Properties

Label 208.3.c.b.207.3
Level $208$
Weight $3$
Character 208.207
Analytic conductor $5.668$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,3,Mod(207,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.207");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 208.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.66758949869\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{-23})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 7x^{2} - 6x + 78 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 207.3
Root \(-1.23205 - 2.39792i\) of defining polynomial
Character \(\chi\) \(=\) 208.207
Dual form 208.3.c.b.207.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.79583i q^{3} -8.30662i q^{5} -8.66025 q^{7} -14.0000 q^{9} -13.8564 q^{11} +(-10.0000 + 8.30662i) q^{13} +39.8372 q^{15} -5.00000 q^{17} -3.46410 q^{19} -41.5331i q^{21} -28.7750i q^{23} -44.0000 q^{25} -23.9792i q^{27} +40.0000 q^{29} +20.7846 q^{31} -66.4530i q^{33} +71.9375i q^{35} +41.5331i q^{37} +(-39.8372 - 47.9583i) q^{39} +43.1625i q^{43} +116.293i q^{45} -77.9423 q^{47} +26.0000 q^{49} -23.9792i q^{51} -10.0000 q^{53} +115.100i q^{55} -16.6132i q^{57} +65.8179 q^{59} -40.0000 q^{61} +121.244 q^{63} +(69.0000 + 83.0662i) q^{65} -103.923 q^{67} +138.000 q^{69} -29.4449 q^{71} -83.0662i q^{73} -211.017i q^{75} +120.000 q^{77} -143.875i q^{79} -11.0000 q^{81} +17.3205 q^{83} +41.5331i q^{85} +191.833i q^{87} +83.0662i q^{89} +(86.6025 - 71.9375i) q^{91} +99.6795i q^{93} +28.7750i q^{95} -99.6795i q^{97} +193.990 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 56 q^{9} - 40 q^{13} - 20 q^{17} - 176 q^{25} + 160 q^{29} + 104 q^{49} - 40 q^{53} - 160 q^{61} + 276 q^{65} + 552 q^{69} + 480 q^{77} - 44 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.79583i 1.59861i 0.600925 + 0.799305i \(0.294799\pi\)
−0.600925 + 0.799305i \(0.705201\pi\)
\(4\) 0 0
\(5\) 8.30662i 1.66132i −0.556776 0.830662i \(-0.687962\pi\)
0.556776 0.830662i \(-0.312038\pi\)
\(6\) 0 0
\(7\) −8.66025 −1.23718 −0.618590 0.785714i \(-0.712296\pi\)
−0.618590 + 0.785714i \(0.712296\pi\)
\(8\) 0 0
\(9\) −14.0000 −1.55556
\(10\) 0 0
\(11\) −13.8564 −1.25967 −0.629837 0.776728i \(-0.716878\pi\)
−0.629837 + 0.776728i \(0.716878\pi\)
\(12\) 0 0
\(13\) −10.0000 + 8.30662i −0.769231 + 0.638971i
\(14\) 0 0
\(15\) 39.8372 2.65581
\(16\) 0 0
\(17\) −5.00000 −0.294118 −0.147059 0.989128i \(-0.546981\pi\)
−0.147059 + 0.989128i \(0.546981\pi\)
\(18\) 0 0
\(19\) −3.46410 −0.182321 −0.0911606 0.995836i \(-0.529058\pi\)
−0.0911606 + 0.995836i \(0.529058\pi\)
\(20\) 0 0
\(21\) 41.5331i 1.97777i
\(22\) 0 0
\(23\) 28.7750i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) −44.0000 −1.76000
\(26\) 0 0
\(27\) 23.9792i 0.888117i
\(28\) 0 0
\(29\) 40.0000 1.37931 0.689655 0.724138i \(-0.257762\pi\)
0.689655 + 0.724138i \(0.257762\pi\)
\(30\) 0 0
\(31\) 20.7846 0.670471 0.335236 0.942134i \(-0.391184\pi\)
0.335236 + 0.942134i \(0.391184\pi\)
\(32\) 0 0
\(33\) 66.4530i 2.01373i
\(34\) 0 0
\(35\) 71.9375i 2.05536i
\(36\) 0 0
\(37\) 41.5331i 1.12252i 0.827641 + 0.561258i \(0.189683\pi\)
−0.827641 + 0.561258i \(0.810317\pi\)
\(38\) 0 0
\(39\) −39.8372 47.9583i −1.02147 1.22970i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 43.1625i 1.00378i 0.864932 + 0.501889i \(0.167362\pi\)
−0.864932 + 0.501889i \(0.832638\pi\)
\(44\) 0 0
\(45\) 116.293i 2.58428i
\(46\) 0 0
\(47\) −77.9423 −1.65835 −0.829173 0.558992i \(-0.811188\pi\)
−0.829173 + 0.558992i \(0.811188\pi\)
\(48\) 0 0
\(49\) 26.0000 0.530612
\(50\) 0 0
\(51\) 23.9792i 0.470180i
\(52\) 0 0
\(53\) −10.0000 −0.188679 −0.0943396 0.995540i \(-0.530074\pi\)
−0.0943396 + 0.995540i \(0.530074\pi\)
\(54\) 0 0
\(55\) 115.100i 2.09273i
\(56\) 0 0
\(57\) 16.6132i 0.291460i
\(58\) 0 0
\(59\) 65.8179 1.11556 0.557779 0.829989i \(-0.311654\pi\)
0.557779 + 0.829989i \(0.311654\pi\)
\(60\) 0 0
\(61\) −40.0000 −0.655738 −0.327869 0.944723i \(-0.606330\pi\)
−0.327869 + 0.944723i \(0.606330\pi\)
\(62\) 0 0
\(63\) 121.244 1.92450
\(64\) 0 0
\(65\) 69.0000 + 83.0662i 1.06154 + 1.27794i
\(66\) 0 0
\(67\) −103.923 −1.55109 −0.775545 0.631292i \(-0.782525\pi\)
−0.775545 + 0.631292i \(0.782525\pi\)
\(68\) 0 0
\(69\) 138.000 2.00000
\(70\) 0 0
\(71\) −29.4449 −0.414716 −0.207358 0.978265i \(-0.566487\pi\)
−0.207358 + 0.978265i \(0.566487\pi\)
\(72\) 0 0
\(73\) 83.0662i 1.13789i −0.822374 0.568947i \(-0.807351\pi\)
0.822374 0.568947i \(-0.192649\pi\)
\(74\) 0 0
\(75\) 211.017i 2.81355i
\(76\) 0 0
\(77\) 120.000 1.55844
\(78\) 0 0
\(79\) 143.875i 1.82120i −0.413287 0.910601i \(-0.635619\pi\)
0.413287 0.910601i \(-0.364381\pi\)
\(80\) 0 0
\(81\) −11.0000 −0.135802
\(82\) 0 0
\(83\) 17.3205 0.208681 0.104340 0.994542i \(-0.466727\pi\)
0.104340 + 0.994542i \(0.466727\pi\)
\(84\) 0 0
\(85\) 41.5331i 0.488625i
\(86\) 0 0
\(87\) 191.833i 2.20498i
\(88\) 0 0
\(89\) 83.0662i 0.933329i 0.884435 + 0.466664i \(0.154544\pi\)
−0.884435 + 0.466664i \(0.845456\pi\)
\(90\) 0 0
\(91\) 86.6025 71.9375i 0.951676 0.790522i
\(92\) 0 0
\(93\) 99.6795i 1.07182i
\(94\) 0 0
\(95\) 28.7750i 0.302895i
\(96\) 0 0
\(97\) 99.6795i 1.02762i −0.857903 0.513812i \(-0.828233\pi\)
0.857903 0.513812i \(-0.171767\pi\)
\(98\) 0 0
\(99\) 193.990 1.95949
\(100\) 0 0
\(101\) −52.0000 −0.514851 −0.257426 0.966298i \(-0.582874\pi\)
−0.257426 + 0.966298i \(0.582874\pi\)
\(102\) 0 0
\(103\) 28.7750i 0.279369i 0.990196 + 0.139684i \(0.0446088\pi\)
−0.990196 + 0.139684i \(0.955391\pi\)
\(104\) 0 0
\(105\) −345.000 −3.28571
\(106\) 0 0
\(107\) 115.100i 1.07570i 0.843040 + 0.537850i \(0.180763\pi\)
−0.843040 + 0.537850i \(0.819237\pi\)
\(108\) 0 0
\(109\) 41.5331i 0.381038i −0.981684 0.190519i \(-0.938983\pi\)
0.981684 0.190519i \(-0.0610170\pi\)
\(110\) 0 0
\(111\) −199.186 −1.79447
\(112\) 0 0
\(113\) 10.0000 0.0884956 0.0442478 0.999021i \(-0.485911\pi\)
0.0442478 + 0.999021i \(0.485911\pi\)
\(114\) 0 0
\(115\) −239.023 −2.07846
\(116\) 0 0
\(117\) 140.000 116.293i 1.19658 0.993955i
\(118\) 0 0
\(119\) 43.3013 0.363876
\(120\) 0 0
\(121\) 71.0000 0.586777
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 157.826i 1.26261i
\(126\) 0 0
\(127\) 28.7750i 0.226575i 0.993562 + 0.113287i \(0.0361381\pi\)
−0.993562 + 0.113287i \(0.963862\pi\)
\(128\) 0 0
\(129\) −207.000 −1.60465
\(130\) 0 0
\(131\) 71.9375i 0.549141i 0.961567 + 0.274571i \(0.0885357\pi\)
−0.961567 + 0.274571i \(0.911464\pi\)
\(132\) 0 0
\(133\) 30.0000 0.225564
\(134\) 0 0
\(135\) −199.186 −1.47545
\(136\) 0 0
\(137\) 16.6132i 0.121265i 0.998160 + 0.0606323i \(0.0193117\pi\)
−0.998160 + 0.0606323i \(0.980688\pi\)
\(138\) 0 0
\(139\) 71.9375i 0.517536i 0.965940 + 0.258768i \(0.0833165\pi\)
−0.965940 + 0.258768i \(0.916684\pi\)
\(140\) 0 0
\(141\) 373.798i 2.65105i
\(142\) 0 0
\(143\) 138.564 115.100i 0.968979 0.804895i
\(144\) 0 0
\(145\) 332.265i 2.29148i
\(146\) 0 0
\(147\) 124.692i 0.848242i
\(148\) 0 0
\(149\) 83.0662i 0.557492i −0.960365 0.278746i \(-0.910081\pi\)
0.960365 0.278746i \(-0.0899187\pi\)
\(150\) 0 0
\(151\) 91.7987 0.607938 0.303969 0.952682i \(-0.401688\pi\)
0.303969 + 0.952682i \(0.401688\pi\)
\(152\) 0 0
\(153\) 70.0000 0.457516
\(154\) 0 0
\(155\) 172.650i 1.11387i
\(156\) 0 0
\(157\) −170.000 −1.08280 −0.541401 0.840764i \(-0.682106\pi\)
−0.541401 + 0.840764i \(0.682106\pi\)
\(158\) 0 0
\(159\) 47.9583i 0.301625i
\(160\) 0 0
\(161\) 249.199i 1.54782i
\(162\) 0 0
\(163\) 155.885 0.956347 0.478174 0.878265i \(-0.341299\pi\)
0.478174 + 0.878265i \(0.341299\pi\)
\(164\) 0 0
\(165\) −552.000 −3.34545
\(166\) 0 0
\(167\) −69.2820 −0.414862 −0.207431 0.978250i \(-0.566510\pi\)
−0.207431 + 0.978250i \(0.566510\pi\)
\(168\) 0 0
\(169\) 31.0000 166.132i 0.183432 0.983032i
\(170\) 0 0
\(171\) 48.4974 0.283611
\(172\) 0 0
\(173\) 230.000 1.32948 0.664740 0.747075i \(-0.268542\pi\)
0.664740 + 0.747075i \(0.268542\pi\)
\(174\) 0 0
\(175\) 381.051 2.17744
\(176\) 0 0
\(177\) 315.652i 1.78334i
\(178\) 0 0
\(179\) 71.9375i 0.401885i −0.979603 0.200943i \(-0.935600\pi\)
0.979603 0.200943i \(-0.0644005\pi\)
\(180\) 0 0
\(181\) −170.000 −0.939227 −0.469613 0.882872i \(-0.655607\pi\)
−0.469613 + 0.882872i \(0.655607\pi\)
\(182\) 0 0
\(183\) 191.833i 1.04827i
\(184\) 0 0
\(185\) 345.000 1.86486
\(186\) 0 0
\(187\) 69.2820 0.370492
\(188\) 0 0
\(189\) 207.666i 1.09876i
\(190\) 0 0
\(191\) 287.750i 1.50654i −0.657709 0.753272i \(-0.728474\pi\)
0.657709 0.753272i \(-0.271526\pi\)
\(192\) 0 0
\(193\) 182.746i 0.946869i 0.880829 + 0.473435i \(0.156986\pi\)
−0.880829 + 0.473435i \(0.843014\pi\)
\(194\) 0 0
\(195\) −398.372 + 330.912i −2.04293 + 1.69699i
\(196\) 0 0
\(197\) 307.345i 1.56013i 0.625700 + 0.780064i \(0.284813\pi\)
−0.625700 + 0.780064i \(0.715187\pi\)
\(198\) 0 0
\(199\) 287.750i 1.44598i −0.690859 0.722990i \(-0.742767\pi\)
0.690859 0.722990i \(-0.257233\pi\)
\(200\) 0 0
\(201\) 498.397i 2.47959i
\(202\) 0 0
\(203\) −346.410 −1.70645
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 402.850i 1.94613i
\(208\) 0 0
\(209\) 48.0000 0.229665
\(210\) 0 0
\(211\) 215.812i 1.02281i −0.859341 0.511404i \(-0.829126\pi\)
0.859341 0.511404i \(-0.170874\pi\)
\(212\) 0 0
\(213\) 141.213i 0.662970i
\(214\) 0 0
\(215\) 358.535 1.66760
\(216\) 0 0
\(217\) −180.000 −0.829493
\(218\) 0 0
\(219\) 398.372 1.81905
\(220\) 0 0
\(221\) 50.0000 41.5331i 0.226244 0.187933i
\(222\) 0 0
\(223\) −320.429 −1.43690 −0.718452 0.695577i \(-0.755149\pi\)
−0.718452 + 0.695577i \(0.755149\pi\)
\(224\) 0 0
\(225\) 616.000 2.73778
\(226\) 0 0
\(227\) −381.051 −1.67864 −0.839320 0.543638i \(-0.817046\pi\)
−0.839320 + 0.543638i \(0.817046\pi\)
\(228\) 0 0
\(229\) 41.5331i 0.181367i −0.995880 0.0906837i \(-0.971095\pi\)
0.995880 0.0906837i \(-0.0289052\pi\)
\(230\) 0 0
\(231\) 575.500i 2.49134i
\(232\) 0 0
\(233\) −205.000 −0.879828 −0.439914 0.898040i \(-0.644991\pi\)
−0.439914 + 0.898040i \(0.644991\pi\)
\(234\) 0 0
\(235\) 647.437i 2.75505i
\(236\) 0 0
\(237\) 690.000 2.91139
\(238\) 0 0
\(239\) 64.0859 0.268142 0.134071 0.990972i \(-0.457195\pi\)
0.134071 + 0.990972i \(0.457195\pi\)
\(240\) 0 0
\(241\) 415.331i 1.72337i 0.507447 + 0.861683i \(0.330589\pi\)
−0.507447 + 0.861683i \(0.669411\pi\)
\(242\) 0 0
\(243\) 268.567i 1.10521i
\(244\) 0 0
\(245\) 215.972i 0.881519i
\(246\) 0 0
\(247\) 34.6410 28.7750i 0.140247 0.116498i
\(248\) 0 0
\(249\) 83.0662i 0.333599i
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 398.718i 1.57596i
\(254\) 0 0
\(255\) −199.186 −0.781121
\(256\) 0 0
\(257\) 395.000 1.53696 0.768482 0.639871i \(-0.221012\pi\)
0.768482 + 0.639871i \(0.221012\pi\)
\(258\) 0 0
\(259\) 359.687i 1.38875i
\(260\) 0 0
\(261\) −560.000 −2.14559
\(262\) 0 0
\(263\) 115.100i 0.437642i −0.975765 0.218821i \(-0.929779\pi\)
0.975765 0.218821i \(-0.0702211\pi\)
\(264\) 0 0
\(265\) 83.0662i 0.313458i
\(266\) 0 0
\(267\) −398.372 −1.49203
\(268\) 0 0
\(269\) 112.000 0.416357 0.208178 0.978091i \(-0.433247\pi\)
0.208178 + 0.978091i \(0.433247\pi\)
\(270\) 0 0
\(271\) 39.8372 0.147001 0.0735003 0.997295i \(-0.476583\pi\)
0.0735003 + 0.997295i \(0.476583\pi\)
\(272\) 0 0
\(273\) 345.000 + 415.331i 1.26374 + 1.52136i
\(274\) 0 0
\(275\) 609.682 2.21703
\(276\) 0 0
\(277\) −160.000 −0.577617 −0.288809 0.957387i \(-0.593259\pi\)
−0.288809 + 0.957387i \(0.593259\pi\)
\(278\) 0 0
\(279\) −290.985 −1.04296
\(280\) 0 0
\(281\) 83.0662i 0.295609i 0.989017 + 0.147805i \(0.0472207\pi\)
−0.989017 + 0.147805i \(0.952779\pi\)
\(282\) 0 0
\(283\) 115.100i 0.406714i 0.979105 + 0.203357i \(0.0651851\pi\)
−0.979105 + 0.203357i \(0.934815\pi\)
\(284\) 0 0
\(285\) −138.000 −0.484211
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −264.000 −0.913495
\(290\) 0 0
\(291\) 478.046 1.64277
\(292\) 0 0
\(293\) 456.864i 1.55926i −0.626238 0.779632i \(-0.715406\pi\)
0.626238 0.779632i \(-0.284594\pi\)
\(294\) 0 0
\(295\) 546.725i 1.85330i
\(296\) 0 0
\(297\) 332.265i 1.11874i
\(298\) 0 0
\(299\) 239.023 + 287.750i 0.799408 + 0.962374i
\(300\) 0 0
\(301\) 373.798i 1.24185i
\(302\) 0 0
\(303\) 249.383i 0.823047i
\(304\) 0 0
\(305\) 332.265i 1.08939i
\(306\) 0 0
\(307\) 259.808 0.846279 0.423139 0.906065i \(-0.360928\pi\)
0.423139 + 0.906065i \(0.360928\pi\)
\(308\) 0 0
\(309\) −138.000 −0.446602
\(310\) 0 0
\(311\) 143.875i 0.462620i 0.972880 + 0.231310i \(0.0743012\pi\)
−0.972880 + 0.231310i \(0.925699\pi\)
\(312\) 0 0
\(313\) −365.000 −1.16613 −0.583067 0.812424i \(-0.698148\pi\)
−0.583067 + 0.812424i \(0.698148\pi\)
\(314\) 0 0
\(315\) 1007.12i 3.19722i
\(316\) 0 0
\(317\) 83.0662i 0.262039i −0.991380 0.131019i \(-0.958175\pi\)
0.991380 0.131019i \(-0.0418250\pi\)
\(318\) 0 0
\(319\) −554.256 −1.73748
\(320\) 0 0
\(321\) −552.000 −1.71963
\(322\) 0 0
\(323\) 17.3205 0.0536239
\(324\) 0 0
\(325\) 440.000 365.491i 1.35385 1.12459i
\(326\) 0 0
\(327\) 199.186 0.609131
\(328\) 0 0
\(329\) 675.000 2.05167
\(330\) 0 0
\(331\) −135.100 −0.408157 −0.204078 0.978955i \(-0.565420\pi\)
−0.204078 + 0.978955i \(0.565420\pi\)
\(332\) 0 0
\(333\) 581.464i 1.74614i
\(334\) 0 0
\(335\) 863.250i 2.57686i
\(336\) 0 0
\(337\) 505.000 1.49852 0.749258 0.662278i \(-0.230410\pi\)
0.749258 + 0.662278i \(0.230410\pi\)
\(338\) 0 0
\(339\) 47.9583i 0.141470i
\(340\) 0 0
\(341\) −288.000 −0.844575
\(342\) 0 0
\(343\) 199.186 0.580717
\(344\) 0 0
\(345\) 1146.31i 3.32265i
\(346\) 0 0
\(347\) 330.912i 0.953638i −0.879002 0.476819i \(-0.841790\pi\)
0.879002 0.476819i \(-0.158210\pi\)
\(348\) 0 0
\(349\) 373.798i 1.07105i 0.844518 + 0.535527i \(0.179887\pi\)
−0.844518 + 0.535527i \(0.820113\pi\)
\(350\) 0 0
\(351\) 199.186 + 239.792i 0.567481 + 0.683167i
\(352\) 0 0
\(353\) 249.199i 0.705945i 0.935634 + 0.352973i \(0.114829\pi\)
−0.935634 + 0.352973i \(0.885171\pi\)
\(354\) 0 0
\(355\) 244.587i 0.688979i
\(356\) 0 0
\(357\) 207.666i 0.581696i
\(358\) 0 0
\(359\) 187.061 0.521063 0.260531 0.965465i \(-0.416102\pi\)
0.260531 + 0.965465i \(0.416102\pi\)
\(360\) 0 0
\(361\) −349.000 −0.966759
\(362\) 0 0
\(363\) 340.504i 0.938028i
\(364\) 0 0
\(365\) −690.000 −1.89041
\(366\) 0 0
\(367\) 460.400i 1.25450i 0.778820 + 0.627248i \(0.215819\pi\)
−0.778820 + 0.627248i \(0.784181\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 86.6025 0.233430
\(372\) 0 0
\(373\) −140.000 −0.375335 −0.187668 0.982233i \(-0.560093\pi\)
−0.187668 + 0.982233i \(0.560093\pi\)
\(374\) 0 0
\(375\) −756.906 −2.01842
\(376\) 0 0
\(377\) −400.000 + 332.265i −1.06101 + 0.881339i
\(378\) 0 0
\(379\) −308.305 −0.813470 −0.406735 0.913546i \(-0.633333\pi\)
−0.406735 + 0.913546i \(0.633333\pi\)
\(380\) 0 0
\(381\) −138.000 −0.362205
\(382\) 0 0
\(383\) −112.583 −0.293951 −0.146976 0.989140i \(-0.546954\pi\)
−0.146976 + 0.989140i \(0.546954\pi\)
\(384\) 0 0
\(385\) 996.795i 2.58908i
\(386\) 0 0
\(387\) 604.275i 1.56143i
\(388\) 0 0
\(389\) −122.000 −0.313625 −0.156812 0.987628i \(-0.550122\pi\)
−0.156812 + 0.987628i \(0.550122\pi\)
\(390\) 0 0
\(391\) 143.875i 0.367967i
\(392\) 0 0
\(393\) −345.000 −0.877863
\(394\) 0 0
\(395\) −1195.12 −3.02561
\(396\) 0 0
\(397\) 581.464i 1.46464i 0.680959 + 0.732322i \(0.261563\pi\)
−0.680959 + 0.732322i \(0.738437\pi\)
\(398\) 0 0
\(399\) 143.875i 0.360589i
\(400\) 0 0
\(401\) 415.331i 1.03574i −0.855460 0.517869i \(-0.826725\pi\)
0.855460 0.517869i \(-0.173275\pi\)
\(402\) 0 0
\(403\) −207.846 + 172.650i −0.515747 + 0.428412i
\(404\) 0 0
\(405\) 91.3729i 0.225612i
\(406\) 0 0
\(407\) 575.500i 1.41400i
\(408\) 0 0
\(409\) 415.331i 1.01548i 0.861510 + 0.507740i \(0.169519\pi\)
−0.861510 + 0.507740i \(0.830481\pi\)
\(410\) 0 0
\(411\) −79.6743 −0.193855
\(412\) 0 0
\(413\) −570.000 −1.38015
\(414\) 0 0
\(415\) 143.875i 0.346687i
\(416\) 0 0
\(417\) −345.000 −0.827338
\(418\) 0 0
\(419\) 503.562i 1.20182i 0.799317 + 0.600910i \(0.205195\pi\)
−0.799317 + 0.600910i \(0.794805\pi\)
\(420\) 0 0
\(421\) 706.063i 1.67711i −0.544817 0.838555i \(-0.683401\pi\)
0.544817 0.838555i \(-0.316599\pi\)
\(422\) 0 0
\(423\) 1091.19 2.57965
\(424\) 0 0
\(425\) 220.000 0.517647
\(426\) 0 0
\(427\) 346.410 0.811265
\(428\) 0 0
\(429\) 552.000 + 664.530i 1.28671 + 1.54902i
\(430\) 0 0
\(431\) −351.606 −0.815792 −0.407896 0.913028i \(-0.633737\pi\)
−0.407896 + 0.913028i \(0.633737\pi\)
\(432\) 0 0
\(433\) 425.000 0.981524 0.490762 0.871294i \(-0.336718\pi\)
0.490762 + 0.871294i \(0.336718\pi\)
\(434\) 0 0
\(435\) 1593.49 3.66319
\(436\) 0 0
\(437\) 99.6795i 0.228100i
\(438\) 0 0
\(439\) 143.875i 0.327733i 0.986482 + 0.163867i \(0.0523967\pi\)
−0.986482 + 0.163867i \(0.947603\pi\)
\(440\) 0 0
\(441\) −364.000 −0.825397
\(442\) 0 0
\(443\) 676.212i 1.52644i 0.646140 + 0.763219i \(0.276382\pi\)
−0.646140 + 0.763219i \(0.723618\pi\)
\(444\) 0 0
\(445\) 690.000 1.55056
\(446\) 0 0
\(447\) 398.372 0.891212
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 440.251i 0.971857i
\(454\) 0 0
\(455\) −597.558 719.375i −1.31331 1.58104i
\(456\) 0 0
\(457\) 182.746i 0.399881i −0.979808 0.199941i \(-0.935925\pi\)
0.979808 0.199941i \(-0.0640749\pi\)
\(458\) 0 0
\(459\) 119.896i 0.261211i
\(460\) 0 0
\(461\) 373.798i 0.810842i −0.914130 0.405421i \(-0.867125\pi\)
0.914130 0.405421i \(-0.132875\pi\)
\(462\) 0 0
\(463\) 34.6410 0.0748186 0.0374093 0.999300i \(-0.488089\pi\)
0.0374093 + 0.999300i \(0.488089\pi\)
\(464\) 0 0
\(465\) 828.000 1.78065
\(466\) 0 0
\(467\) 690.600i 1.47880i −0.673266 0.739400i \(-0.735109\pi\)
0.673266 0.739400i \(-0.264891\pi\)
\(468\) 0 0
\(469\) 900.000 1.91898
\(470\) 0 0
\(471\) 815.291i 1.73098i
\(472\) 0 0
\(473\) 598.077i 1.26443i
\(474\) 0 0
\(475\) 152.420 0.320885
\(476\) 0 0
\(477\) 140.000 0.293501
\(478\) 0 0
\(479\) 594.093 1.24028 0.620139 0.784492i \(-0.287076\pi\)
0.620139 + 0.784492i \(0.287076\pi\)
\(480\) 0 0
\(481\) −345.000 415.331i −0.717256 0.863474i
\(482\) 0 0
\(483\) −1195.12 −2.47436
\(484\) 0 0
\(485\) −828.000 −1.70722
\(486\) 0 0
\(487\) 69.2820 0.142263 0.0711315 0.997467i \(-0.477339\pi\)
0.0711315 + 0.997467i \(0.477339\pi\)
\(488\) 0 0
\(489\) 747.596i 1.52883i
\(490\) 0 0
\(491\) 359.687i 0.732561i −0.930505 0.366280i \(-0.880631\pi\)
0.930505 0.366280i \(-0.119369\pi\)
\(492\) 0 0
\(493\) −200.000 −0.405680
\(494\) 0 0
\(495\) 1611.40i 3.25535i
\(496\) 0 0
\(497\) 255.000 0.513078
\(498\) 0 0
\(499\) −713.605 −1.43007 −0.715035 0.699089i \(-0.753589\pi\)
−0.715035 + 0.699089i \(0.753589\pi\)
\(500\) 0 0
\(501\) 332.265i 0.663204i
\(502\) 0 0
\(503\) 546.725i 1.08693i 0.839432 + 0.543464i \(0.182888\pi\)
−0.839432 + 0.543464i \(0.817112\pi\)
\(504\) 0 0
\(505\) 431.944i 0.855336i
\(506\) 0 0
\(507\) 796.743 + 148.671i 1.57149 + 0.293236i
\(508\) 0 0
\(509\) 249.199i 0.489585i 0.969576 + 0.244792i \(0.0787198\pi\)
−0.969576 + 0.244792i \(0.921280\pi\)
\(510\) 0 0
\(511\) 719.375i 1.40778i
\(512\) 0 0
\(513\) 83.0662i 0.161922i
\(514\) 0 0
\(515\) 239.023 0.464122
\(516\) 0 0
\(517\) 1080.00 2.08897
\(518\) 0 0
\(519\) 1103.04i 2.12532i
\(520\) 0 0
\(521\) 235.000 0.451056 0.225528 0.974237i \(-0.427589\pi\)
0.225528 + 0.974237i \(0.427589\pi\)
\(522\) 0 0
\(523\) 748.150i 1.43050i 0.698870 + 0.715248i \(0.253686\pi\)
−0.698870 + 0.715248i \(0.746314\pi\)
\(524\) 0 0
\(525\) 1827.46i 3.48087i
\(526\) 0 0
\(527\) −103.923 −0.197197
\(528\) 0 0
\(529\) −299.000 −0.565217
\(530\) 0 0
\(531\) −921.451 −1.73531
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 956.092 1.78709
\(536\) 0 0
\(537\) 345.000 0.642458
\(538\) 0 0
\(539\) −360.267 −0.668398
\(540\) 0 0
\(541\) 290.732i 0.537397i 0.963224 + 0.268699i \(0.0865935\pi\)
−0.963224 + 0.268699i \(0.913406\pi\)
\(542\) 0 0
\(543\) 815.291i 1.50146i
\(544\) 0 0
\(545\) −345.000 −0.633028
\(546\) 0 0
\(547\) 244.587i 0.447143i −0.974687 0.223572i \(-0.928228\pi\)
0.974687 0.223572i \(-0.0717717\pi\)
\(548\) 0 0
\(549\) 560.000 1.02004
\(550\) 0 0
\(551\) −138.564 −0.251477
\(552\) 0 0
\(553\) 1245.99i 2.25315i
\(554\) 0 0
\(555\) 1654.56i 2.98119i
\(556\) 0 0
\(557\) 539.931i 0.969355i −0.874693 0.484677i \(-0.838937\pi\)
0.874693 0.484677i \(-0.161063\pi\)
\(558\) 0 0
\(559\) −358.535 431.625i −0.641386 0.772137i
\(560\) 0 0
\(561\) 332.265i 0.592273i
\(562\) 0 0
\(563\) 618.662i 1.09887i 0.835537 + 0.549434i \(0.185156\pi\)
−0.835537 + 0.549434i \(0.814844\pi\)
\(564\) 0 0
\(565\) 83.0662i 0.147020i
\(566\) 0 0
\(567\) 95.2628 0.168012
\(568\) 0 0
\(569\) −775.000 −1.36204 −0.681019 0.732265i \(-0.738463\pi\)
−0.681019 + 0.732265i \(0.738463\pi\)
\(570\) 0 0
\(571\) 791.312i 1.38584i −0.721017 0.692918i \(-0.756325\pi\)
0.721017 0.692918i \(-0.243675\pi\)
\(572\) 0 0
\(573\) 1380.00 2.40838
\(574\) 0 0
\(575\) 1266.10i 2.20191i
\(576\) 0 0
\(577\) 581.464i 1.00774i 0.863781 + 0.503868i \(0.168090\pi\)
−0.863781 + 0.503868i \(0.831910\pi\)
\(578\) 0 0
\(579\) −876.418 −1.51367
\(580\) 0 0
\(581\) −150.000 −0.258176
\(582\) 0 0
\(583\) 138.564 0.237674
\(584\) 0 0
\(585\) −966.000 1162.93i −1.65128 1.98791i
\(586\) 0 0
\(587\) 259.808 0.442602 0.221301 0.975206i \(-0.428970\pi\)
0.221301 + 0.975206i \(0.428970\pi\)
\(588\) 0 0
\(589\) −72.0000 −0.122241
\(590\) 0 0
\(591\) −1473.98 −2.49404
\(592\) 0 0
\(593\) 232.585i 0.392218i 0.980582 + 0.196109i \(0.0628307\pi\)
−0.980582 + 0.196109i \(0.937169\pi\)
\(594\) 0 0
\(595\) 359.687i 0.604517i
\(596\) 0 0
\(597\) 1380.00 2.31156
\(598\) 0 0
\(599\) 431.625i 0.720576i 0.932841 + 0.360288i \(0.117322\pi\)
−0.932841 + 0.360288i \(0.882678\pi\)
\(600\) 0 0
\(601\) −527.000 −0.876872 −0.438436 0.898762i \(-0.644467\pi\)
−0.438436 + 0.898762i \(0.644467\pi\)
\(602\) 0 0
\(603\) 1454.92 2.41281
\(604\) 0 0
\(605\) 589.770i 0.974827i
\(606\) 0 0
\(607\) 28.7750i 0.0474053i −0.999719 0.0237026i \(-0.992455\pi\)
0.999719 0.0237026i \(-0.00754549\pi\)
\(608\) 0 0
\(609\) 1661.32i 2.72796i
\(610\) 0 0
\(611\) 779.423 647.437i 1.27565 1.05964i
\(612\) 0 0
\(613\) 847.276i 1.38218i −0.722769 0.691089i \(-0.757131\pi\)
0.722769 0.691089i \(-0.242869\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 564.850i 0.915479i −0.889086 0.457739i \(-0.848659\pi\)
0.889086 0.457739i \(-0.151341\pi\)
\(618\) 0 0
\(619\) −55.4256 −0.0895406 −0.0447703 0.998997i \(-0.514256\pi\)
−0.0447703 + 0.998997i \(0.514256\pi\)
\(620\) 0 0
\(621\) −690.000 −1.11111
\(622\) 0 0
\(623\) 719.375i 1.15469i
\(624\) 0 0
\(625\) 211.000 0.337600
\(626\) 0 0
\(627\) 230.200i 0.367145i
\(628\) 0 0
\(629\) 207.666i 0.330152i
\(630\) 0 0
\(631\) −1113.71 −1.76499 −0.882495 0.470322i \(-0.844138\pi\)
−0.882495 + 0.470322i \(0.844138\pi\)
\(632\) 0 0
\(633\) 1035.00 1.63507
\(634\) 0 0
\(635\) 239.023 0.376414
\(636\) 0 0
\(637\) −260.000 + 215.972i −0.408163 + 0.339046i
\(638\) 0 0
\(639\) 412.228 0.645114
\(640\) 0 0
\(641\) −482.000 −0.751950 −0.375975 0.926630i \(-0.622692\pi\)
−0.375975 + 0.926630i \(0.622692\pi\)
\(642\) 0 0
\(643\) −450.333 −0.700363 −0.350181 0.936682i \(-0.613880\pi\)
−0.350181 + 0.936682i \(0.613880\pi\)
\(644\) 0 0
\(645\) 1719.47i 2.66585i
\(646\) 0 0
\(647\) 1122.22i 1.73450i −0.497869 0.867252i \(-0.665884\pi\)
0.497869 0.867252i \(-0.334116\pi\)
\(648\) 0 0
\(649\) −912.000 −1.40524
\(650\) 0 0
\(651\) 863.250i 1.32604i
\(652\) 0 0
\(653\) 460.000 0.704441 0.352221 0.935917i \(-0.385427\pi\)
0.352221 + 0.935917i \(0.385427\pi\)
\(654\) 0 0
\(655\) 597.558 0.912302
\(656\) 0 0
\(657\) 1162.93i 1.77006i
\(658\) 0 0
\(659\) 287.750i 0.436646i −0.975877 0.218323i \(-0.929941\pi\)
0.975877 0.218323i \(-0.0700587\pi\)
\(660\) 0 0
\(661\) 1079.86i 1.63368i 0.576866 + 0.816839i \(0.304276\pi\)
−0.576866 + 0.816839i \(0.695724\pi\)
\(662\) 0 0
\(663\) 199.186 + 239.792i 0.300431 + 0.361677i
\(664\) 0 0
\(665\) 249.199i 0.374735i
\(666\) 0 0
\(667\) 1151.00i 1.72564i
\(668\) 0 0
\(669\) 1536.73i 2.29705i
\(670\) 0 0
\(671\) 554.256 0.826015
\(672\) 0 0
\(673\) 535.000 0.794948 0.397474 0.917613i \(-0.369887\pi\)
0.397474 + 0.917613i \(0.369887\pi\)
\(674\) 0 0
\(675\) 1055.08i 1.56309i
\(676\) 0 0
\(677\) −970.000 −1.43279 −0.716396 0.697694i \(-0.754210\pi\)
−0.716396 + 0.697694i \(0.754210\pi\)
\(678\) 0 0
\(679\) 863.250i 1.27135i
\(680\) 0 0
\(681\) 1827.46i 2.68349i
\(682\) 0 0
\(683\) 155.885 0.228235 0.114118 0.993467i \(-0.463596\pi\)
0.114118 + 0.993467i \(0.463596\pi\)
\(684\) 0 0
\(685\) 138.000 0.201460
\(686\) 0 0
\(687\) 199.186 0.289936
\(688\) 0 0
\(689\) 100.000 83.0662i 0.145138 0.120561i
\(690\) 0 0
\(691\) 1233.22 1.78469 0.892345 0.451355i \(-0.149059\pi\)
0.892345 + 0.451355i \(0.149059\pi\)
\(692\) 0 0
\(693\) −1680.00 −2.42424
\(694\) 0 0
\(695\) 597.558 0.859795
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 983.145i 1.40650i
\(700\) 0 0
\(701\) 502.000 0.716120 0.358060 0.933699i \(-0.383438\pi\)
0.358060 + 0.933699i \(0.383438\pi\)
\(702\) 0 0
\(703\) 143.875i 0.204659i
\(704\) 0 0
\(705\) −3105.00 −4.40426
\(706\) 0 0
\(707\) 450.333 0.636964
\(708\) 0 0
\(709\) 581.464i 0.820118i 0.912059 + 0.410059i \(0.134492\pi\)
−0.912059 + 0.410059i \(0.865508\pi\)
\(710\) 0 0
\(711\) 2014.25i 2.83298i
\(712\) 0 0
\(713\) 598.077i 0.838818i
\(714\) 0 0
\(715\) −956.092 1151.00i −1.33719 1.60979i
\(716\) 0 0
\(717\) 307.345i 0.428654i
\(718\) 0 0
\(719\) 575.500i 0.800417i 0.916424 + 0.400208i \(0.131062\pi\)
−0.916424 + 0.400208i \(0.868938\pi\)
\(720\) 0 0
\(721\) 249.199i 0.345629i
\(722\) 0 0
\(723\) −1991.86 −2.75499
\(724\) 0 0
\(725\) −1760.00 −2.42759
\(726\) 0 0
\(727\) 172.650i 0.237483i −0.992925 0.118741i \(-0.962114\pi\)
0.992925 0.118741i \(-0.0378859\pi\)
\(728\) 0 0
\(729\) 1189.00 1.63100
\(730\) 0 0
\(731\) 215.812i 0.295229i
\(732\) 0 0
\(733\) 473.478i 0.645945i 0.946408 + 0.322972i \(0.104682\pi\)
−0.946408 + 0.322972i \(0.895318\pi\)
\(734\) 0 0
\(735\) 1035.77 1.40921
\(736\) 0 0
\(737\) 1440.00 1.95387
\(738\) 0 0
\(739\) 921.451 1.24689 0.623445 0.781868i \(-0.285733\pi\)
0.623445 + 0.781868i \(0.285733\pi\)
\(740\) 0 0
\(741\) 138.000 + 166.132i 0.186235 + 0.224200i
\(742\) 0 0
\(743\) −1030.57 −1.38704 −0.693520 0.720438i \(-0.743941\pi\)
−0.693520 + 0.720438i \(0.743941\pi\)
\(744\) 0 0
\(745\) −690.000 −0.926174
\(746\) 0 0
\(747\) −242.487 −0.324615
\(748\) 0 0
\(749\) 996.795i 1.33083i
\(750\) 0 0
\(751\) 575.500i 0.766311i 0.923684 + 0.383156i \(0.125163\pi\)
−0.923684 + 0.383156i \(0.874837\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 762.537i 1.00998i
\(756\) 0 0
\(757\) −910.000 −1.20211 −0.601057 0.799206i \(-0.705253\pi\)
−0.601057 + 0.799206i \(0.705253\pi\)
\(758\) 0 0
\(759\) −1912.18 −2.51935
\(760\) 0 0
\(761\) 581.464i 0.764078i −0.924146 0.382039i \(-0.875222\pi\)
0.924146 0.382039i \(-0.124778\pi\)
\(762\) 0 0
\(763\) 359.687i 0.471412i
\(764\) 0 0
\(765\) 581.464i 0.760083i
\(766\) 0 0
\(767\) −658.179 + 546.725i −0.858122 + 0.712809i
\(768\) 0 0
\(769\) 332.265i 0.432074i 0.976385 + 0.216037i \(0.0693132\pi\)
−0.976385 + 0.216037i \(0.930687\pi\)
\(770\) 0 0
\(771\) 1894.35i 2.45701i
\(772\) 0 0
\(773\) 1204.46i 1.55816i −0.626922 0.779082i \(-0.715686\pi\)
0.626922 0.779082i \(-0.284314\pi\)
\(774\) 0 0
\(775\) −914.523 −1.18003
\(776\) 0 0
\(777\) 1725.00 2.22008
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 408.000 0.522407
\(782\) 0 0
\(783\) 959.166i 1.22499i
\(784\) 0 0
\(785\) 1412.13i 1.79889i
\(786\) 0 0
\(787\) 1489.56 1.89271 0.946356 0.323127i \(-0.104734\pi\)
0.946356 + 0.323127i \(0.104734\pi\)
\(788\) 0 0
\(789\) 552.000 0.699620
\(790\) 0 0
\(791\) −86.6025 −0.109485
\(792\) 0 0
\(793\) 400.000 332.265i 0.504414 0.418997i
\(794\) 0 0
\(795\) −398.372 −0.501096
\(796\) 0 0
\(797\) −530.000 −0.664994 −0.332497 0.943104i \(-0.607891\pi\)
−0.332497 + 0.943104i \(0.607891\pi\)
\(798\) 0 0
\(799\) 389.711 0.487749
\(800\) 0 0
\(801\) 1162.93i 1.45184i
\(802\) 0 0
\(803\) 1151.00i 1.43337i
\(804\) 0 0
\(805\) 2070.00 2.57143
\(806\) 0 0
\(807\) 537.133i 0.665592i
\(808\) 0 0
\(809\) −65.0000 −0.0803461 −0.0401731 0.999193i \(-0.512791\pi\)
−0.0401731 + 0.999193i \(0.512791\pi\)
\(810\) 0 0
\(811\) 886.810 1.09348 0.546739 0.837303i \(-0.315869\pi\)
0.546739 + 0.837303i \(0.315869\pi\)
\(812\) 0 0
\(813\) 191.052i 0.234997i
\(814\) 0 0
\(815\) 1294.87i 1.58880i
\(816\) 0 0
\(817\) 149.519i 0.183010i
\(818\) 0 0
\(819\) −1212.44 + 1007.12i −1.48039 + 1.22970i
\(820\) 0 0
\(821\) 539.931i 0.657650i −0.944391 0.328825i \(-0.893347\pi\)
0.944391 0.328825i \(-0.106653\pi\)
\(822\) 0 0
\(823\) 546.725i 0.664307i −0.943225 0.332154i \(-0.892225\pi\)
0.943225 0.332154i \(-0.107775\pi\)
\(824\) 0 0
\(825\) 2923.93i 3.54416i
\(826\) 0 0
\(827\) 259.808 0.314157 0.157078 0.987586i \(-0.449792\pi\)
0.157078 + 0.987586i \(0.449792\pi\)
\(828\) 0 0
\(829\) −1180.00 −1.42340 −0.711701 0.702483i \(-0.752075\pi\)
−0.711701 + 0.702483i \(0.752075\pi\)
\(830\) 0 0
\(831\) 767.333i 0.923385i
\(832\) 0 0
\(833\) −130.000 −0.156062
\(834\) 0 0
\(835\) 575.500i 0.689221i
\(836\) 0 0
\(837\) 498.397i 0.595457i
\(838\) 0 0
\(839\) −394.908 −0.470688 −0.235344 0.971912i \(-0.575622\pi\)
−0.235344 + 0.971912i \(0.575622\pi\)
\(840\) 0 0
\(841\) 759.000 0.902497
\(842\) 0 0
\(843\) −398.372 −0.472564
\(844\) 0 0
\(845\) −1380.00 257.505i −1.63314 0.304740i
\(846\) 0 0
\(847\) −614.878 −0.725948
\(848\) 0 0
\(849\) −552.000 −0.650177
\(850\) 0 0
\(851\) 1195.12 1.40437
\(852\) 0 0
\(853\) 622.997i 0.730360i 0.930937 + 0.365180i \(0.118993\pi\)
−0.930937 + 0.365180i \(0.881007\pi\)
\(854\) 0 0
\(855\) 402.850i 0.471169i
\(856\) 0 0
\(857\) 410.000 0.478413 0.239207 0.970969i \(-0.423113\pi\)
0.239207 + 0.970969i \(0.423113\pi\)
\(858\) 0 0
\(859\) 863.250i 1.00495i 0.864593 + 0.502474i \(0.167577\pi\)
−0.864593 + 0.502474i \(0.832423\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.66025 0.0100351 0.00501753 0.999987i \(-0.498403\pi\)
0.00501753 + 0.999987i \(0.498403\pi\)
\(864\) 0 0
\(865\) 1910.52i 2.20870i
\(866\) 0 0
\(867\) 1266.10i 1.46032i
\(868\) 0 0
\(869\) 1993.59i 2.29412i
\(870\) 0 0
\(871\) 1039.23 863.250i 1.19315 0.991102i
\(872\) 0 0
\(873\) 1395.51i 1.59853i
\(874\) 0 0
\(875\) 1366.81i 1.56207i
\(876\) 0 0
\(877\) 1104.78i 1.25973i 0.776706 + 0.629864i \(0.216889\pi\)
−0.776706 + 0.629864i \(0.783111\pi\)
\(878\) 0 0
\(879\) 2191.04 2.49266
\(880\) 0 0
\(881\) −25.0000 −0.0283768 −0.0141884 0.999899i \(-0.504516\pi\)
−0.0141884 + 0.999899i \(0.504516\pi\)
\(882\) 0 0
\(883\) 187.037i 0.211820i 0.994376 + 0.105910i \(0.0337756\pi\)
−0.994376 + 0.105910i \(0.966224\pi\)
\(884\) 0 0
\(885\) 2622.00 2.96271
\(886\) 0 0
\(887\) 172.650i 0.194645i 0.995253 + 0.0973224i \(0.0310278\pi\)
−0.995253 + 0.0973224i \(0.968972\pi\)
\(888\) 0 0
\(889\) 249.199i 0.280314i
\(890\) 0 0
\(891\) 152.420 0.171067
\(892\) 0 0
\(893\) 270.000 0.302352
\(894\) 0 0
\(895\) −597.558 −0.667662
\(896\) 0 0
\(897\) −1380.00 + 1146.31i −1.53846 + 1.27794i
\(898\) 0 0
\(899\) 831.384 0.924788
\(900\) 0 0
\(901\) 50.0000 0.0554939
\(902\) 0 0
\(903\) 1792.67 1.98524
\(904\) 0 0
\(905\) 1412.13i 1.56036i
\(906\) 0 0
\(907\) 963.962i 1.06280i 0.847120 + 0.531401i \(0.178334\pi\)
−0.847120 + 0.531401i \(0.821666\pi\)
\(908\) 0 0
\(909\) 728.000 0.800880
\(910\) 0 0
\(911\) 863.250i 0.947585i 0.880637 + 0.473792i \(0.157115\pi\)
−0.880637 + 0.473792i \(0.842885\pi\)
\(912\) 0 0
\(913\) −240.000 −0.262870
\(914\) 0 0
\(915\) −1593.49 −1.74152
\(916\) 0 0
\(917\) 622.997i 0.679386i
\(918\) 0 0
\(919\) 863.250i 0.939336i −0.882843 0.469668i \(-0.844374\pi\)
0.882843 0.469668i \(-0.155626\pi\)
\(920\) 0 0
\(921\) 1245.99i 1.35287i
\(922\) 0 0
\(923\) 294.449 244.587i 0.319013 0.264992i
\(924\) 0 0
\(925\) 1827.46i 1.97563i
\(926\) 0 0
\(927\) 402.850i 0.434574i
\(928\) 0 0
\(929\) 1162.93i 1.25181i 0.779901 + 0.625903i \(0.215269\pi\)
−0.779901 + 0.625903i \(0.784731\pi\)
\(930\) 0 0
\(931\) −90.0666 −0.0967418
\(932\) 0 0
\(933\) −690.000 −0.739550
\(934\) 0 0
\(935\) 575.500i 0.615508i
\(936\) 0 0
\(937\) 950.000 1.01387 0.506937 0.861983i \(-0.330778\pi\)
0.506937 + 0.861983i \(0.330778\pi\)
\(938\) 0 0
\(939\) 1750.48i 1.86419i
\(940\) 0 0
\(941\) 41.5331i 0.0441372i 0.999756 + 0.0220686i \(0.00702523\pi\)
−0.999756 + 0.0220686i \(0.992975\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 1725.00 1.82540
\(946\) 0 0
\(947\) −1662.77 −1.75583 −0.877914 0.478819i \(-0.841065\pi\)
−0.877914 + 0.478819i \(0.841065\pi\)
\(948\) 0 0
\(949\) 690.000 + 830.662i 0.727081 + 0.875303i
\(950\) 0 0
\(951\) 398.372 0.418898
\(952\) 0 0
\(953\) 1085.00 1.13851 0.569255 0.822161i \(-0.307232\pi\)
0.569255 + 0.822161i \(0.307232\pi\)
\(954\) 0 0
\(955\) −2390.23 −2.50286
\(956\) 0 0
\(957\) 2658.12i 2.77755i
\(958\) 0 0
\(959\) 143.875i 0.150026i
\(960\) 0 0
\(961\) −529.000 −0.550468
\(962\) 0 0
\(963\) 1611.40i 1.67331i
\(964\) 0 0
\(965\) 1518.00 1.57306
\(966\) 0 0
\(967\) −216.506 −0.223895 −0.111947 0.993714i \(-0.535709\pi\)
−0.111947 + 0.993714i \(0.535709\pi\)
\(968\) 0 0
\(969\) 83.0662i 0.0857237i
\(970\) 0 0
\(971\) 215.812i 0.222258i 0.993806 + 0.111129i \(0.0354467\pi\)
−0.993806 + 0.111129i \(0.964553\pi\)
\(972\) 0 0
\(973\) 622.997i 0.640284i
\(974\) 0 0
\(975\) 1752.84 + 2110.17i 1.79778 + 2.16427i
\(976\) 0 0
\(977\) 498.397i 0.510130i 0.966924 + 0.255065i \(0.0820969\pi\)
−0.966924 + 0.255065i \(0.917903\pi\)
\(978\) 0 0
\(979\) 1151.00i 1.17569i
\(980\) 0 0
\(981\) 581.464i 0.592725i
\(982\) 0 0
\(983\) −320.429 −0.325971 −0.162985 0.986628i \(-0.552112\pi\)
−0.162985 + 0.986628i \(0.552112\pi\)
\(984\) 0 0
\(985\) 2553.00 2.59188
\(986\) 0 0
\(987\) 3237.19i 3.27982i
\(988\) 0 0
\(989\) 1242.00 1.25581
\(990\) 0 0
\(991\) 1294.87i 1.30663i −0.757084 0.653317i \(-0.773377\pi\)
0.757084 0.653317i \(-0.226623\pi\)
\(992\) 0 0
\(993\) 647.917i 0.652484i
\(994\) 0 0
\(995\) −2390.23 −2.40224
\(996\) 0 0
\(997\) −1120.00 −1.12337 −0.561685 0.827351i \(-0.689847\pi\)
−0.561685 + 0.827351i \(0.689847\pi\)
\(998\) 0 0
\(999\) 995.929 0.996926
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.3.c.b.207.3 yes 4
3.2 odd 2 1872.3.i.k.415.3 4
4.3 odd 2 inner 208.3.c.b.207.1 4
8.3 odd 2 832.3.c.e.831.4 4
8.5 even 2 832.3.c.e.831.2 4
12.11 even 2 1872.3.i.k.415.4 4
13.12 even 2 inner 208.3.c.b.207.4 yes 4
39.38 odd 2 1872.3.i.k.415.2 4
52.51 odd 2 inner 208.3.c.b.207.2 yes 4
104.51 odd 2 832.3.c.e.831.3 4
104.77 even 2 832.3.c.e.831.1 4
156.155 even 2 1872.3.i.k.415.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
208.3.c.b.207.1 4 4.3 odd 2 inner
208.3.c.b.207.2 yes 4 52.51 odd 2 inner
208.3.c.b.207.3 yes 4 1.1 even 1 trivial
208.3.c.b.207.4 yes 4 13.12 even 2 inner
832.3.c.e.831.1 4 104.77 even 2
832.3.c.e.831.2 4 8.5 even 2
832.3.c.e.831.3 4 104.51 odd 2
832.3.c.e.831.4 4 8.3 odd 2
1872.3.i.k.415.1 4 156.155 even 2
1872.3.i.k.415.2 4 39.38 odd 2
1872.3.i.k.415.3 4 3.2 odd 2
1872.3.i.k.415.4 4 12.11 even 2