Properties

Label 209.1.h.a.87.1
Level 209209
Weight 11
Character 209.87
Analytic conductor 0.1040.104
Analytic rank 00
Dimension 44
Projective image A4A_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,1,Mod(87,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.87");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 209=1119 209 = 11 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 209.h (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1043045876400.104304587640
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: A4A_{4}
Projective field: Galois closure of 4.0.43681.1
Artin image: SL(2,3):C2\SL(2,3):C_2
Artin field: Galois closure of Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)

Embedding invariants

Embedding label 87.1
Root 0.8660250.500000i0.866025 - 0.500000i of defining polynomial
Character χ\chi == 209.87
Dual form 209.1.h.a.197.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.8660250.500000i)q2+(0.500000+0.866025i)q3+(0.500000+0.866025i)q5+(0.8660250.500000i)q6+1.00000iq8+(0.8660250.500000i)q10+1.00000iq11+(0.866025+0.500000i)q13+(0.5000000.866025i)q15+(0.5000000.866025i)q16+(0.866025+0.500000i)q171.00000iq19+(0.5000000.866025i)q22+(0.5000000.866025i)q23+(0.8660250.500000i)q24+1.00000q261.00000q27+(0.8660250.500000i)q29+1.00000iq30+(0.8660250.500000i)q33+(0.5000000.866025i)q34+(0.500000+0.866025i)q381.00000iq39+(0.8660250.500000i)q40+(0.8660250.500000i)q41+(0.866025+0.500000i)q43+1.00000iq46+(0.5000000.866025i)q47+(0.500000+0.866025i)q48+1.00000q49+(0.866025+0.500000i)q51+(0.500000+0.866025i)q53+(0.866025+0.500000i)q54+(0.8660250.500000i)q55+(0.866025+0.500000i)q571.00000q58+(0.500000+0.866025i)q59+(0.8660250.500000i)q611.00000q641.00000iq65+(0.500000+0.866025i)q66+(0.500000+0.866025i)q67+1.00000q69+(0.5000000.866025i)q71+(0.866025+0.500000i)q73+(0.500000+0.866025i)q78+(0.866025+0.500000i)q79+(0.500000+0.866025i)q80+(0.5000000.866025i)q81+(0.500000+0.866025i)q82+(0.866025+0.500000i)q85+(0.5000000.866025i)q86+1.00000iq871.00000q88+(0.500000+0.866025i)q89+1.00000iq94+(0.866025+0.500000i)q95+(0.5000000.866025i)q97+(0.8660250.500000i)q98+O(q100)q+(-0.866025 - 0.500000i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{5} +(0.866025 - 0.500000i) q^{6} +1.00000i q^{8} +(0.866025 - 0.500000i) q^{10} +1.00000i q^{11} +(-0.866025 + 0.500000i) q^{13} +(-0.500000 - 0.866025i) q^{15} +(0.500000 - 0.866025i) q^{16} +(0.866025 + 0.500000i) q^{17} -1.00000i q^{19} +(0.500000 - 0.866025i) q^{22} +(-0.500000 - 0.866025i) q^{23} +(-0.866025 - 0.500000i) q^{24} +1.00000 q^{26} -1.00000 q^{27} +(0.866025 - 0.500000i) q^{29} +1.00000i q^{30} +(-0.866025 - 0.500000i) q^{33} +(-0.500000 - 0.866025i) q^{34} +(-0.500000 + 0.866025i) q^{38} -1.00000i q^{39} +(-0.866025 - 0.500000i) q^{40} +(-0.866025 - 0.500000i) q^{41} +(0.866025 + 0.500000i) q^{43} +1.00000i q^{46} +(-0.500000 - 0.866025i) q^{47} +(0.500000 + 0.866025i) q^{48} +1.00000 q^{49} +(-0.866025 + 0.500000i) q^{51} +(0.500000 + 0.866025i) q^{53} +(0.866025 + 0.500000i) q^{54} +(-0.866025 - 0.500000i) q^{55} +(0.866025 + 0.500000i) q^{57} -1.00000 q^{58} +(-0.500000 + 0.866025i) q^{59} +(0.866025 - 0.500000i) q^{61} -1.00000 q^{64} -1.00000i q^{65} +(0.500000 + 0.866025i) q^{66} +(0.500000 + 0.866025i) q^{67} +1.00000 q^{69} +(0.500000 - 0.866025i) q^{71} +(0.866025 + 0.500000i) q^{73} +(-0.500000 + 0.866025i) q^{78} +(0.866025 + 0.500000i) q^{79} +(0.500000 + 0.866025i) q^{80} +(0.500000 - 0.866025i) q^{81} +(0.500000 + 0.866025i) q^{82} +(-0.866025 + 0.500000i) q^{85} +(-0.500000 - 0.866025i) q^{86} +1.00000i q^{87} -1.00000 q^{88} +(0.500000 + 0.866025i) q^{89} +1.00000i q^{94} +(0.866025 + 0.500000i) q^{95} +(0.500000 - 0.866025i) q^{97} +(-0.866025 - 0.500000i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q32q52q15+2q16+2q222q23+4q264q272q342q382q47+2q48+4q49+2q534q582q594q64+2q66+2q67++2q97+O(q100) 4 q - 2 q^{3} - 2 q^{5} - 2 q^{15} + 2 q^{16} + 2 q^{22} - 2 q^{23} + 4 q^{26} - 4 q^{27} - 2 q^{34} - 2 q^{38} - 2 q^{47} + 2 q^{48} + 4 q^{49} + 2 q^{53} - 4 q^{58} - 2 q^{59} - 4 q^{64} + 2 q^{66} + 2 q^{67}+ \cdots + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/209Z)×\left(\mathbb{Z}/209\mathbb{Z}\right)^\times.

nn 7878 134134
χ(n)\chi(n) e(23)e\left(\frac{2}{3}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
33 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
44 0 0
55 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
66 0.866025 0.500000i 0.866025 0.500000i
77 0 0 1.00000 00
−1.00000 π\pi
88 1.00000i 1.00000i
99 0 0
1010 0.866025 0.500000i 0.866025 0.500000i
1111 1.00000i 1.00000i
1212 0 0
1313 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 −0.500000 0.866025i −0.500000 0.866025i
1616 0.500000 0.866025i 0.500000 0.866025i
1717 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 1.00000i 1.00000i
2020 0 0
2121 0 0
2222 0.500000 0.866025i 0.500000 0.866025i
2323 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
2424 −0.866025 0.500000i −0.866025 0.500000i
2525 0 0
2626 1.00000 1.00000
2727 −1.00000 −1.00000
2828 0 0
2929 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
3030 1.00000i 1.00000i
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0 0
3333 −0.866025 0.500000i −0.866025 0.500000i
3434 −0.500000 0.866025i −0.500000 0.866025i
3535 0 0
3636 0 0
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 −0.500000 + 0.866025i −0.500000 + 0.866025i
3939 1.00000i 1.00000i
4040 −0.866025 0.500000i −0.866025 0.500000i
4141 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4242 0 0
4343 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 1.00000i 1.00000i
4747 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
4848 0.500000 + 0.866025i 0.500000 + 0.866025i
4949 1.00000 1.00000
5050 0 0
5151 −0.866025 + 0.500000i −0.866025 + 0.500000i
5252 0 0
5353 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
5454 0.866025 + 0.500000i 0.866025 + 0.500000i
5555 −0.866025 0.500000i −0.866025 0.500000i
5656 0 0
5757 0.866025 + 0.500000i 0.866025 + 0.500000i
5858 −1.00000 −1.00000
5959 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
6060 0 0
6161 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
6262 0 0
6363 0 0
6464 −1.00000 −1.00000
6565 1.00000i 1.00000i
6666 0.500000 + 0.866025i 0.500000 + 0.866025i
6767 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 0 0
6969 1.00000 1.00000
7070 0 0
7171 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
7272 0 0
7373 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 −0.500000 + 0.866025i −0.500000 + 0.866025i
7979 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
8080 0.500000 + 0.866025i 0.500000 + 0.866025i
8181 0.500000 0.866025i 0.500000 0.866025i
8282 0.500000 + 0.866025i 0.500000 + 0.866025i
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 −0.866025 + 0.500000i −0.866025 + 0.500000i
8686 −0.500000 0.866025i −0.500000 0.866025i
8787 1.00000i 1.00000i
8888 −1.00000 −1.00000
8989 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 1.00000i 1.00000i
9595 0.866025 + 0.500000i 0.866025 + 0.500000i
9696 0 0
9797 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
9898 −0.866025 0.500000i −0.866025 0.500000i
9999 0 0
100100 0 0
101101 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
102102 1.00000 1.00000
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 −0.500000 0.866025i −0.500000 0.866025i
105105 0 0
106106 1.00000i 1.00000i
107107 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
108108 0 0
109109 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
110110 0.500000 + 0.866025i 0.500000 + 0.866025i
111111 0 0
112112 0 0
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 −0.500000 0.866025i −0.500000 0.866025i
115115 1.00000 1.00000
116116 0 0
117117 0 0
118118 0.866025 0.500000i 0.866025 0.500000i
119119 0 0
120120 0.866025 0.500000i 0.866025 0.500000i
121121 −1.00000 −1.00000
122122 −1.00000 −1.00000
123123 0.866025 0.500000i 0.866025 0.500000i
124124 0 0
125125 −1.00000 −1.00000
126126 0 0
127127 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
128128 0.866025 + 0.500000i 0.866025 + 0.500000i
129129 −0.866025 + 0.500000i −0.866025 + 0.500000i
130130 −0.500000 + 0.866025i −0.500000 + 0.866025i
131131 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
132132 0 0
133133 0 0
134134 1.00000i 1.00000i
135135 0.500000 0.866025i 0.500000 0.866025i
136136 −0.500000 + 0.866025i −0.500000 + 0.866025i
137137 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
138138 −0.866025 0.500000i −0.866025 0.500000i
139139 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 1.00000 1.00000
142142 −0.866025 + 0.500000i −0.866025 + 0.500000i
143143 −0.500000 0.866025i −0.500000 0.866025i
144144 0 0
145145 1.00000i 1.00000i
146146 −0.500000 0.866025i −0.500000 0.866025i
147147 −0.500000 + 0.866025i −0.500000 + 0.866025i
148148 0 0
149149 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 1.00000 1.00000
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
158158 −0.500000 0.866025i −0.500000 0.866025i
159159 −1.00000 −1.00000
160160 0 0
161161 0 0
162162 −0.866025 + 0.500000i −0.866025 + 0.500000i
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 0 0
165165 0.866025 0.500000i 0.866025 0.500000i
166166 0 0
167167 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
168168 0 0
169169 0 0
170170 1.00000 1.00000
171171 0 0
172172 0 0
173173 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
174174 0.500000 0.866025i 0.500000 0.866025i
175175 0 0
176176 0.866025 + 0.500000i 0.866025 + 0.500000i
177177 −0.500000 0.866025i −0.500000 0.866025i
178178 1.00000i 1.00000i
179179 2.00000 2.00000 1.00000 00
1.00000 00
180180 0 0
181181 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
182182 0 0
183183 1.00000i 1.00000i
184184 0.866025 0.500000i 0.866025 0.500000i
185185 0 0
186186 0 0
187187 −0.500000 + 0.866025i −0.500000 + 0.866025i
188188 0 0
189189 0 0
190190 −0.500000 0.866025i −0.500000 0.866025i
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0.500000 0.866025i 0.500000 0.866025i
193193 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
194194 −0.866025 + 0.500000i −0.866025 + 0.500000i
195195 0.866025 + 0.500000i 0.866025 + 0.500000i
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 0 0
201201 −1.00000 −1.00000
202202 1.00000 1.00000
203203 0 0
204204 0 0
205205 0.866025 0.500000i 0.866025 0.500000i
206206 0 0
207207 0 0
208208 1.00000i 1.00000i
209209 1.00000 1.00000
210210 0 0
211211 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
212212 0 0
213213 0.500000 + 0.866025i 0.500000 + 0.866025i
214214 −1.00000 + 1.73205i −1.00000 + 1.73205i
215215 −0.866025 + 0.500000i −0.866025 + 0.500000i
216216 1.00000i 1.00000i
217217 0 0
218218 0.500000 + 0.866025i 0.500000 + 0.866025i
219219 −0.866025 + 0.500000i −0.866025 + 0.500000i
220220 0 0
221221 −1.00000 −1.00000
222222 0 0
223223 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
230230 −0.866025 0.500000i −0.866025 0.500000i
231231 0 0
232232 0.500000 + 0.866025i 0.500000 + 0.866025i
233233 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
234234 0 0
235235 1.00000 1.00000
236236 0 0
237237 −0.866025 + 0.500000i −0.866025 + 0.500000i
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 −1.00000 −1.00000
241241 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
242242 0.866025 + 0.500000i 0.866025 + 0.500000i
243243 0 0
244244 0 0
245245 −0.500000 + 0.866025i −0.500000 + 0.866025i
246246 −1.00000 −1.00000
247247 0.500000 + 0.866025i 0.500000 + 0.866025i
248248 0 0
249249 0 0
250250 0.866025 + 0.500000i 0.866025 + 0.500000i
251251 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
252252 0 0
253253 0.866025 0.500000i 0.866025 0.500000i
254254 1.00000 1.00000
255255 1.00000i 1.00000i
256256 0 0
257257 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
258258 1.00000 1.00000
259259 0 0
260260 0 0
261261 0 0
262262 0.500000 + 0.866025i 0.500000 + 0.866025i
263263 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
264264 0.500000 0.866025i 0.500000 0.866025i
265265 −1.00000 −1.00000
266266 0 0
267267 −1.00000 −1.00000
268268 0 0
269269 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
270270 −0.866025 + 0.500000i −0.866025 + 0.500000i
271271 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
272272 0.866025 0.500000i 0.866025 0.500000i
273273 0 0
274274 1.00000i 1.00000i
275275 0 0
276276 0 0
277277 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
278278 1.00000 1.00000
279279 0 0
280280 0 0
281281 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
282282 −0.866025 0.500000i −0.866025 0.500000i
283283 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
284284 0 0
285285 −0.866025 + 0.500000i −0.866025 + 0.500000i
286286 1.00000i 1.00000i
287287 0 0
288288 0 0
289289 0 0
290290 0.500000 0.866025i 0.500000 0.866025i
291291 0.500000 + 0.866025i 0.500000 + 0.866025i
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0.866025 0.500000i 0.866025 0.500000i
295295 −0.500000 0.866025i −0.500000 0.866025i
296296 0 0
297297 1.00000i 1.00000i
298298 −0.500000 0.866025i −0.500000 0.866025i
299299 0.866025 + 0.500000i 0.866025 + 0.500000i
300300 0 0
301301 0 0
302302 0 0
303303 1.00000i 1.00000i
304304 −0.866025 0.500000i −0.866025 0.500000i
305305 1.00000i 1.00000i
306306 0 0
307307 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 1.00000 1.00000
313313 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 −0.866025 + 0.500000i −0.866025 + 0.500000i
315315 0 0
316316 0 0
317317 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
318318 0.866025 + 0.500000i 0.866025 + 0.500000i
319319 0.500000 + 0.866025i 0.500000 + 0.866025i
320320 0.500000 0.866025i 0.500000 0.866025i
321321 1.73205 + 1.00000i 1.73205 + 1.00000i
322322 0 0
323323 0.500000 0.866025i 0.500000 0.866025i
324324 0 0
325325 0 0
326326 0 0
327327 0.866025 0.500000i 0.866025 0.500000i
328328 0.500000 0.866025i 0.500000 0.866025i
329329 0 0
330330 −1.00000 −1.00000
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 0 0
334334 −1.00000 −1.00000
335335 −1.00000 −1.00000
336336 0 0
337337 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 −0.500000 + 0.866025i −0.500000 + 0.866025i
345345 −0.500000 + 0.866025i −0.500000 + 0.866025i
346346 −0.500000 0.866025i −0.500000 0.866025i
347347 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0.866025 0.500000i 0.866025 0.500000i
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 1.00000i 1.00000i
355355 0.500000 + 0.866025i 0.500000 + 0.866025i
356356 0 0
357357 0 0
358358 −1.73205 1.00000i −1.73205 1.00000i
359359 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −1.00000 −1.00000
362362 1.00000i 1.00000i
363363 0.500000 0.866025i 0.500000 0.866025i
364364 0 0
365365 −0.866025 + 0.500000i −0.866025 + 0.500000i
366366 0.500000 0.866025i 0.500000 0.866025i
367367 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
368368 −1.00000 −1.00000
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0.866025 0.500000i 0.866025 0.500000i
375375 0.500000 0.866025i 0.500000 0.866025i
376376 0.866025 0.500000i 0.866025 0.500000i
377377 −0.500000 + 0.866025i −0.500000 + 0.866025i
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 1.00000i 1.00000i
382382 0 0
383383 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
384384 −0.866025 + 0.500000i −0.866025 + 0.500000i
385385 0 0
386386 0.500000 + 0.866025i 0.500000 + 0.866025i
387387 0 0
388388 0 0
389389 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
390390 −0.500000 0.866025i −0.500000 0.866025i
391391 1.00000i 1.00000i
392392 1.00000i 1.00000i
393393 0.866025 0.500000i 0.866025 0.500000i
394394 0 0
395395 −0.866025 + 0.500000i −0.866025 + 0.500000i
396396 0 0
397397 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
398398 1.00000i 1.00000i
399399 0 0
400400 0 0
401401 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
402402 0.866025 + 0.500000i 0.866025 + 0.500000i
403403 0 0
404404 0 0
405405 0.500000 + 0.866025i 0.500000 + 0.866025i
406406 0 0
407407 0 0
408408 −0.500000 0.866025i −0.500000 0.866025i
409409 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
410410 −1.00000 −1.00000
411411 1.00000 1.00000
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 1.00000i 1.00000i
418418 −0.866025 0.500000i −0.866025 0.500000i
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
422422 −0.500000 0.866025i −0.500000 0.866025i
423423 0 0
424424 −0.866025 + 0.500000i −0.866025 + 0.500000i
425425 0 0
426426 1.00000i 1.00000i
427427 0 0
428428 0 0
429429 1.00000 1.00000
430430 1.00000 1.00000
431431 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
432432 −0.500000 + 0.866025i −0.500000 + 0.866025i
433433 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
434434 0 0
435435 −0.866025 0.500000i −0.866025 0.500000i
436436 0 0
437437 −0.866025 + 0.500000i −0.866025 + 0.500000i
438438 1.00000 1.00000
439439 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
440440 0.500000 0.866025i 0.500000 0.866025i
441441 0 0
442442 0.866025 + 0.500000i 0.866025 + 0.500000i
443443 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
444444 0 0
445445 −1.00000 −1.00000
446446 0.866025 0.500000i 0.866025 0.500000i
447447 −0.866025 + 0.500000i −0.866025 + 0.500000i
448448 0 0
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 0.500000 0.866025i 0.500000 0.866025i
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 −0.500000 + 0.866025i −0.500000 + 0.866025i
457457 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
458458 1.73205 + 1.00000i 1.73205 + 1.00000i
459459 −0.866025 0.500000i −0.866025 0.500000i
460460 0 0
461461 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 1.00000i 1.00000i
465465 0 0
466466 0.500000 + 0.866025i 0.500000 + 0.866025i
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 −0.866025 0.500000i −0.866025 0.500000i
471471 0.500000 + 0.866025i 0.500000 + 0.866025i
472472 −0.866025 0.500000i −0.866025 0.500000i
473473 −0.500000 + 0.866025i −0.500000 + 0.866025i
474474 1.00000 1.00000
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 −1.00000 −1.00000
483483 0 0
484484 0 0
485485 0.500000 + 0.866025i 0.500000 + 0.866025i
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 0.500000 + 0.866025i 0.500000 + 0.866025i
489489 0 0
490490 0.866025 0.500000i 0.866025 0.500000i
491491 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
492492 0 0
493493 1.00000 1.00000
494494 1.00000i 1.00000i
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
500500 0 0
501501 1.00000i 1.00000i
502502 1.00000i 1.00000i
503503 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
504504 0 0
505505 1.00000i 1.00000i
506506 −1.00000 −1.00000
507507 0 0
508508 0 0
509509 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
510510 −0.500000 + 0.866025i −0.500000 + 0.866025i
511511 0 0
512512 1.00000i 1.00000i
513513 1.00000i 1.00000i
514514 1.00000i 1.00000i
515515 0 0
516516 0 0
517517 0.866025 0.500000i 0.866025 0.500000i
518518 0 0
519519 −0.866025 + 0.500000i −0.866025 + 0.500000i
520520 1.00000 1.00000
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
524524 0 0
525525 0 0
526526 0.500000 + 0.866025i 0.500000 + 0.866025i
527527 0 0
528528 −0.866025 + 0.500000i −0.866025 + 0.500000i
529529 0 0
530530 0.866025 + 0.500000i 0.866025 + 0.500000i
531531 0 0
532532 0 0
533533 1.00000 1.00000
534534 0.866025 + 0.500000i 0.866025 + 0.500000i
535535 1.73205 + 1.00000i 1.73205 + 1.00000i
536536 −0.866025 + 0.500000i −0.866025 + 0.500000i
537537 −1.00000 + 1.73205i −1.00000 + 1.73205i
538538 −0.866025 + 0.500000i −0.866025 + 0.500000i
539539 1.00000i 1.00000i
540540 0 0
541541 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
542542 0.500000 + 0.866025i 0.500000 + 0.866025i
543543 1.00000 1.00000
544544 0 0
545545 0.866025 0.500000i 0.866025 0.500000i
546546 0 0
547547 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 0 0
550550 0 0
551551 −0.500000 0.866025i −0.500000 0.866025i
552552 1.00000i 1.00000i
553553 0 0
554554 −1.00000 + 1.73205i −1.00000 + 1.73205i
555555 0 0
556556 0 0
557557 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
558558 0 0
559559 −1.00000 −1.00000
560560 0 0
561561 −0.500000 0.866025i −0.500000 0.866025i
562562 1.00000 1.00000
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 0 0
566566 0.500000 + 0.866025i 0.500000 + 0.866025i
567567 0 0
568568 0.866025 + 0.500000i 0.866025 + 0.500000i
569569 0 0 1.00000 00
−1.00000 π\pi
570570 1.00000 1.00000
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
578578 0 0
579579 0.866025 0.500000i 0.866025 0.500000i
580580 0 0
581581 0 0
582582 1.00000i 1.00000i
583583 −0.866025 + 0.500000i −0.866025 + 0.500000i
584584 −0.500000 + 0.866025i −0.500000 + 0.866025i
585585 0 0
586586 0 0
587587 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
588588 0 0
589589 0 0
590590 1.00000i 1.00000i
591591 0 0
592592 0 0
593593 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
594594 −0.500000 + 0.866025i −0.500000 + 0.866025i
595595 0 0
596596 0 0
597597 −1.00000 −1.00000
598598 −0.500000 0.866025i −0.500000 0.866025i
599599 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 0.500000 0.866025i 0.500000 0.866025i
606606 −0.500000 + 0.866025i −0.500000 + 0.866025i
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0.500000 0.866025i 0.500000 0.866025i
611611 0.866025 + 0.500000i 0.866025 + 0.500000i
612612 0 0
613613 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
614614 −0.500000 0.866025i −0.500000 0.866025i
615615 1.00000i 1.00000i
616616 0 0
617617 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
618618 0 0
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0.500000 + 0.866025i 0.500000 + 0.866025i
622622 0 0
623623 0 0
624624 −0.866025 0.500000i −0.866025 0.500000i
625625 0.500000 0.866025i 0.500000 0.866025i
626626 1.00000i 1.00000i
627627 −0.500000 + 0.866025i −0.500000 + 0.866025i
628628 0 0
629629 0 0
630630 0 0
631631 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
632632 −0.500000 + 0.866025i −0.500000 + 0.866025i
633633 −0.866025 + 0.500000i −0.866025 + 0.500000i
634634 1.00000i 1.00000i
635635 1.00000i 1.00000i
636636 0 0
637637 −0.866025 + 0.500000i −0.866025 + 0.500000i
638638 1.00000i 1.00000i
639639 0 0
640640 −0.866025 + 0.500000i −0.866025 + 0.500000i
641641 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
642642 −1.00000 1.73205i −1.00000 1.73205i
643643 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
644644 0 0
645645 1.00000i 1.00000i
646646 −0.866025 + 0.500000i −0.866025 + 0.500000i
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0.866025 + 0.500000i 0.866025 + 0.500000i
649649 −0.866025 0.500000i −0.866025 0.500000i
650650 0 0
651651 0 0
652652 0 0
653653 2.00000 2.00000 1.00000 00
1.00000 00
654654 −1.00000 −1.00000
655655 0.866025 0.500000i 0.866025 0.500000i
656656 −0.866025 + 0.500000i −0.866025 + 0.500000i
657657 0 0
658658 0 0
659659 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
660660 0 0
661661 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
662662 0 0
663663 0.500000 0.866025i 0.500000 0.866025i
664664 0 0
665665 0 0
666666 0 0
667667 −0.866025 0.500000i −0.866025 0.500000i
668668 0 0
669669 −0.500000 0.866025i −0.500000 0.866025i
670670 0.866025 + 0.500000i 0.866025 + 0.500000i
671671 0.500000 + 0.866025i 0.500000 + 0.866025i
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0.500000 + 0.866025i 0.500000 + 0.866025i
675675 0 0
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 −0.500000 0.866025i −0.500000 0.866025i
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 1.00000 1.00000
686686 0 0
687687 1.00000 1.73205i 1.00000 1.73205i
688688 0.866025 0.500000i 0.866025 0.500000i
689689 −0.866025 0.500000i −0.866025 0.500000i
690690 0.866025 0.500000i 0.866025 0.500000i
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 −0.500000 0.866025i −0.500000 0.866025i
695695 1.00000i 1.00000i
696696 −1.00000 −1.00000
697697 −0.500000 0.866025i −0.500000 0.866025i
698698 1.00000 1.73205i 1.00000 1.73205i
699699 0.866025 0.500000i 0.866025 0.500000i
700700 0 0
701701 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
702702 −1.00000 −1.00000
703703 0 0
704704 1.00000i 1.00000i
705705 −0.500000 + 0.866025i −0.500000 + 0.866025i
706706 0 0
707707 0 0
708708 0 0
709709 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
710710 1.00000i 1.00000i
711711 0 0
712712 −0.866025 + 0.500000i −0.866025 + 0.500000i
713713 0 0
714714 0 0
715715 1.00000 1.00000
716716 0 0
717717 0 0
718718 −0.500000 0.866025i −0.500000 0.866025i
719719 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
720720 0 0
721721 0 0
722722 0.866025 + 0.500000i 0.866025 + 0.500000i
723723 1.00000i 1.00000i
724724 0 0
725725 0 0
726726 −0.866025 + 0.500000i −0.866025 + 0.500000i
727727 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
728728 0 0
729729 1.00000 1.00000
730730 1.00000 1.00000
731731 0.500000 + 0.866025i 0.500000 + 0.866025i
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 1.00000i 1.00000i
735735 −0.500000 0.866025i −0.500000 0.866025i
736736 0 0
737737 −0.866025 + 0.500000i −0.866025 + 0.500000i
738738 0 0
739739 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
740740 0 0
741741 −1.00000 −1.00000
742742 0 0
743743 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
744744 0 0
745745 −0.866025 + 0.500000i −0.866025 + 0.500000i
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 −0.866025 + 0.500000i −0.866025 + 0.500000i
751751 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 −1.00000 −1.00000
753753 −1.00000 −1.00000
754754 0.866025 0.500000i 0.866025 0.500000i
755755 0 0
756756 0 0
757757 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
758758 0 0
759759 1.00000i 1.00000i
760760 −0.500000 + 0.866025i −0.500000 + 0.866025i
761761 0 0 1.00000 00
−1.00000 π\pi
762762 −0.500000 + 0.866025i −0.500000 + 0.866025i
763763 0 0
764764 0 0
765765 0 0
766766 −0.866025 + 0.500000i −0.866025 + 0.500000i
767767 1.00000i 1.00000i
768768 0 0
769769 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
770770 0 0
771771 −1.00000 −1.00000
772772 0 0
773773 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
774774 0 0
775775 0 0
776776 0.866025 + 0.500000i 0.866025 + 0.500000i
777777 0 0
778778 1.00000i 1.00000i
779779 −0.500000 + 0.866025i −0.500000 + 0.866025i
780780 0 0
781781 0.866025 + 0.500000i 0.866025 + 0.500000i
782782 −0.500000 + 0.866025i −0.500000 + 0.866025i
783783 −0.866025 + 0.500000i −0.866025 + 0.500000i
784784 0.500000 0.866025i 0.500000 0.866025i
785785 0.500000 + 0.866025i 0.500000 + 0.866025i
786786 −1.00000 −1.00000
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 0.866025 0.500000i 0.866025 0.500000i
790790 1.00000 1.00000
791791 0 0
792792 0 0
793793 −0.500000 + 0.866025i −0.500000 + 0.866025i
794794 −0.866025 + 0.500000i −0.866025 + 0.500000i
795795 0.500000 0.866025i 0.500000 0.866025i
796796 0 0
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 1.00000i 1.00000i
800800 0 0
801801 0 0
802802 0.866025 0.500000i 0.866025 0.500000i
803803 −0.500000 + 0.866025i −0.500000 + 0.866025i
804804 0 0
805805 0 0
806806 0 0
807807 0.500000 + 0.866025i 0.500000 + 0.866025i
808808 −0.500000 0.866025i −0.500000 0.866025i
809809 0 0 1.00000 00
−1.00000 π\pi
810810 1.00000i 1.00000i
811811 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
812812 0 0
813813 0.866025 0.500000i 0.866025 0.500000i
814814 0 0
815815 0 0
816816 1.00000i 1.00000i
817817 0.500000 0.866025i 0.500000 0.866025i
818818 −1.00000 −1.00000
819819 0 0
820820 0 0
821821 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
822822 −0.866025 0.500000i −0.866025 0.500000i
823823 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
824824 0 0
825825 0 0
826826 0 0
827827 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 1.73205 + 1.00000i 1.73205 + 1.00000i
832832 0.866025 0.500000i 0.866025 0.500000i
833833 0.866025 + 0.500000i 0.866025 + 0.500000i
834834 −0.500000 + 0.866025i −0.500000 + 0.866025i
835835 1.00000i 1.00000i
836836 0 0
837837 0 0
838838 0 0
839839 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
840840 0 0
841841 0 0
842842 0.866025 0.500000i 0.866025 0.500000i
843843 1.00000i 1.00000i
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 1.00000 1.00000
849849 0.866025 0.500000i 0.866025 0.500000i
850850 0 0
851851 0 0
852852 0 0
853853 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
854854 0 0
855855 0 0
856856 2.00000 2.00000
857857 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
858858 −0.866025 0.500000i −0.866025 0.500000i
859859 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
860860 0 0
861861 0 0
862862 1.00000 1.00000
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 −0.866025 + 0.500000i −0.866025 + 0.500000i
866866 1.00000i 1.00000i
867867 0 0
868868 0 0
869869 −0.500000 + 0.866025i −0.500000 + 0.866025i
870870 0.500000 + 0.866025i 0.500000 + 0.866025i
871871 −0.866025 0.500000i −0.866025 0.500000i
872872 0.500000 0.866025i 0.500000 0.866025i
873873 0 0
874874 1.00000 1.00000
875875 0 0
876876 0 0
877877 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
878878 −0.500000 0.866025i −0.500000 0.866025i
879879 0 0
880880 −0.866025 + 0.500000i −0.866025 + 0.500000i
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
884884 0 0
885885 1.00000 1.00000
886886 1.00000i 1.00000i
887887 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0.866025 + 0.500000i 0.866025 + 0.500000i
891891 0.866025 + 0.500000i 0.866025 + 0.500000i
892892 0 0
893893 −0.866025 + 0.500000i −0.866025 + 0.500000i
894894 1.00000 1.00000
895895 −1.00000 + 1.73205i −1.00000 + 1.73205i
896896 0 0
897897 −0.866025 + 0.500000i −0.866025 + 0.500000i
898898 0 0
899899 0 0
900900 0 0
901901 1.00000i 1.00000i
902902 −0.866025 + 0.500000i −0.866025 + 0.500000i
903903 0 0
904904 0 0
905905 1.00000 1.00000
906906 0 0
907907 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0.866025 0.500000i 0.866025 0.500000i
913913 0 0
914914 1.00000 1.73205i 1.00000 1.73205i
915915 −0.866025 0.500000i −0.866025 0.500000i
916916 0 0
917917 0 0
918918 0.500000 + 0.866025i 0.500000 + 0.866025i
919919 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
920920 1.00000i 1.00000i
921921 −0.866025 + 0.500000i −0.866025 + 0.500000i
922922 0.500000 + 0.866025i 0.500000 + 0.866025i
923923 1.00000i 1.00000i
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
930930 0 0
931931 1.00000i 1.00000i
932932 0 0
933933 0 0
934934 0 0
935935 −0.500000 0.866025i −0.500000 0.866025i
936936 0 0
937937 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
938938 0 0
939939 −1.00000 −1.00000
940940 0 0
941941 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
942942 1.00000i 1.00000i
943943 1.00000i 1.00000i
944944 0.500000 + 0.866025i 0.500000 + 0.866025i
945945 0 0
946946 0.866025 0.500000i 0.866025 0.500000i
947947 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
948948 0 0
949949 −1.00000 −1.00000
950950 0 0
951951 1.00000 1.00000
952952 0 0
953953 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
954954 0 0
955955 0 0
956956 0 0
957957 −1.00000 −1.00000
958958 1.00000 1.00000
959959 0 0
960960 0.500000 + 0.866025i 0.500000 + 0.866025i
961961 −1.00000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0.866025 0.500000i 0.866025 0.500000i
966966 0 0
967967 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
968968 1.00000i 1.00000i
969969 0.500000 + 0.866025i 0.500000 + 0.866025i
970970 1.00000i 1.00000i
971971 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 1.00000i 1.00000i
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 −0.866025 + 0.500000i −0.866025 + 0.500000i
980980 0 0
981981 0 0
982982 0.500000 + 0.866025i 0.500000 + 0.866025i
983983 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
984984 0.500000 + 0.866025i 0.500000 + 0.866025i
985985 0 0
986986 −0.866025 0.500000i −0.866025 0.500000i
987987 0 0
988988 0 0
989989 1.00000i 1.00000i
990990 0 0
991991 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 −1.00000 −1.00000
996996 0 0
997997 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
998998 −0.866025 + 0.500000i −0.866025 + 0.500000i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 209.1.h.a.87.1 4
3.2 odd 2 1881.1.bc.a.505.2 4
4.3 odd 2 3344.1.bb.a.2177.1 4
11.2 odd 10 2299.1.w.a.524.1 16
11.3 even 5 2299.1.w.a.1322.1 16
11.4 even 5 2299.1.w.a.2272.2 16
11.5 even 5 2299.1.w.a.239.2 16
11.6 odd 10 2299.1.w.a.239.1 16
11.7 odd 10 2299.1.w.a.2272.1 16
11.8 odd 10 2299.1.w.a.1322.2 16
11.9 even 5 2299.1.w.a.524.2 16
11.10 odd 2 inner 209.1.h.a.87.2 yes 4
19.2 odd 18 3971.1.q.d.956.1 12
19.3 odd 18 3971.1.q.d.2265.1 12
19.4 even 9 3971.1.q.e.1506.1 12
19.5 even 9 3971.1.q.e.3277.1 12
19.6 even 9 3971.1.q.e.54.1 12
19.7 even 3 inner 209.1.h.a.197.2 yes 4
19.8 odd 6 3971.1.c.b.362.1 2
19.9 even 9 3971.1.q.e.967.2 12
19.10 odd 18 3971.1.q.d.967.1 12
19.11 even 3 3971.1.c.e.362.2 2
19.12 odd 6 3971.1.h.d.3541.1 4
19.13 odd 18 3971.1.q.d.54.2 12
19.14 odd 18 3971.1.q.d.3277.2 12
19.15 odd 18 3971.1.q.d.1506.2 12
19.16 even 9 3971.1.q.e.2265.2 12
19.17 even 9 3971.1.q.e.956.2 12
19.18 odd 2 3971.1.h.d.2595.2 4
33.32 even 2 1881.1.bc.a.505.1 4
44.43 even 2 3344.1.bb.a.2177.2 4
57.26 odd 6 1881.1.bc.a.406.1 4
76.7 odd 6 3344.1.bb.a.2705.1 4
209.7 odd 30 2299.1.w.a.1546.1 16
209.10 even 18 3971.1.q.d.967.2 12
209.21 even 18 3971.1.q.d.956.2 12
209.26 even 15 2299.1.w.a.1546.2 16
209.32 even 18 3971.1.q.d.54.1 12
209.43 odd 18 3971.1.q.e.3277.2 12
209.54 odd 18 3971.1.q.e.2265.1 12
209.64 even 15 2299.1.w.a.2097.1 16
209.65 even 6 3971.1.c.b.362.2 2
209.83 odd 30 2299.1.w.a.1812.2 16
209.87 odd 6 3971.1.c.e.362.1 2
209.98 even 18 3971.1.q.d.2265.2 12
209.102 even 15 2299.1.w.a.596.1 16
209.109 even 18 3971.1.q.d.3277.1 12
209.120 odd 18 3971.1.q.e.54.2 12
209.131 odd 18 3971.1.q.e.956.1 12
209.140 odd 30 2299.1.w.a.596.2 16
209.142 odd 18 3971.1.q.e.967.1 12
209.159 even 15 2299.1.w.a.1812.1 16
209.164 even 6 3971.1.h.d.3541.2 4
209.175 odd 18 3971.1.q.e.1506.2 12
209.178 odd 30 2299.1.w.a.2097.2 16
209.186 even 18 3971.1.q.d.1506.1 12
209.197 odd 6 inner 209.1.h.a.197.1 yes 4
209.208 even 2 3971.1.h.d.2595.1 4
627.197 even 6 1881.1.bc.a.406.2 4
836.615 even 6 3344.1.bb.a.2705.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.1.h.a.87.1 4 1.1 even 1 trivial
209.1.h.a.87.2 yes 4 11.10 odd 2 inner
209.1.h.a.197.1 yes 4 209.197 odd 6 inner
209.1.h.a.197.2 yes 4 19.7 even 3 inner
1881.1.bc.a.406.1 4 57.26 odd 6
1881.1.bc.a.406.2 4 627.197 even 6
1881.1.bc.a.505.1 4 33.32 even 2
1881.1.bc.a.505.2 4 3.2 odd 2
2299.1.w.a.239.1 16 11.6 odd 10
2299.1.w.a.239.2 16 11.5 even 5
2299.1.w.a.524.1 16 11.2 odd 10
2299.1.w.a.524.2 16 11.9 even 5
2299.1.w.a.596.1 16 209.102 even 15
2299.1.w.a.596.2 16 209.140 odd 30
2299.1.w.a.1322.1 16 11.3 even 5
2299.1.w.a.1322.2 16 11.8 odd 10
2299.1.w.a.1546.1 16 209.7 odd 30
2299.1.w.a.1546.2 16 209.26 even 15
2299.1.w.a.1812.1 16 209.159 even 15
2299.1.w.a.1812.2 16 209.83 odd 30
2299.1.w.a.2097.1 16 209.64 even 15
2299.1.w.a.2097.2 16 209.178 odd 30
2299.1.w.a.2272.1 16 11.7 odd 10
2299.1.w.a.2272.2 16 11.4 even 5
3344.1.bb.a.2177.1 4 4.3 odd 2
3344.1.bb.a.2177.2 4 44.43 even 2
3344.1.bb.a.2705.1 4 76.7 odd 6
3344.1.bb.a.2705.2 4 836.615 even 6
3971.1.c.b.362.1 2 19.8 odd 6
3971.1.c.b.362.2 2 209.65 even 6
3971.1.c.e.362.1 2 209.87 odd 6
3971.1.c.e.362.2 2 19.11 even 3
3971.1.h.d.2595.1 4 209.208 even 2
3971.1.h.d.2595.2 4 19.18 odd 2
3971.1.h.d.3541.1 4 19.12 odd 6
3971.1.h.d.3541.2 4 209.164 even 6
3971.1.q.d.54.1 12 209.32 even 18
3971.1.q.d.54.2 12 19.13 odd 18
3971.1.q.d.956.1 12 19.2 odd 18
3971.1.q.d.956.2 12 209.21 even 18
3971.1.q.d.967.1 12 19.10 odd 18
3971.1.q.d.967.2 12 209.10 even 18
3971.1.q.d.1506.1 12 209.186 even 18
3971.1.q.d.1506.2 12 19.15 odd 18
3971.1.q.d.2265.1 12 19.3 odd 18
3971.1.q.d.2265.2 12 209.98 even 18
3971.1.q.d.3277.1 12 209.109 even 18
3971.1.q.d.3277.2 12 19.14 odd 18
3971.1.q.e.54.1 12 19.6 even 9
3971.1.q.e.54.2 12 209.120 odd 18
3971.1.q.e.956.1 12 209.131 odd 18
3971.1.q.e.956.2 12 19.17 even 9
3971.1.q.e.967.1 12 209.142 odd 18
3971.1.q.e.967.2 12 19.9 even 9
3971.1.q.e.1506.1 12 19.4 even 9
3971.1.q.e.1506.2 12 209.175 odd 18
3971.1.q.e.2265.1 12 209.54 odd 18
3971.1.q.e.2265.2 12 19.16 even 9
3971.1.q.e.3277.1 12 19.5 even 9
3971.1.q.e.3277.2 12 209.43 odd 18