
\(496\) 0 0
\(497\) −15.1644 26.2655i −0.0305119 0.0528482i
\(498\) 0 0
\(499\) 81.3789 81.3789i 0.163084 0.163084i −0.620847 0.783931i \(-0.713211\pi\)
0.783931 + 0.620847i \(0.213211\pi\)
\(500\) 0 0
\(501\) −38.4297 + 10.2972i −0.0767059 + 0.0205533i
\(502\) 0 0
\(503\) −245.576 + 425.350i −0.488223 + 0.845627i −0.999908 0.0135460i \(-0.995688\pi\)
0.511685 + 0.859173i \(0.329021\pi\)
\(504\) 0 0
\(505\) −0.710288 + 2.65083i −0.00140651 + 0.00524917i
\(506\) 0 0
\(507\) 303.757 134.449i 0.599126 0.265185i
\(508\) 0 0
\(509\) −731.107 195.900i −1.43636 0.384871i −0.545102 0.838369i \(-0.683509\pi\)
−0.891257 + 0.453498i \(0.850176\pi\)
\(510\) 0 0
\(511\) 26.0115 + 15.0177i 0.0509031 + 0.0293889i
\(512\) 0 0
\(513\) −24.2627 90.5495i −0.0472957 0.176510i
\(514\) 0 0
\(515\) 51.3562 + 51.3562i 0.0997208 + 0.0997208i
\(516\) 0 0
\(517\) −909.995 + 525.386i −1.76015 + 1.01622i
\(518\) 0 0
\(519\) 209.985i 0.404595i
\(520\) 0 0
\(521\) −493.093 −0.946436 −0.473218 0.880945i \(-0.656908\pi\)
−0.473218 + 0.880945i \(0.656908\pi\)
\(522\) 0 0
\(523\) −295.949 512.598i −0.565867 0.980111i −0.996968 0.0778071i \(-0.975208\pi\)
0.431101 0.902304i \(-0.358125\pi\)
\(524\) 0 0
\(525\) −14.3519 + 14.3519i −0.0273370 + 0.0273370i
\(526\) 0 0
\(527\) −686.658 + 183.989i −1.30296 + 0.349126i
\(528\) 0 0
\(529\) −127.100 + 220.144i −0.240265 + 0.416151i
\(530\) 0 0
\(531\) −42.8562 + 159.942i −0.0807086 + 0.301208i
\(532\) 0 0
\(533\) 130.656 66.3931i 0.245132 0.124565i
\(534\) 0 0
\(535\) 389.529 + 104.374i 0.728091 + 0.195091i
\(536\) 0 0
\(537\) −485.789 280.471i −0.904636 0.522292i
\(538\) 0 0
\(539\) 171.914 + 641.593i 0.318950 + 1.19034i
\(540\) 0 0
\(541\) 359.655 + 359.655i 0.664796 + 0.664796i 0.956507 0.291710i \(-0.0942243\pi\)
−0.291710 + 0.956507i \(0.594224\pi\)
\(542\) 0 0
\(543\) −487.675 + 281.559i −0.898112 + 0.518525i
\(544\) 0 0
\(545\) 870.406i 1.59707i
\(546\) 0 0
\(547\) −279.253 −0.510517 −0.255258 0.966873i \(-0.582161\pi\)
−0.255258 + 0.966873i \(0.582161\pi\)
\(548\) 0 0
\(549\) 149.312 + 258.615i 0.271970 + 0.471066i
\(550\) 0 0
\(551\) 106.845 106.845i 0.193911 0.193911i
\(552\) 0 0
\(553\) 49.8171 13.3484i 0.0900851 0.0241382i
\(554\) 0 0
\(555\) 259.988 450.313i 0.468447 0.811374i
\(556\) 0 0
\(557\) 219.899 820.673i 0.394791 1.47338i −0.427344 0.904089i \(-0.640551\pi\)
0.822135 0.569292i \(-0.192783\pi\)
\(558\) 0 0
\(559\) −756.646 + 159.968i −1.35357 + 0.286169i
\(560\) 0 0
\(561\) 367.950 + 98.5919i 0.655882 + 0.175743i
\(562\) 0 0
\(563\) −8.83856 5.10294i −0.0156990 0.00906384i 0.492130 0.870522i \(-0.336218\pi\)
−0.507829 + 0.861458i \(0.669552\pi\)
\(564\) 0 0
\(565\) −123.873 462.301i −0.219244 0.818231i
\(566\) 0 0
\(567\) −2.35309 2.35309i −0.00415008 0.00415008i
\(568\) 0 0
\(569\) 463.691 267.712i 0.814923 0.470496i −0.0337397 0.999431i \(-0.510742\pi\)
0.848663 + 0.528935i \(0.177408\pi\)
\(570\) 0 0
\(571\) 80.7627i 0.141441i −0.997496 0.0707204i \(-0.977470\pi\)
0.997496 0.0707204i \(-0.0225298\pi\)
\(572\) 0 0
\(573\) −94.4018 −0.164750
\(574\) 0 0
\(575\) −215.719 373.636i −0.375163 0.649802i
\(576\) 0 0
\(577\) −315.472 + 315.472i −0.546746 + 0.546746i −0.925498 0.378752i \(-0.876353\pi\)
0.378752 + 0.925498i \(0.376353\pi\)
\(578\) 0 0
\(579\) 103.889 27.8370i 0.179429 0.0480778i
\(580\) 0 0
\(581\) 13.6582 23.6567i 0.0235081 0.0407173i
\(582\) 0 0
\(583\) −222.999 + 832.244i −0.382503 + 1.42752i
\(584\) 0 0
\(585\) 399.754 + 260.223i 0.683340 + 0.444826i
\(586\) 0 0
\(587\) −1034.86 277.289i −1.76296 0.472383i −0.775645 0.631169i \(-0.782575\pi\)
−0.987313 + 0.158786i \(0.949242\pi\)
\(588\) 0 0
\(589\) 145.747 + 84.1470i 0.247448 + 0.142864i
\(590\) 0 0
\(591\) 114.001 + 425.456i 0.192895 + 0.719892i
\(592\) 0 0
\(593\) −83.2716 83.2716i −0.140424 0.140424i 0.633400 0.773824i \(-0.281659\pi\)
−0.773824 + 0.633400i \(0.781659\pi\)
\(594\) 0 0
\(595\) −34.9777 + 20.1944i −0.0587861 + 0.0339402i
\(596\) 0 0
\(597\) 315.936i 0.529206i
\(598\) 0 0
\(599\) 816.105 1.36244 0.681222 0.732076i \(-0.261449\pi\)
0.681222 + 0.732076i \(0.261449\pi\)
\(600\) 0 0
\(601\) −134.337 232.679i −0.223523 0.387152i 0.732353 0.680926i \(-0.238422\pi\)
−0.955875 + 0.293773i \(0.905089\pi\)
\(602\) 0 0
\(603\) 376.788 376.788i 0.624856 0.624856i
\(604\) 0 0
\(605\) −441.187 + 118.216i −0.729234 + 0.195398i
\(606\) 0 0
\(607\) −77.2134 + 133.737i −0.127205 + 0.220325i −0.922593 0.385776i \(-0.873934\pi\)
0.795388 + 0.606101i \(0.207267\pi\)
\(608\) 0 0
\(609\) 9.04000 33.7378i 0.0148440 0.0553986i
\(610\) 0 0
\(611\) 1003.03 + 53.6629i 1.64162 + 0.0878279i
\(612\) 0 0
\(613\) 156.303 + 41.8812i 0.254980 + 0.0683218i 0.384045 0.923314i \(-0.374531\pi\)
−0.129065 + 0.991636i \(0.541197\pi\)
\(614\) 0 0
\(615\) −137.082 79.1441i −0.222897 0.128690i
\(616\) 0 0
\(617\) 224.930 + 839.450i 0.364554 + 1.36054i 0.868024 + 0.496523i \(0.165390\pi\)
−0.503469 + 0.864013i \(0.667943\pi\)
\(618\) 0 0
\(619\) 169.456 + 169.456i 0.273757 + 0.273757i 0.830611 0.556854i \(-0.187992\pi\)
−0.556854 + 0.830611i \(0.687992\pi\)
\(620\) 0 0
\(621\) 398.906 230.308i 0.642360 0.370867i
\(622\) 0 0
\(623\) 6.26587i 0.0100576i
\(624\) 0 0
\(625\) 598.293 0.957268
\(626\) 0 0
\(627\) −45.0907 78.0994i −0.0719150 0.124560i
\(628\) 0 0
\(629\) 373.183 373.183i 0.593295 0.593295i
\(630\) 0 0
\(631\) −1034.16 + 277.102i −1.63892 + 0.439147i −0.956480 0.291797i \(-0.905747\pi\)
−0.682438 + 0.730943i \(0.739080\pi\)
\(632\) 0 0
\(633\) −330.612 + 572.638i −0.522295 + 0.904641i
\(634\) 0 0
\(635\) 26.1708 97.6709i 0.0412139 0.153812i
\(636\) 0 0
\(637\) 196.869 603.663i 0.309057 0.947665i
\(638\) 0 0
\(639\) 379.265 + 101.624i 0.593529 + 0.159036i
\(640\) 0 0
\(641\) −325.961 188.193i −0.508519 0.293594i 0.223706 0.974657i \(-0.428185\pi\)
−0.732225 + 0.681063i \(0.761518\pi\)
\(642\) 0 0
\(643\) 151.996 + 567.258i 0.236386 + 0.882205i 0.977519 + 0.210847i \(0.0676221\pi\)
−0.741133 + 0.671358i \(0.765711\pi\)
\(644\) 0 0
\(645\) 590.629 + 590.629i 0.915704 + 0.915704i
\(646\) 0 0
\(647\) 538.312 310.795i 0.832013 0.480363i −0.0225284 0.999746i \(-0.507172\pi\)
0.854541 + 0.519383i \(0.173838\pi\)
\(648\) 0 0
\(649\) 438.395i 0.675493i
\(650\) 0 0
\(651\) 38.9021 0.0597574
\(652\) 0 0
\(653\) −215.178 372.699i −0.329522 0.570749i 0.652895 0.757448i \(-0.273554\pi\)
−0.982417 + 0.186700i \(0.940221\pi\)
\(654\) 0 0
\(655\) 677.686 677.686i 1.03463 1.03463i
\(656\) 0 0
\(657\) −375.597 + 100.641i −0.571685 + 0.153182i
\(658\) 0 0
\(659\) −100.548 + 174.154i −0.152576 + 0.264269i −0.932174 0.362011i \(-0.882090\pi\)
0.779598 + 0.626281i \(0.215424\pi\)
\(660\) 0 0
\(661\) −143.054 + 533.885i −0.216421 + 0.807693i 0.769241 + 0.638959i \(0.220635\pi\)
−0.985662 + 0.168734i \(0.946032\pi\)
\(662\) 0 0
\(663\) −243.364 270.876i −0.367065 0.408561i
\(664\) 0 0
\(665\) 9.23585 + 2.47474i 0.0138885 + 0.00372141i
\(666\) 0 0
\(667\) 642.978 + 371.223i 0.963985 + 0.556557i
\(668\) 0 0
\(669\) 30.8488 + 115.129i 0.0461118 + 0.172092i
\(670\) 0 0
\(671\) 559.057 + 559.057i 0.833170 + 0.833170i
\(672\) 0 0
\(673\) −530.404 + 306.229i −0.788119 + 0.455021i −0.839300 0.543669i \(-0.817035\pi\)
0.0511810 + 0.998689i \(0.483701\pi\)
\(674\) 0 0
\(675\) 723.173i 1.07137i
\(676\) 0 0
\(677\) 271.670 0.401285 0.200642 0.979665i \(-0.435697\pi\)
0.200642 + 0.979665i \(0.435697\pi\)
\(678\) 0 0
\(679\) 2.86383 + 4.96029i 0.00421771 + 0.00730529i
\(680\) 0 0
\(681\) 79.5042 79.5042i 0.116746 0.116746i
\(682\) 0 0
\(683\) 1125.63 301.611i 1.64806 0.441597i 0.688993 0.724768i \(-0.258053\pi\)
0.959069 + 0.283171i \(0.0913864\pi\)
\(684\) 0 0
\(685\) −225.866 + 391.212i −0.329732 + 0.571112i
\(686\) 0 0
\(687\) 72.3270 269.928i 0.105279 0.392908i
\(688\) 0 0
\(689\) 612.678 550.450i 0.889228 0.798911i
\(690\) 0 0
\(691\) −522.444 139.988i −0.756069 0.202588i −0.139861 0.990171i \(-0.544666\pi\)
−0.616209 + 0.787583i \(0.711332\pi\)
\(692\) 0 0
\(693\) 24.0017 + 13.8574i 0.0346345 + 0.0199963i
\(694\) 0 0
\(695\) −497.657 1857.28i −0.716053 2.67235i
\(696\) 0 0
\(697\) −113.602 113.602i −0.162987 0.162987i
\(698\) 0 0
\(699\) −624.405 + 360.501i −0.893284 + 0.515738i
\(700\) 0 0
\(701\) 349.407i 0.498441i 0.968447 + 0.249221i \(0.0801744\pi\)
−0.968447 + 0.249221i \(0.919826\pi\)
\(702\) 0 0
\(703\) −124.942 −0.177727
\(704\) 0 0
\(705\) −542.434 939.524i −0.769410 1.33266i
\(706\) 0 0
\(707\) 0.107784 0.107784i 0.000152452 0.000152452i
\(708\) 0 0
\(709\) −857.862 + 229.863i −1.20996 + 0.324208i −0.806746 0.590898i \(-0.798774\pi\)
−0.403214 + 0.915106i \(0.632107\pi\)
\(710\) 0 0
\(711\) −333.847 + 578.240i −0.469546 + 0.813278i
\(712\) 0 0
\(713\) −214.024 + 798.748i −0.300174 + 1.12026i
\(714\) 0 0
\(715\) 1200.63 + 391.555i 1.67920 + 0.547630i
\(716\) 0 0
\(717\) −41.3529 11.0805i −0.0576750 0.0154540i
\(718\) 0 0
\(719\) −1101.34 635.861i −1.53177 0.884369i −0.999280 0.0379340i \(-0.987922\pi\)
−0.532492 0.846435i \(-0.678744\pi\)
\(720\) 0 0
\(721\) −1.04408 3.89656i −0.00144810 0.00540438i
\(722\) 0 0
\(723\) 220.510 + 220.510i 0.304994 + 0.304994i
\(724\) 0 0
\(725\) 1009.48 582.824i 1.39239 0.803896i
\(726\) 0 0
\(727\) 215.990i 0.297098i −0.988905 0.148549i \(-0.952540\pi\)
0.988905 0.148549i \(-0.0474603\pi\)
\(728\) 0 0
\(729\) 534.627 0.733371
\(730\) 0 0
\(731\) 423.890 + 734.199i 0.579877 + 1.00438i
\(732\) 0 0
\(733\) 367.788 367.788i 0.501757 0.501757i −0.410227 0.911984i \(-0.634550\pi\)
0.911984 + 0.410227i \(0.134550\pi\)
\(734\) 0 0
\(735\) −662.412 + 177.493i −0.901241 + 0.241487i
\(736\) 0 0
\(737\) 705.391 1221.77i 0.957111 1.65777i
\(738\) 0 0
\(739\) 128.451 479.386i 0.173817 0.648695i −0.822933 0.568139i \(-0.807664\pi\)
0.996750 0.0805562i \(-0.0256696\pi\)
\(740\) 0 0
\(741\) −4.60556 + 86.0840i −0.00621532 + 0.116173i
\(742\) 0 0
\(743\) 77.8650 + 20.8639i 0.104798 + 0.0280806i 0.310837 0.950463i \(-0.399391\pi\)
−0.206039 + 0.978544i \(0.566057\pi\)
\(744\) 0 0
\(745\) 1101.69 + 636.062i 1.47878 + 0.853774i
\(746\) 0 0
\(747\) 91.5301 + 341.595i 0.122530 + 0.457289i
\(748\) 0 0
\(749\) −15.8384 15.8384i −0.0211460 0.0211460i
\(750\) 0 0
\(751\) −88.7495 + 51.2396i −0.118175 + 0.0682284i −0.557922 0.829893i \(-0.688401\pi\)
0.439747 + 0.898122i \(0.355068\pi\)
\(752\) 0 0
\(753\) 531.244i 0.705503i
\(754\) 0 0
\(755\) 191.856 0.254114
\(756\) 0 0
\(757\) −502.999 871.219i −0.664463 1.15088i −0.979431 0.201781i \(-0.935327\pi\)
0.314967 0.949102i \(-0.398006\pi\)
\(758\) 0 0
\(759\) 313.328 313.328i 0.412817 0.412817i
\(760\) 0 0
\(761\) −634.206 + 169.935i −0.833386 + 0.223305i −0.650190 0.759772i \(-0.725311\pi\)
−0.183195 + 0.983077i \(0.558644\pi\)
\(762\) 0 0
\(763\) −24.1725 + 41.8679i −0.0316808 + 0.0548728i
\(764\) 0 0
\(765\) 135.332 505.066i 0.176905 0.660217i
\(766\) 0 0
\(767\) 228.628 351.217i 0.298080 0.457910i
\(768\) 0 0
\(769\) 542.013 + 145.232i 0.704828 + 0.188858i 0.593392 0.804914i \(-0.297788\pi\)
0.111436 + 0.993772i \(0.464455\pi\)
\(770\) 0 0
\(771\) 416.634 + 240.544i 0.540381 + 0.311989i
\(772\) 0 0
\(773\) −26.8805 100.319i −0.0347742 0.129779i 0.946357 0.323124i \(-0.104733\pi\)
−0.981131 + 0.193345i \(0.938066\pi\)
\(774\) 0 0
\(775\) 918.022 + 918.022i 1.18454 + 1.18454i
\(776\) 0 0
\(777\) −25.0117 + 14.4405i −0.0321901 + 0.0185850i
\(778\) 0 0
\(779\) 38.0341i 0.0488243i
\(780\) 0 0
\(781\) 1039.55 1.33105
\(782\) 0 0
\(783\) 622.242 + 1077.75i 0.794689 + 1.37644i
\(784\) 0 0
\(785\) −503.232 + 503.232i −0.641060 + 0.641060i
\(786\) 0 0
\(787\) −485.028 + 129.963i −0.616300 + 0.165137i −0.553445 0.832885i \(-0.686687\pi\)
−0.0628551 + 0.998023i \(0.520021\pi\)
\(788\) 0 0
\(789\) −51.1885 + 88.6611i −0.0648777 + 0.112371i
\(790\) 0 0
\(791\) −6.88028 + 25.6776i −0.00869821 + 0.0324622i
\(792\) 0 0
\(793\) −156.330 739.439i −0.197138 0.932457i
\(794\) 0 0
\(795\) −859.249 230.235i −1.08082 0.289604i
\(796\) 0 0
\(797\) 957.425 + 552.769i 1.20129 + 0.693563i 0.960841 0.277100i \(-0.0893734\pi\)
0.240445 + 0.970663i \(0.422707\pi\)
\(798\) 0 0
\(799\) −284.988 1063.59i −0.356681 1.33115i
\(800\) 0 0
\(801\) 57.3601 + 57.3601i 0.0716106 + 0.0716106i
\(802\) 0 0
\(803\) −891.572 + 514.749i −1.11030 + 0.641033i
\(804\) 0 0
\(805\) 46.9819i 0.0583626i
\(806\) 0 0
\(807\) 109.072 0.135158
\(808\) 0 0
\(809\) 636.533 + 1102.51i 0.786815 + 1.36280i 0.927909 + 0.372807i \(0.121605\pi\)
−0.141094 + 0.989996i \(0.545062\pi\)
\(810\) 0 0
\(811\) −242.696 + 242.696i −0.299256 + 0.299256i −0.840722 0.541467i \(-0.817869\pi\)
0.541467 + 0.840722i \(0.317869\pi\)
\(812\) 0 0
\(813\) −394.962 + 105.830i −0.485808 + 0.130172i
\(814\) 0 0
\(815\) 119.365 206.745i 0.146460 0.253675i
\(816\) 0 0
\(817\) 51.9459 193.865i 0.0635813 0.237289i
\(818\) 0 0
\(819\) −12.0020 23.6189i −0.0146545 0.0288387i
\(820\) 0 0
\(821\) 553.739 + 148.374i 0.674469 + 0.180723i 0.579767 0.814782i \(-0.303144\pi\)
0.0947017 + 0.995506i \(0.469810\pi\)
\(822\) 0 0
\(823\) 912.674 + 526.933i 1.10896 + 0.640259i 0.938560 0.345116i \(-0.112161\pi\)
0.170401 + 0.985375i \(0.445494\pi\)
\(824\) 0 0
\(825\) −180.058 671.986i −0.218252 0.814529i
\(826\) 0 0
\(827\) −1026.38 1026.38i −1.24109 1.24109i −0.959548 0.281547i \(-0.909153\pi\)
−0.281547 0.959548i \(-0.590847\pi\)
\(828\) 0 0
\(829\) 515.278 297.496i 0.621565 0.358861i −0.155913 0.987771i \(-0.549832\pi\)
0.777478 + 0.628910i \(0.216499\pi\)
\(830\) 0 0
\(831\) 316.061i 0.380338i
\(832\) 0 0
\(833\) −696.045 −0.835588
\(834\) 0 0
\(835\) 72.2937 + 125.216i 0.0865792 + 0.149960i
\(836\) 0 0
\(837\) −980.110 + 980.110i −1.17098 + 1.17098i
\(838\) 0 0
\(839\) 330.829 88.6454i 0.394314 0.105656i −0.0562135 0.998419i \(-0.517903\pi\)
0.450527 + 0.892763i \(0.351236\pi\)
\(840\) 0 0
\(841\) −582.462 + 1008.85i −0.692583 + 1.19959i
\(842\) 0 0
\(843\) 95.5742 356.688i 0.113374 0.423117i
\(844\) 0 0
\(845\) −757.676 939.833i −0.896658 1.11223i
\(846\) 0 0
\(847\) 24.5048 + 6.56605i 0.0289313 + 0.00775212i
\(848\) 0 0
\(849\) −429.528 247.988i −0.505923 0.292095i
\(850\) 0 0
\(851\) −158.892 592.993i −0.186712 0.696819i
\(852\) 0 0
\(853\) −1098.53 1098.53i −1.28784 1.28784i −0.936094 0.351749i \(-0.885587\pi\)
−0.351749 0.936094i \(-0.614413\pi\)
\(854\) 0 0
\(855\) −107.203 + 61.8937i −0.125384 + 0.0723903i
\(856\) 0 0
\(857\) 513.231i 0.598870i −0.954117 0.299435i \(-0.903202\pi\)
0.954117 0.299435i \(-0.0967981\pi\)
\(858\) 0 0
\(859\) −454.733 −0.529375 −0.264687 0.964334i \(-0.585269\pi\)
−0.264687 + 0.964334i \(0.585269\pi\)
\(860\) 0 0
\(861\) 4.39590 + 7.61393i 0.00510558 + 0.00884312i
\(862\) 0 0
\(863\) 477.014 477.014i 0.552739 0.552739i −0.374491 0.927230i \(-0.622183\pi\)
0.927230 + 0.374491i \(0.122183\pi\)
\(864\) 0 0
\(865\) −737.122 + 197.511i −0.852164 + 0.228337i
\(866\) 0 0
\(867\) 84.4362 146.248i 0.0973889 0.168683i
\(868\) 0 0
\(869\) −457.532 + 1707.53i −0.526504 + 1.96494i
\(870\) 0 0
\(871\) −1202.29 + 610.946i −1.38035 + 0.701430i
\(872\) 0 0
\(873\) −71.6249 19.1918i −0.0820445 0.0219838i
\(874\) 0 0
\(875\) 2.51868 + 1.45416i 0.00287849 + 0.00166190i
\(876\) 0 0
\(877\) 199.068 + 742.933i 0.226988 + 0.847130i 0.981598 + 0.190957i \(0.0611592\pi\)
−0.754610 + 0.656173i \(0.772174\pi\)
\(878\) 0 0
\(879\) 413.422 + 413.422i 0.470332 + 0.470332i
\(880\) 0 0
\(881\) −623.881 + 360.198i −0.708151 + 0.408851i −0.810376 0.585910i \(-0.800737\pi\)
0.102225 + 0.994761i \(0.467404\pi\)
\(882\) 0 0
\(883\) 1193.49i 1.35163i −0.737073 0.675813i \(-0.763793\pi\)
0.737073 0.675813i \(-0.236207\pi\)
\(884\) 0 0
\(885\) −452.621 −0.511436
\(886\) 0 0
\(887\) 664.890 + 1151.62i 0.749595 + 1.29834i 0.948017 + 0.318219i \(0.103085\pi\)
−0.198423 + 0.980117i \(0.563582\pi\)
\(888\) 0 0
\(889\) −3.97133 + 3.97133i −0.00446719 + 0.00446719i
\(890\) 0 0
\(891\) 110.177 29.5217i 0.123655 0.0331333i
\(892\) 0 0
\(893\) −130.338 + 225.753i −0.145956 + 0.252802i
\(894\) 0 0
\(895\) −527.620 + 1969.10i −0.589519 + 2.20012i
\(896\) 0 0
\(897\) −414.424 + 87.6166i −0.462012 + 0.0976774i
\(898\) 0 0
\(899\) −2158.04 578.245i −2.40049 0.643209i
\(900\) 0 0
\(901\) −781.915 451.439i −0.867830 0.501042i
\(902\) 0 0
\(903\) −12.0076 44.8129i −0.0132974 0.0496267i
\(904\) 0 0
\(905\) 1447.08 + 1447.08i 1.59898 + 1.59898i
\(906\) 0 0
\(907\) 466.237 269.182i 0.514043 0.296783i −0.220451 0.975398i \(-0.570753\pi\)
0.734494 + 0.678615i \(0.237420\pi\)
\(908\) 0 0
\(909\) 1.97338i 0.00217094i
\(910\) 0 0
\(911\) 1029.58 1.13016 0.565080 0.825036i \(-0.308845\pi\)
0.565080 + 0.825036i \(0.308845\pi\)
\(912\) 0 0
\(913\) 468.151 + 810.861i 0.512761 + 0.888128i
\(914\) 0 0
\(915\) −577.198 + 577.198i −0.630817 + 0.630817i
\(916\) 0 0
\(917\) −51.4182 + 13.7775i −0.0560721 + 0.0150245i
\(918\) 0 0
\(919\) −108.919 + 188.653i −0.118519 + 0.205280i −0.919181 0.393836i \(-0.871148\pi\)
0.800662 + 0.599116i \(0.204481\pi\)
\(920\) 0 0
\(921\) 277.459 1035.49i 0.301258 1.12431i
\(922\) 0 0
\(923\) −832.831 542.138i −0.902309 0.587365i
\(924\) 0 0
\(925\) −931.005 249.462i −1.00649 0.269689i
\(926\) 0 0
\(927\) 45.2284 + 26.1126i 0.0487901 + 0.0281690i
\(928\) 0 0
\(929\) −165.737 618.540i −0.178404 0.665813i −0.995947 0.0899448i \(-0.971331\pi\)
0.817543 0.575868i \(-0.195336\pi\)
\(930\) 0 0
\(931\) 116.518 + 116.518i 0.125154 + 0.125154i
\(932\) 0 0
\(933\) −156.545 + 90.3812i −0.167787 + 0.0968716i
\(934\) 0 0
\(935\) 1384.37i 1.48061i
\(936\) 0 0
\(937\) 676.936 0.722450 0.361225 0.932479i \(-0.382359\pi\)
0.361225 + 0.932479i \(0.382359\pi\)
\(938\) 0 0
\(939\) −318.916 552.379i −0.339634 0.588263i
\(940\) 0 0
\(941\) −965.935 + 965.935i −1.02650 + 1.02650i −0.0268595 + 0.999639i \(0.508551\pi\)
−0.999639 + 0.0268595i \(0.991449\pi\)
\(942\) 0 0
\(943\) −180.516 + 48.3690i −0.191427 + 0.0512927i
\(944\) 0 0
\(945\) −39.3753 + 68.2001i −0.0416670 + 0.0721694i
\(946\) 0 0
\(947\) −452.017 + 1686.95i −0.477314 + 1.78136i 0.135108 + 0.990831i \(0.456862\pi\)
−0.612422 + 0.790531i \(0.709805\pi\)
\(948\) 0 0
\(949\) 982.724 + 52.5764i 1.03554 + 0.0554019i
\(950\) 0 0
\(951\) 336.907 + 90.2740i 0.354266 + 0.0949253i
\(952\) 0 0
\(953\) −282.434 163.063i −0.296363 0.171105i 0.344445 0.938807i \(-0.388067\pi\)
−0.640808 + 0.767701i \(0.721400\pi\)
\(954\) 0 0
\(955\) 88.7940 + 331.384i 0.0929780 + 0.346999i
\(956\) 0 0
\(957\) 846.542 + 846.542i 0.884579 + 0.884579i
\(958\) 0 0
\(959\) 21.7291 12.5453i 0.0226581 0.0130816i
\(960\) 0 0
\(961\) 1527.38i 1.58936i
\(962\) 0 0
\(963\) 289.980 0.301122
\(964\) 0 0
\(965\) −195.436 338.505i −0.202524 0.350782i
\(966\) 0 0
\(967\) 354.860 354.860i 0.366970 0.366970i −0.499401 0.866371i \(-0.666447\pi\)
0.866371 + 0.499401i \(0.166447\pi\)
\(968\) 0 0
\(969\) 91.2814 24.4588i 0.0942017 0.0252413i
\(970\) 0 0
\(971\) −216.415 + 374.842i −0.222878 + 0.386037i −0.955681 0.294405i \(-0.904879\pi\)
0.732802 + 0.680441i \(0.238212\pi\)
\(972\) 0 0
\(973\) −27.6414 + 103.159i −0.0284084 + 0.106022i
\(974\) 0 0
\(975\) −206.196 + 632.259i −0.211483 + 0.648471i
\(976\) 0 0
\(977\) −708.038 189.718i −0.724707 0.194185i −0.122436 0.992476i \(-0.539071\pi\)
−0.602271 + 0.798292i \(0.705737\pi\)
\(978\) 0 0
\(979\) 185.996 + 107.385i 0.189986 + 0.109688i
\(980\) 0 0
\(981\) −161.991 604.558i −0.165128 0.616267i
\(982\) 0 0
\(983\) 1120.30 + 1120.30i 1.13968 + 1.13968i 0.988508 + 0.151171i \(0.0483044\pi\)
0.151171 + 0.988508i \(0.451696\pi\)
\(984\) 0 0
\(985\) 1386.27 800.366i 1.40739 0.812554i
\(986\) 0 0
\(987\) 60.2569i 0.0610505i
\(988\) 0 0
\(989\) 986.171 0.997140
\(990\) 0 0
\(991\) −304.820 527.964i −0.307588 0.532759i 0.670246 0.742139i \(-0.266189\pi\)
−0.977834 + 0.209381i \(0.932855\pi\)
\(992\) 0 0
\(993\) −153.070 + 153.070i −0.154149 + 0.154149i
\(994\) 0 0
\(995\) −1109.05 + 297.169i −1.11462 + 0.298662i
\(996\) 0 0
\(997\) −35.3004 + 61.1421i −0.0354066 + 0.0613260i −0.883186 0.469023i \(-0.844606\pi\)
0.847779 + 0.530350i \(0.177939\pi\)
\(998\) 0 0
\(999\) 266.333 993.970i 0.266600 0.994965i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.3.bd.e.145.2 8
4.3 odd 2 52.3.k.a.41.1 yes 8
12.11 even 2 468.3.cd.b.145.1 8
13.7 odd 12 inner 208.3.bd.e.33.2 8
52.3 odd 6 676.3.g.d.577.3 8
52.7 even 12 52.3.k.a.33.1 8
52.11 even 12 676.3.g.d.437.3 8
52.15 even 12 676.3.g.c.437.3 8
52.23 odd 6 676.3.g.c.577.3 8
156.59 odd 12 468.3.cd.b.397.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.3.k.a.33.1 8 52.7 even 12
52.3.k.a.41.1 yes 8 4.3 odd 2
208.3.bd.e.33.2 8 13.7 odd 12 inner
208.3.bd.e.145.2 8 1.1 even 1 trivial
468.3.cd.b.145.1 8 12.11 even 2
468.3.cd.b.397.1 8 156.59 odd 12
676.3.g.c.437.3 8 52.15 even 12
676.3.g.c.577.3 8 52.23 odd 6
676.3.g.d.437.3 8 52.11 even 12
676.3.g.d.577.3 8 52.3 odd 6