Properties

Label 209.2.a.d.1.6
Level $209$
Weight $2$
Character 209.1
Self dual yes
Analytic conductor $1.669$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(1,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 14x^{5} + 10x^{4} + 59x^{3} - 27x^{2} - 66x + 30 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.03821\) of defining polynomial
Character \(\chi\) \(=\) 209.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.03821 q^{2} +1.87275 q^{3} +2.15429 q^{4} -3.24760 q^{5} +3.81704 q^{6} +1.92338 q^{7} +0.314472 q^{8} +0.507178 q^{9} -6.61928 q^{10} -1.00000 q^{11} +4.03444 q^{12} +2.85122 q^{13} +3.92024 q^{14} -6.08193 q^{15} -3.66762 q^{16} -2.33033 q^{17} +1.03373 q^{18} +1.00000 q^{19} -6.99626 q^{20} +3.60199 q^{21} -2.03821 q^{22} -2.74653 q^{23} +0.588926 q^{24} +5.54689 q^{25} +5.81138 q^{26} -4.66842 q^{27} +4.14350 q^{28} -0.972965 q^{29} -12.3962 q^{30} -0.00551178 q^{31} -8.10431 q^{32} -1.87275 q^{33} -4.74970 q^{34} -6.24635 q^{35} +1.09261 q^{36} +9.67124 q^{37} +2.03821 q^{38} +5.33962 q^{39} -1.02128 q^{40} +6.65137 q^{41} +7.34161 q^{42} +7.99413 q^{43} -2.15429 q^{44} -1.64711 q^{45} -5.59800 q^{46} +3.46982 q^{47} -6.86852 q^{48} -3.30063 q^{49} +11.3057 q^{50} -4.36412 q^{51} +6.14236 q^{52} +10.5493 q^{53} -9.51521 q^{54} +3.24760 q^{55} +0.604847 q^{56} +1.87275 q^{57} -1.98311 q^{58} -13.7814 q^{59} -13.1022 q^{60} +3.74608 q^{61} -0.0112342 q^{62} +0.975494 q^{63} -9.18303 q^{64} -9.25963 q^{65} -3.81704 q^{66} -3.97172 q^{67} -5.02021 q^{68} -5.14356 q^{69} -12.7314 q^{70} +14.2688 q^{71} +0.159493 q^{72} -13.2263 q^{73} +19.7120 q^{74} +10.3879 q^{75} +2.15429 q^{76} -1.92338 q^{77} +10.8832 q^{78} -1.87656 q^{79} +11.9109 q^{80} -10.2643 q^{81} +13.5569 q^{82} -10.9619 q^{83} +7.75973 q^{84} +7.56799 q^{85} +16.2937 q^{86} -1.82212 q^{87} -0.314472 q^{88} +15.0195 q^{89} -3.35715 q^{90} +5.48397 q^{91} -5.91682 q^{92} -0.0103222 q^{93} +7.07220 q^{94} -3.24760 q^{95} -15.1773 q^{96} -7.57248 q^{97} -6.72736 q^{98} -0.507178 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{2} + 2 q^{3} + 15 q^{4} + 2 q^{5} - 2 q^{6} + 10 q^{7} - 9 q^{8} + 11 q^{9} - 6 q^{10} - 7 q^{11} - 16 q^{12} - 4 q^{13} + 6 q^{14} + 12 q^{15} + 27 q^{16} + 2 q^{17} + 9 q^{18} + 7 q^{19} - 4 q^{20}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.03821 1.44123 0.720615 0.693335i \(-0.243860\pi\)
0.720615 + 0.693335i \(0.243860\pi\)
\(3\) 1.87275 1.08123 0.540615 0.841270i \(-0.318191\pi\)
0.540615 + 0.841270i \(0.318191\pi\)
\(4\) 2.15429 1.07714
\(5\) −3.24760 −1.45237 −0.726185 0.687499i \(-0.758708\pi\)
−0.726185 + 0.687499i \(0.758708\pi\)
\(6\) 3.81704 1.55830
\(7\) 1.92338 0.726967 0.363484 0.931601i \(-0.381587\pi\)
0.363484 + 0.931601i \(0.381587\pi\)
\(8\) 0.314472 0.111183
\(9\) 0.507178 0.169059
\(10\) −6.61928 −2.09320
\(11\) −1.00000 −0.301511
\(12\) 4.03444 1.16464
\(13\) 2.85122 0.790787 0.395394 0.918512i \(-0.370608\pi\)
0.395394 + 0.918512i \(0.370608\pi\)
\(14\) 3.92024 1.04773
\(15\) −6.08193 −1.57035
\(16\) −3.66762 −0.916905
\(17\) −2.33033 −0.565189 −0.282594 0.959239i \(-0.591195\pi\)
−0.282594 + 0.959239i \(0.591195\pi\)
\(18\) 1.03373 0.243653
\(19\) 1.00000 0.229416
\(20\) −6.99626 −1.56441
\(21\) 3.60199 0.786019
\(22\) −2.03821 −0.434547
\(23\) −2.74653 −0.572691 −0.286346 0.958126i \(-0.592441\pi\)
−0.286346 + 0.958126i \(0.592441\pi\)
\(24\) 0.588926 0.120214
\(25\) 5.54689 1.10938
\(26\) 5.81138 1.13971
\(27\) −4.66842 −0.898438
\(28\) 4.14350 0.783049
\(29\) −0.972965 −0.180675 −0.0903376 0.995911i \(-0.528795\pi\)
−0.0903376 + 0.995911i \(0.528795\pi\)
\(30\) −12.3962 −2.26323
\(31\) −0.00551178 −0.000989945 0 −0.000494973 1.00000i \(-0.500158\pi\)
−0.000494973 1.00000i \(0.500158\pi\)
\(32\) −8.10431 −1.43265
\(33\) −1.87275 −0.326003
\(34\) −4.74970 −0.814567
\(35\) −6.24635 −1.05583
\(36\) 1.09261 0.182101
\(37\) 9.67124 1.58994 0.794971 0.606647i \(-0.207486\pi\)
0.794971 + 0.606647i \(0.207486\pi\)
\(38\) 2.03821 0.330641
\(39\) 5.33962 0.855023
\(40\) −1.02128 −0.161478
\(41\) 6.65137 1.03877 0.519385 0.854540i \(-0.326161\pi\)
0.519385 + 0.854540i \(0.326161\pi\)
\(42\) 7.34161 1.13283
\(43\) 7.99413 1.21909 0.609547 0.792750i \(-0.291352\pi\)
0.609547 + 0.792750i \(0.291352\pi\)
\(44\) −2.15429 −0.324771
\(45\) −1.64711 −0.245537
\(46\) −5.59800 −0.825380
\(47\) 3.46982 0.506125 0.253062 0.967450i \(-0.418562\pi\)
0.253062 + 0.967450i \(0.418562\pi\)
\(48\) −6.86852 −0.991385
\(49\) −3.30063 −0.471518
\(50\) 11.3057 1.59887
\(51\) −4.36412 −0.611100
\(52\) 6.14236 0.851792
\(53\) 10.5493 1.44905 0.724526 0.689247i \(-0.242058\pi\)
0.724526 + 0.689247i \(0.242058\pi\)
\(54\) −9.51521 −1.29486
\(55\) 3.24760 0.437906
\(56\) 0.604847 0.0808261
\(57\) 1.87275 0.248051
\(58\) −1.98311 −0.260394
\(59\) −13.7814 −1.79419 −0.897096 0.441836i \(-0.854327\pi\)
−0.897096 + 0.441836i \(0.854327\pi\)
\(60\) −13.1022 −1.69149
\(61\) 3.74608 0.479636 0.239818 0.970818i \(-0.422912\pi\)
0.239818 + 0.970818i \(0.422912\pi\)
\(62\) −0.0112342 −0.00142674
\(63\) 0.975494 0.122901
\(64\) −9.18303 −1.14788
\(65\) −9.25963 −1.14852
\(66\) −3.81704 −0.469846
\(67\) −3.97172 −0.485223 −0.242612 0.970124i \(-0.578004\pi\)
−0.242612 + 0.970124i \(0.578004\pi\)
\(68\) −5.02021 −0.608790
\(69\) −5.14356 −0.619211
\(70\) −12.7314 −1.52169
\(71\) 14.2688 1.69339 0.846695 0.532078i \(-0.178589\pi\)
0.846695 + 0.532078i \(0.178589\pi\)
\(72\) 0.159493 0.0187965
\(73\) −13.2263 −1.54803 −0.774013 0.633170i \(-0.781753\pi\)
−0.774013 + 0.633170i \(0.781753\pi\)
\(74\) 19.7120 2.29147
\(75\) 10.3879 1.19949
\(76\) 2.15429 0.247114
\(77\) −1.92338 −0.219189
\(78\) 10.8832 1.23229
\(79\) −1.87656 −0.211130 −0.105565 0.994412i \(-0.533665\pi\)
−0.105565 + 0.994412i \(0.533665\pi\)
\(80\) 11.9109 1.33168
\(81\) −10.2643 −1.14048
\(82\) 13.5569 1.49711
\(83\) −10.9619 −1.20322 −0.601612 0.798789i \(-0.705474\pi\)
−0.601612 + 0.798789i \(0.705474\pi\)
\(84\) 7.75973 0.846656
\(85\) 7.56799 0.820863
\(86\) 16.2937 1.75699
\(87\) −1.82212 −0.195351
\(88\) −0.314472 −0.0335228
\(89\) 15.0195 1.59207 0.796034 0.605253i \(-0.206928\pi\)
0.796034 + 0.605253i \(0.206928\pi\)
\(90\) −3.35715 −0.353875
\(91\) 5.48397 0.574876
\(92\) −5.91682 −0.616871
\(93\) −0.0103222 −0.00107036
\(94\) 7.07220 0.729442
\(95\) −3.24760 −0.333196
\(96\) −15.1773 −1.54903
\(97\) −7.57248 −0.768869 −0.384434 0.923152i \(-0.625604\pi\)
−0.384434 + 0.923152i \(0.625604\pi\)
\(98\) −6.72736 −0.679566
\(99\) −0.507178 −0.0509733
\(100\) 11.9496 1.19496
\(101\) −15.0513 −1.49766 −0.748831 0.662761i \(-0.769385\pi\)
−0.748831 + 0.662761i \(0.769385\pi\)
\(102\) −8.89499 −0.880735
\(103\) −0.543451 −0.0535478 −0.0267739 0.999642i \(-0.508523\pi\)
−0.0267739 + 0.999642i \(0.508523\pi\)
\(104\) 0.896629 0.0879218
\(105\) −11.6978 −1.14159
\(106\) 21.5016 2.08842
\(107\) 14.7371 1.42469 0.712344 0.701831i \(-0.247634\pi\)
0.712344 + 0.701831i \(0.247634\pi\)
\(108\) −10.0571 −0.967748
\(109\) −17.3711 −1.66385 −0.831925 0.554888i \(-0.812761\pi\)
−0.831925 + 0.554888i \(0.812761\pi\)
\(110\) 6.61928 0.631123
\(111\) 18.1118 1.71909
\(112\) −7.05421 −0.666560
\(113\) 12.8865 1.21226 0.606132 0.795364i \(-0.292720\pi\)
0.606132 + 0.795364i \(0.292720\pi\)
\(114\) 3.81704 0.357499
\(115\) 8.91963 0.831760
\(116\) −2.09605 −0.194613
\(117\) 1.44608 0.133690
\(118\) −28.0894 −2.58584
\(119\) −4.48211 −0.410874
\(120\) −1.91259 −0.174595
\(121\) 1.00000 0.0909091
\(122\) 7.63529 0.691266
\(123\) 12.4563 1.12315
\(124\) −0.0118740 −0.00106631
\(125\) −1.77608 −0.158858
\(126\) 1.98826 0.177128
\(127\) 15.4342 1.36957 0.684784 0.728746i \(-0.259897\pi\)
0.684784 + 0.728746i \(0.259897\pi\)
\(128\) −2.50829 −0.221704
\(129\) 14.9710 1.31812
\(130\) −18.8730 −1.65527
\(131\) −12.0655 −1.05417 −0.527083 0.849814i \(-0.676714\pi\)
−0.527083 + 0.849814i \(0.676714\pi\)
\(132\) −4.03444 −0.351153
\(133\) 1.92338 0.166778
\(134\) −8.09519 −0.699318
\(135\) 15.1612 1.30486
\(136\) −0.732824 −0.0628392
\(137\) −5.53253 −0.472676 −0.236338 0.971671i \(-0.575947\pi\)
−0.236338 + 0.971671i \(0.575947\pi\)
\(138\) −10.4836 −0.892426
\(139\) −8.66764 −0.735180 −0.367590 0.929988i \(-0.619817\pi\)
−0.367590 + 0.929988i \(0.619817\pi\)
\(140\) −13.4564 −1.13728
\(141\) 6.49808 0.547237
\(142\) 29.0827 2.44057
\(143\) −2.85122 −0.238431
\(144\) −1.86014 −0.155011
\(145\) 3.15980 0.262407
\(146\) −26.9580 −2.23106
\(147\) −6.18124 −0.509820
\(148\) 20.8346 1.71260
\(149\) −19.3027 −1.58134 −0.790671 0.612241i \(-0.790268\pi\)
−0.790671 + 0.612241i \(0.790268\pi\)
\(150\) 21.1727 1.72875
\(151\) 8.71384 0.709122 0.354561 0.935033i \(-0.384630\pi\)
0.354561 + 0.935033i \(0.384630\pi\)
\(152\) 0.314472 0.0255070
\(153\) −1.18189 −0.0955505
\(154\) −3.92024 −0.315902
\(155\) 0.0179000 0.00143777
\(156\) 11.5031 0.920983
\(157\) −5.86640 −0.468189 −0.234095 0.972214i \(-0.575213\pi\)
−0.234095 + 0.972214i \(0.575213\pi\)
\(158\) −3.82483 −0.304287
\(159\) 19.7561 1.56676
\(160\) 26.3195 2.08074
\(161\) −5.28261 −0.416328
\(162\) −20.9208 −1.64369
\(163\) 14.8802 1.16551 0.582753 0.812649i \(-0.301975\pi\)
0.582753 + 0.812649i \(0.301975\pi\)
\(164\) 14.3290 1.11891
\(165\) 6.08193 0.473477
\(166\) −22.3426 −1.73412
\(167\) 4.18971 0.324209 0.162105 0.986774i \(-0.448172\pi\)
0.162105 + 0.986774i \(0.448172\pi\)
\(168\) 1.13273 0.0873917
\(169\) −4.87053 −0.374656
\(170\) 15.4251 1.18305
\(171\) 0.507178 0.0387849
\(172\) 17.2217 1.31314
\(173\) 0.707136 0.0537626 0.0268813 0.999639i \(-0.491442\pi\)
0.0268813 + 0.999639i \(0.491442\pi\)
\(174\) −3.71385 −0.281546
\(175\) 10.6688 0.806482
\(176\) 3.66762 0.276457
\(177\) −25.8091 −1.93993
\(178\) 30.6129 2.29454
\(179\) −21.7962 −1.62913 −0.814563 0.580076i \(-0.803023\pi\)
−0.814563 + 0.580076i \(0.803023\pi\)
\(180\) −3.54835 −0.264478
\(181\) −2.93416 −0.218094 −0.109047 0.994037i \(-0.534780\pi\)
−0.109047 + 0.994037i \(0.534780\pi\)
\(182\) 11.1775 0.828529
\(183\) 7.01546 0.518598
\(184\) −0.863707 −0.0636733
\(185\) −31.4083 −2.30918
\(186\) −0.0210387 −0.00154263
\(187\) 2.33033 0.170411
\(188\) 7.47498 0.545169
\(189\) −8.97913 −0.653135
\(190\) −6.61928 −0.480213
\(191\) 22.4018 1.62094 0.810468 0.585783i \(-0.199213\pi\)
0.810468 + 0.585783i \(0.199213\pi\)
\(192\) −17.1975 −1.24112
\(193\) 2.55447 0.183875 0.0919375 0.995765i \(-0.470694\pi\)
0.0919375 + 0.995765i \(0.470694\pi\)
\(194\) −15.4343 −1.10812
\(195\) −17.3409 −1.24181
\(196\) −7.11051 −0.507893
\(197\) −12.6968 −0.904607 −0.452303 0.891864i \(-0.649398\pi\)
−0.452303 + 0.891864i \(0.649398\pi\)
\(198\) −1.03373 −0.0734643
\(199\) 10.1553 0.719892 0.359946 0.932973i \(-0.382795\pi\)
0.359946 + 0.932973i \(0.382795\pi\)
\(200\) 1.74434 0.123344
\(201\) −7.43803 −0.524638
\(202\) −30.6777 −2.15848
\(203\) −1.87138 −0.131345
\(204\) −9.40158 −0.658242
\(205\) −21.6010 −1.50868
\(206\) −1.10767 −0.0771747
\(207\) −1.39298 −0.0968188
\(208\) −10.4572 −0.725076
\(209\) −1.00000 −0.0691714
\(210\) −23.8426 −1.64530
\(211\) −8.25858 −0.568544 −0.284272 0.958744i \(-0.591752\pi\)
−0.284272 + 0.958744i \(0.591752\pi\)
\(212\) 22.7262 1.56084
\(213\) 26.7218 1.83095
\(214\) 30.0372 2.05330
\(215\) −25.9617 −1.77057
\(216\) −1.46809 −0.0998907
\(217\) −0.0106012 −0.000719658 0
\(218\) −35.4059 −2.39799
\(219\) −24.7696 −1.67377
\(220\) 6.99626 0.471688
\(221\) −6.64430 −0.446944
\(222\) 36.9156 2.47761
\(223\) −21.2289 −1.42159 −0.710797 0.703398i \(-0.751665\pi\)
−0.710797 + 0.703398i \(0.751665\pi\)
\(224\) −15.5876 −1.04149
\(225\) 2.81326 0.187551
\(226\) 26.2655 1.74715
\(227\) −9.06652 −0.601766 −0.300883 0.953661i \(-0.597281\pi\)
−0.300883 + 0.953661i \(0.597281\pi\)
\(228\) 4.03444 0.267187
\(229\) −5.25556 −0.347297 −0.173649 0.984808i \(-0.555556\pi\)
−0.173649 + 0.984808i \(0.555556\pi\)
\(230\) 18.1800 1.19876
\(231\) −3.60199 −0.236994
\(232\) −0.305970 −0.0200879
\(233\) −5.68870 −0.372679 −0.186340 0.982485i \(-0.559662\pi\)
−0.186340 + 0.982485i \(0.559662\pi\)
\(234\) 2.94741 0.192678
\(235\) −11.2686 −0.735080
\(236\) −29.6892 −1.93260
\(237\) −3.51433 −0.228280
\(238\) −9.13546 −0.592164
\(239\) −20.3787 −1.31819 −0.659094 0.752060i \(-0.729060\pi\)
−0.659094 + 0.752060i \(0.729060\pi\)
\(240\) 22.3062 1.43986
\(241\) 17.6930 1.13971 0.569854 0.821746i \(-0.307000\pi\)
0.569854 + 0.821746i \(0.307000\pi\)
\(242\) 2.03821 0.131021
\(243\) −5.21717 −0.334682
\(244\) 8.07014 0.516638
\(245\) 10.7191 0.684819
\(246\) 25.3886 1.61872
\(247\) 2.85122 0.181419
\(248\) −0.00173330 −0.000110065 0
\(249\) −20.5288 −1.30096
\(250\) −3.62002 −0.228950
\(251\) −0.776543 −0.0490149 −0.0245075 0.999700i \(-0.507802\pi\)
−0.0245075 + 0.999700i \(0.507802\pi\)
\(252\) 2.10149 0.132382
\(253\) 2.74653 0.172673
\(254\) 31.4582 1.97386
\(255\) 14.1729 0.887543
\(256\) 13.2536 0.828352
\(257\) 29.2762 1.82620 0.913100 0.407736i \(-0.133682\pi\)
0.913100 + 0.407736i \(0.133682\pi\)
\(258\) 30.5139 1.89972
\(259\) 18.6014 1.15584
\(260\) −19.9479 −1.23712
\(261\) −0.493467 −0.0305448
\(262\) −24.5919 −1.51929
\(263\) −5.90041 −0.363835 −0.181918 0.983314i \(-0.558230\pi\)
−0.181918 + 0.983314i \(0.558230\pi\)
\(264\) −0.588926 −0.0362459
\(265\) −34.2598 −2.10456
\(266\) 3.92024 0.240365
\(267\) 28.1278 1.72139
\(268\) −8.55623 −0.522655
\(269\) −10.7278 −0.654087 −0.327044 0.945009i \(-0.606052\pi\)
−0.327044 + 0.945009i \(0.606052\pi\)
\(270\) 30.9016 1.88061
\(271\) 16.2707 0.988375 0.494188 0.869355i \(-0.335466\pi\)
0.494188 + 0.869355i \(0.335466\pi\)
\(272\) 8.54677 0.518224
\(273\) 10.2701 0.621574
\(274\) −11.2765 −0.681235
\(275\) −5.54689 −0.334490
\(276\) −11.0807 −0.666980
\(277\) 6.77040 0.406794 0.203397 0.979096i \(-0.434802\pi\)
0.203397 + 0.979096i \(0.434802\pi\)
\(278\) −17.6664 −1.05956
\(279\) −0.00279545 −0.000167359 0
\(280\) −1.96430 −0.117389
\(281\) −17.1455 −1.02281 −0.511407 0.859339i \(-0.670876\pi\)
−0.511407 + 0.859339i \(0.670876\pi\)
\(282\) 13.2444 0.788695
\(283\) −2.94787 −0.175232 −0.0876162 0.996154i \(-0.527925\pi\)
−0.0876162 + 0.996154i \(0.527925\pi\)
\(284\) 30.7390 1.82403
\(285\) −6.08193 −0.360262
\(286\) −5.81138 −0.343634
\(287\) 12.7931 0.755152
\(288\) −4.11033 −0.242203
\(289\) −11.5695 −0.680561
\(290\) 6.44033 0.378189
\(291\) −14.1813 −0.831325
\(292\) −28.4933 −1.66745
\(293\) 2.57851 0.150638 0.0753192 0.997159i \(-0.476002\pi\)
0.0753192 + 0.997159i \(0.476002\pi\)
\(294\) −12.5986 −0.734768
\(295\) 44.7566 2.60583
\(296\) 3.04133 0.176774
\(297\) 4.66842 0.270889
\(298\) −39.3430 −2.27908
\(299\) −7.83097 −0.452877
\(300\) 22.3786 1.29203
\(301\) 15.3757 0.886241
\(302\) 17.7606 1.02201
\(303\) −28.1873 −1.61932
\(304\) −3.66762 −0.210352
\(305\) −12.1658 −0.696610
\(306\) −2.40895 −0.137710
\(307\) −19.7888 −1.12941 −0.564704 0.825293i \(-0.691010\pi\)
−0.564704 + 0.825293i \(0.691010\pi\)
\(308\) −4.14350 −0.236098
\(309\) −1.01775 −0.0578975
\(310\) 0.0364840 0.00207215
\(311\) 19.7979 1.12264 0.561319 0.827599i \(-0.310294\pi\)
0.561319 + 0.827599i \(0.310294\pi\)
\(312\) 1.67916 0.0950637
\(313\) 10.9847 0.620890 0.310445 0.950591i \(-0.399522\pi\)
0.310445 + 0.950591i \(0.399522\pi\)
\(314\) −11.9569 −0.674769
\(315\) −3.16801 −0.178497
\(316\) −4.04266 −0.227417
\(317\) 9.88351 0.555113 0.277557 0.960709i \(-0.410475\pi\)
0.277557 + 0.960709i \(0.410475\pi\)
\(318\) 40.2670 2.25806
\(319\) 0.972965 0.0544756
\(320\) 29.8228 1.66714
\(321\) 27.5988 1.54042
\(322\) −10.7671 −0.600024
\(323\) −2.33033 −0.129663
\(324\) −22.1123 −1.22846
\(325\) 15.8154 0.877282
\(326\) 30.3289 1.67976
\(327\) −32.5317 −1.79901
\(328\) 2.09167 0.115493
\(329\) 6.67376 0.367936
\(330\) 12.3962 0.682390
\(331\) 25.7597 1.41588 0.707942 0.706271i \(-0.249624\pi\)
0.707942 + 0.706271i \(0.249624\pi\)
\(332\) −23.6151 −1.29604
\(333\) 4.90504 0.268795
\(334\) 8.53949 0.467260
\(335\) 12.8986 0.704723
\(336\) −13.2107 −0.720705
\(337\) 21.8924 1.19256 0.596278 0.802778i \(-0.296646\pi\)
0.596278 + 0.802778i \(0.296646\pi\)
\(338\) −9.92714 −0.539965
\(339\) 24.1332 1.31074
\(340\) 16.3036 0.884188
\(341\) 0.00551178 0.000298480 0
\(342\) 1.03373 0.0558979
\(343\) −19.8120 −1.06975
\(344\) 2.51393 0.135542
\(345\) 16.7042 0.899324
\(346\) 1.44129 0.0774842
\(347\) 19.2857 1.03531 0.517656 0.855589i \(-0.326805\pi\)
0.517656 + 0.855589i \(0.326805\pi\)
\(348\) −3.92537 −0.210422
\(349\) 15.5220 0.830872 0.415436 0.909622i \(-0.363629\pi\)
0.415436 + 0.909622i \(0.363629\pi\)
\(350\) 21.7451 1.16233
\(351\) −13.3107 −0.710473
\(352\) 8.10431 0.431961
\(353\) −8.92859 −0.475221 −0.237610 0.971361i \(-0.576364\pi\)
−0.237610 + 0.971361i \(0.576364\pi\)
\(354\) −52.6044 −2.79589
\(355\) −46.3392 −2.45943
\(356\) 32.3564 1.71489
\(357\) −8.39385 −0.444249
\(358\) −44.4252 −2.34794
\(359\) 26.2672 1.38633 0.693165 0.720779i \(-0.256216\pi\)
0.693165 + 0.720779i \(0.256216\pi\)
\(360\) −0.517970 −0.0272994
\(361\) 1.00000 0.0526316
\(362\) −5.98042 −0.314324
\(363\) 1.87275 0.0982937
\(364\) 11.8141 0.619225
\(365\) 42.9538 2.24830
\(366\) 14.2990 0.747418
\(367\) 10.2560 0.535358 0.267679 0.963508i \(-0.413743\pi\)
0.267679 + 0.963508i \(0.413743\pi\)
\(368\) 10.0732 0.525103
\(369\) 3.37343 0.175614
\(370\) −64.0166 −3.32807
\(371\) 20.2902 1.05341
\(372\) −0.0222369 −0.00115293
\(373\) −20.2242 −1.04717 −0.523584 0.851974i \(-0.675405\pi\)
−0.523584 + 0.851974i \(0.675405\pi\)
\(374\) 4.74970 0.245601
\(375\) −3.32615 −0.171762
\(376\) 1.09116 0.0562722
\(377\) −2.77414 −0.142876
\(378\) −18.3013 −0.941318
\(379\) 14.1534 0.727011 0.363505 0.931592i \(-0.381580\pi\)
0.363505 + 0.931592i \(0.381580\pi\)
\(380\) −6.99626 −0.358901
\(381\) 28.9044 1.48082
\(382\) 45.6595 2.33614
\(383\) 12.3217 0.629611 0.314806 0.949156i \(-0.398061\pi\)
0.314806 + 0.949156i \(0.398061\pi\)
\(384\) −4.69739 −0.239713
\(385\) 6.24635 0.318343
\(386\) 5.20655 0.265006
\(387\) 4.05445 0.206099
\(388\) −16.3133 −0.828183
\(389\) 33.9248 1.72006 0.860029 0.510245i \(-0.170445\pi\)
0.860029 + 0.510245i \(0.170445\pi\)
\(390\) −35.3444 −1.78973
\(391\) 6.40033 0.323679
\(392\) −1.03795 −0.0524246
\(393\) −22.5956 −1.13980
\(394\) −25.8786 −1.30375
\(395\) 6.09432 0.306639
\(396\) −1.09261 −0.0549056
\(397\) −20.3357 −1.02062 −0.510309 0.859991i \(-0.670469\pi\)
−0.510309 + 0.859991i \(0.670469\pi\)
\(398\) 20.6987 1.03753
\(399\) 3.60199 0.180325
\(400\) −20.3439 −1.01719
\(401\) −30.6815 −1.53216 −0.766080 0.642746i \(-0.777795\pi\)
−0.766080 + 0.642746i \(0.777795\pi\)
\(402\) −15.1602 −0.756124
\(403\) −0.0157153 −0.000782836 0
\(404\) −32.4249 −1.61320
\(405\) 33.3343 1.65640
\(406\) −3.81425 −0.189298
\(407\) −9.67124 −0.479386
\(408\) −1.37239 −0.0679436
\(409\) −34.8086 −1.72117 −0.860586 0.509305i \(-0.829903\pi\)
−0.860586 + 0.509305i \(0.829903\pi\)
\(410\) −44.0273 −2.17435
\(411\) −10.3610 −0.511072
\(412\) −1.17075 −0.0576787
\(413\) −26.5069 −1.30432
\(414\) −2.83918 −0.139538
\(415\) 35.5998 1.74752
\(416\) −23.1072 −1.13292
\(417\) −16.2323 −0.794899
\(418\) −2.03821 −0.0996920
\(419\) 9.04478 0.441866 0.220933 0.975289i \(-0.429090\pi\)
0.220933 + 0.975289i \(0.429090\pi\)
\(420\) −25.2005 −1.22966
\(421\) 29.9089 1.45767 0.728836 0.684688i \(-0.240062\pi\)
0.728836 + 0.684688i \(0.240062\pi\)
\(422\) −16.8327 −0.819402
\(423\) 1.75981 0.0855651
\(424\) 3.31745 0.161109
\(425\) −12.9261 −0.627008
\(426\) 54.4645 2.63881
\(427\) 7.20512 0.348680
\(428\) 31.7479 1.53459
\(429\) −5.33962 −0.257799
\(430\) −52.9154 −2.55180
\(431\) −13.7402 −0.661840 −0.330920 0.943659i \(-0.607359\pi\)
−0.330920 + 0.943659i \(0.607359\pi\)
\(432\) 17.1220 0.823782
\(433\) 3.28875 0.158047 0.0790236 0.996873i \(-0.474820\pi\)
0.0790236 + 0.996873i \(0.474820\pi\)
\(434\) −0.0216075 −0.00103719
\(435\) 5.91750 0.283723
\(436\) −37.4224 −1.79221
\(437\) −2.74653 −0.131384
\(438\) −50.4855 −2.41229
\(439\) 13.1729 0.628707 0.314353 0.949306i \(-0.398212\pi\)
0.314353 + 0.949306i \(0.398212\pi\)
\(440\) 1.02128 0.0486875
\(441\) −1.67401 −0.0797146
\(442\) −13.5425 −0.644149
\(443\) −24.9484 −1.18533 −0.592666 0.805448i \(-0.701925\pi\)
−0.592666 + 0.805448i \(0.701925\pi\)
\(444\) 39.0180 1.85171
\(445\) −48.7774 −2.31227
\(446\) −43.2689 −2.04884
\(447\) −36.1491 −1.70980
\(448\) −17.6624 −0.834470
\(449\) 15.5530 0.733993 0.366996 0.930222i \(-0.380386\pi\)
0.366996 + 0.930222i \(0.380386\pi\)
\(450\) 5.73401 0.270304
\(451\) −6.65137 −0.313201
\(452\) 27.7613 1.30578
\(453\) 16.3188 0.766724
\(454\) −18.4794 −0.867283
\(455\) −17.8097 −0.834933
\(456\) 0.588926 0.0275790
\(457\) −19.1451 −0.895571 −0.447786 0.894141i \(-0.647787\pi\)
−0.447786 + 0.894141i \(0.647787\pi\)
\(458\) −10.7119 −0.500535
\(459\) 10.8790 0.507787
\(460\) 19.2155 0.895925
\(461\) 33.5045 1.56046 0.780229 0.625493i \(-0.215102\pi\)
0.780229 + 0.625493i \(0.215102\pi\)
\(462\) −7.34161 −0.341563
\(463\) 2.83101 0.131568 0.0657842 0.997834i \(-0.479045\pi\)
0.0657842 + 0.997834i \(0.479045\pi\)
\(464\) 3.56847 0.165662
\(465\) 0.0335222 0.00155456
\(466\) −11.5948 −0.537117
\(467\) −20.3717 −0.942689 −0.471344 0.881949i \(-0.656231\pi\)
−0.471344 + 0.881949i \(0.656231\pi\)
\(468\) 3.11527 0.144003
\(469\) −7.63911 −0.352741
\(470\) −22.9677 −1.05942
\(471\) −10.9863 −0.506221
\(472\) −4.33388 −0.199483
\(473\) −7.99413 −0.367570
\(474\) −7.16293 −0.329004
\(475\) 5.54689 0.254509
\(476\) −9.65575 −0.442571
\(477\) 5.35036 0.244976
\(478\) −41.5360 −1.89981
\(479\) −7.81572 −0.357109 −0.178555 0.983930i \(-0.557142\pi\)
−0.178555 + 0.983930i \(0.557142\pi\)
\(480\) 49.2898 2.24976
\(481\) 27.5749 1.25731
\(482\) 36.0621 1.64258
\(483\) −9.89299 −0.450146
\(484\) 2.15429 0.0979222
\(485\) 24.5924 1.11668
\(486\) −10.6337 −0.482353
\(487\) −9.10523 −0.412597 −0.206299 0.978489i \(-0.566142\pi\)
−0.206299 + 0.978489i \(0.566142\pi\)
\(488\) 1.17804 0.0533272
\(489\) 27.8668 1.26018
\(490\) 21.8478 0.986982
\(491\) 34.4175 1.55324 0.776619 0.629970i \(-0.216933\pi\)
0.776619 + 0.629970i \(0.216933\pi\)
\(492\) 26.8345 1.20979
\(493\) 2.26733 0.102116
\(494\) 5.81138 0.261467
\(495\) 1.64711 0.0740321
\(496\) 0.0202151 0.000907685 0
\(497\) 27.4442 1.23104
\(498\) −41.8420 −1.87498
\(499\) 7.80798 0.349533 0.174767 0.984610i \(-0.444083\pi\)
0.174767 + 0.984610i \(0.444083\pi\)
\(500\) −3.82619 −0.171113
\(501\) 7.84625 0.350545
\(502\) −1.58275 −0.0706418
\(503\) 34.9580 1.55870 0.779350 0.626589i \(-0.215550\pi\)
0.779350 + 0.626589i \(0.215550\pi\)
\(504\) 0.306765 0.0136644
\(505\) 48.8806 2.17516
\(506\) 5.59800 0.248861
\(507\) −9.12126 −0.405089
\(508\) 33.2498 1.47522
\(509\) −11.3952 −0.505082 −0.252541 0.967586i \(-0.581266\pi\)
−0.252541 + 0.967586i \(0.581266\pi\)
\(510\) 28.8873 1.27915
\(511\) −25.4392 −1.12536
\(512\) 32.0302 1.41555
\(513\) −4.66842 −0.206116
\(514\) 59.6710 2.63197
\(515\) 1.76491 0.0777712
\(516\) 32.2518 1.41981
\(517\) −3.46982 −0.152602
\(518\) 37.9136 1.66583
\(519\) 1.32429 0.0581297
\(520\) −2.91189 −0.127695
\(521\) −28.0648 −1.22954 −0.614770 0.788707i \(-0.710751\pi\)
−0.614770 + 0.788707i \(0.710751\pi\)
\(522\) −1.00579 −0.0440221
\(523\) 20.5683 0.899389 0.449694 0.893182i \(-0.351533\pi\)
0.449694 + 0.893182i \(0.351533\pi\)
\(524\) −25.9925 −1.13549
\(525\) 19.9799 0.871993
\(526\) −12.0263 −0.524370
\(527\) 0.0128443 0.000559506 0
\(528\) 6.86852 0.298914
\(529\) −15.4566 −0.672025
\(530\) −69.8285 −3.03316
\(531\) −6.98965 −0.303325
\(532\) 4.14350 0.179644
\(533\) 18.9645 0.821446
\(534\) 57.3302 2.48092
\(535\) −47.8601 −2.06917
\(536\) −1.24899 −0.0539484
\(537\) −40.8188 −1.76146
\(538\) −21.8655 −0.942690
\(539\) 3.30063 0.142168
\(540\) 32.6615 1.40553
\(541\) −4.13908 −0.177953 −0.0889766 0.996034i \(-0.528360\pi\)
−0.0889766 + 0.996034i \(0.528360\pi\)
\(542\) 33.1631 1.42448
\(543\) −5.49493 −0.235810
\(544\) 18.8857 0.809720
\(545\) 56.4144 2.41653
\(546\) 20.9326 0.895831
\(547\) −30.7624 −1.31530 −0.657652 0.753322i \(-0.728450\pi\)
−0.657652 + 0.753322i \(0.728450\pi\)
\(548\) −11.9187 −0.509141
\(549\) 1.89993 0.0810870
\(550\) −11.3057 −0.482077
\(551\) −0.972965 −0.0414497
\(552\) −1.61750 −0.0688455
\(553\) −3.60934 −0.153485
\(554\) 13.7995 0.586284
\(555\) −58.8198 −2.49676
\(556\) −18.6726 −0.791895
\(557\) 8.84004 0.374565 0.187282 0.982306i \(-0.440032\pi\)
0.187282 + 0.982306i \(0.440032\pi\)
\(558\) −0.00569772 −0.000241204 0
\(559\) 22.7930 0.964043
\(560\) 22.9092 0.968091
\(561\) 4.36412 0.184253
\(562\) −34.9461 −1.47411
\(563\) −3.15807 −0.133097 −0.0665484 0.997783i \(-0.521199\pi\)
−0.0665484 + 0.997783i \(0.521199\pi\)
\(564\) 13.9987 0.589454
\(565\) −41.8503 −1.76066
\(566\) −6.00836 −0.252550
\(567\) −19.7421 −0.829091
\(568\) 4.48712 0.188276
\(569\) 18.7192 0.784749 0.392375 0.919806i \(-0.371654\pi\)
0.392375 + 0.919806i \(0.371654\pi\)
\(570\) −12.3962 −0.519221
\(571\) 37.6834 1.57700 0.788500 0.615034i \(-0.210858\pi\)
0.788500 + 0.615034i \(0.210858\pi\)
\(572\) −6.14236 −0.256825
\(573\) 41.9529 1.75261
\(574\) 26.0750 1.08835
\(575\) −15.2347 −0.635331
\(576\) −4.65743 −0.194060
\(577\) 1.77272 0.0737993 0.0368997 0.999319i \(-0.488252\pi\)
0.0368997 + 0.999319i \(0.488252\pi\)
\(578\) −23.5811 −0.980846
\(579\) 4.78388 0.198811
\(580\) 6.80712 0.282650
\(581\) −21.0838 −0.874704
\(582\) −28.9045 −1.19813
\(583\) −10.5493 −0.436906
\(584\) −4.15931 −0.172113
\(585\) −4.69628 −0.194167
\(586\) 5.25554 0.217105
\(587\) −32.1703 −1.32781 −0.663906 0.747816i \(-0.731103\pi\)
−0.663906 + 0.747816i \(0.731103\pi\)
\(588\) −13.3162 −0.549150
\(589\) −0.00551178 −0.000227109 0
\(590\) 91.2232 3.75560
\(591\) −23.7778 −0.978088
\(592\) −35.4704 −1.45783
\(593\) 12.2719 0.503946 0.251973 0.967734i \(-0.418921\pi\)
0.251973 + 0.967734i \(0.418921\pi\)
\(594\) 9.51521 0.390414
\(595\) 14.5561 0.596741
\(596\) −41.5837 −1.70333
\(597\) 19.0183 0.778369
\(598\) −15.9611 −0.652700
\(599\) 16.7005 0.682366 0.341183 0.939997i \(-0.389172\pi\)
0.341183 + 0.939997i \(0.389172\pi\)
\(600\) 3.26671 0.133363
\(601\) 14.3030 0.583432 0.291716 0.956505i \(-0.405774\pi\)
0.291716 + 0.956505i \(0.405774\pi\)
\(602\) 31.3389 1.27728
\(603\) −2.01437 −0.0820315
\(604\) 18.7721 0.763827
\(605\) −3.24760 −0.132034
\(606\) −57.4516 −2.33381
\(607\) −9.04370 −0.367073 −0.183536 0.983013i \(-0.558754\pi\)
−0.183536 + 0.983013i \(0.558754\pi\)
\(608\) −8.10431 −0.328673
\(609\) −3.50461 −0.142014
\(610\) −24.7963 −1.00397
\(611\) 9.89322 0.400237
\(612\) −2.54614 −0.102922
\(613\) −24.0096 −0.969738 −0.484869 0.874587i \(-0.661133\pi\)
−0.484869 + 0.874587i \(0.661133\pi\)
\(614\) −40.3337 −1.62774
\(615\) −40.4532 −1.63123
\(616\) −0.604847 −0.0243700
\(617\) 1.30852 0.0526791 0.0263395 0.999653i \(-0.491615\pi\)
0.0263395 + 0.999653i \(0.491615\pi\)
\(618\) −2.07438 −0.0834436
\(619\) 32.2747 1.29723 0.648616 0.761116i \(-0.275348\pi\)
0.648616 + 0.761116i \(0.275348\pi\)
\(620\) 0.0385619 0.00154868
\(621\) 12.8220 0.514528
\(622\) 40.3523 1.61798
\(623\) 28.8882 1.15738
\(624\) −19.5837 −0.783975
\(625\) −21.9665 −0.878658
\(626\) 22.3890 0.894845
\(627\) −1.87275 −0.0747903
\(628\) −12.6379 −0.504308
\(629\) −22.5372 −0.898618
\(630\) −6.45706 −0.257256
\(631\) 29.6689 1.18110 0.590551 0.807000i \(-0.298911\pi\)
0.590551 + 0.807000i \(0.298911\pi\)
\(632\) −0.590127 −0.0234740
\(633\) −15.4662 −0.614727
\(634\) 20.1446 0.800046
\(635\) −50.1242 −1.98912
\(636\) 42.5603 1.68763
\(637\) −9.41083 −0.372871
\(638\) 1.98311 0.0785119
\(639\) 7.23680 0.286283
\(640\) 8.14591 0.321995
\(641\) 22.2716 0.879675 0.439838 0.898077i \(-0.355036\pi\)
0.439838 + 0.898077i \(0.355036\pi\)
\(642\) 56.2521 2.22009
\(643\) −16.6461 −0.656456 −0.328228 0.944599i \(-0.606451\pi\)
−0.328228 + 0.944599i \(0.606451\pi\)
\(644\) −11.3803 −0.448445
\(645\) −48.6197 −1.91440
\(646\) −4.74970 −0.186875
\(647\) −15.9531 −0.627180 −0.313590 0.949559i \(-0.601532\pi\)
−0.313590 + 0.949559i \(0.601532\pi\)
\(648\) −3.22783 −0.126801
\(649\) 13.7814 0.540969
\(650\) 32.2351 1.26437
\(651\) −0.0198534 −0.000778116 0
\(652\) 32.0562 1.25542
\(653\) 14.7613 0.577655 0.288828 0.957381i \(-0.406735\pi\)
0.288828 + 0.957381i \(0.406735\pi\)
\(654\) −66.3063 −2.59278
\(655\) 39.1838 1.53104
\(656\) −24.3947 −0.952453
\(657\) −6.70811 −0.261708
\(658\) 13.6025 0.530281
\(659\) −19.6143 −0.764065 −0.382032 0.924149i \(-0.624776\pi\)
−0.382032 + 0.924149i \(0.624776\pi\)
\(660\) 13.1022 0.510003
\(661\) −31.5523 −1.22724 −0.613621 0.789601i \(-0.710288\pi\)
−0.613621 + 0.789601i \(0.710288\pi\)
\(662\) 52.5037 2.04061
\(663\) −12.4431 −0.483250
\(664\) −3.44720 −0.133777
\(665\) −6.24635 −0.242223
\(666\) 9.99749 0.387395
\(667\) 2.67228 0.103471
\(668\) 9.02583 0.349220
\(669\) −39.7564 −1.53707
\(670\) 26.2899 1.01567
\(671\) −3.74608 −0.144616
\(672\) −29.1917 −1.12609
\(673\) 41.3876 1.59537 0.797687 0.603071i \(-0.206057\pi\)
0.797687 + 0.603071i \(0.206057\pi\)
\(674\) 44.6213 1.71875
\(675\) −25.8952 −0.996708
\(676\) −10.4925 −0.403558
\(677\) −20.6981 −0.795491 −0.397746 0.917496i \(-0.630207\pi\)
−0.397746 + 0.917496i \(0.630207\pi\)
\(678\) 49.1885 1.88907
\(679\) −14.5647 −0.558943
\(680\) 2.37992 0.0912657
\(681\) −16.9793 −0.650647
\(682\) 0.0112342 0.000430178 0
\(683\) −0.658543 −0.0251985 −0.0125992 0.999921i \(-0.504011\pi\)
−0.0125992 + 0.999921i \(0.504011\pi\)
\(684\) 1.09261 0.0417769
\(685\) 17.9674 0.686501
\(686\) −40.3809 −1.54175
\(687\) −9.84233 −0.375508
\(688\) −29.3194 −1.11779
\(689\) 30.0783 1.14589
\(690\) 34.0466 1.29613
\(691\) 34.2462 1.30279 0.651393 0.758741i \(-0.274185\pi\)
0.651393 + 0.758741i \(0.274185\pi\)
\(692\) 1.52338 0.0579100
\(693\) −0.975494 −0.0370559
\(694\) 39.3083 1.49212
\(695\) 28.1490 1.06775
\(696\) −0.573005 −0.0217197
\(697\) −15.4999 −0.587101
\(698\) 31.6370 1.19748
\(699\) −10.6535 −0.402952
\(700\) 22.9836 0.868697
\(701\) 22.4638 0.848445 0.424223 0.905558i \(-0.360547\pi\)
0.424223 + 0.905558i \(0.360547\pi\)
\(702\) −27.1300 −1.02396
\(703\) 9.67124 0.364758
\(704\) 9.18303 0.346098
\(705\) −21.1032 −0.794791
\(706\) −18.1983 −0.684902
\(707\) −28.9493 −1.08875
\(708\) −55.6003 −2.08959
\(709\) −0.410520 −0.0154174 −0.00770870 0.999970i \(-0.502454\pi\)
−0.00770870 + 0.999970i \(0.502454\pi\)
\(710\) −94.4489 −3.54460
\(711\) −0.951752 −0.0356935
\(712\) 4.72322 0.177010
\(713\) 0.0151383 0.000566933 0
\(714\) −17.1084 −0.640266
\(715\) 9.25963 0.346290
\(716\) −46.9553 −1.75480
\(717\) −38.1641 −1.42527
\(718\) 53.5380 1.99802
\(719\) 36.5145 1.36176 0.680880 0.732395i \(-0.261598\pi\)
0.680880 + 0.732395i \(0.261598\pi\)
\(720\) 6.04097 0.225134
\(721\) −1.04526 −0.0389275
\(722\) 2.03821 0.0758542
\(723\) 33.1346 1.23229
\(724\) −6.32102 −0.234919
\(725\) −5.39693 −0.200437
\(726\) 3.81704 0.141664
\(727\) −39.2587 −1.45602 −0.728012 0.685564i \(-0.759556\pi\)
−0.728012 + 0.685564i \(0.759556\pi\)
\(728\) 1.72455 0.0639163
\(729\) 21.0225 0.778610
\(730\) 87.5488 3.24032
\(731\) −18.6290 −0.689018
\(732\) 15.1133 0.558604
\(733\) −34.3259 −1.26786 −0.633928 0.773392i \(-0.718558\pi\)
−0.633928 + 0.773392i \(0.718558\pi\)
\(734\) 20.9038 0.771575
\(735\) 20.0742 0.740447
\(736\) 22.2587 0.820468
\(737\) 3.97172 0.146300
\(738\) 6.87575 0.253100
\(739\) −26.7732 −0.984870 −0.492435 0.870349i \(-0.663893\pi\)
−0.492435 + 0.870349i \(0.663893\pi\)
\(740\) −67.6625 −2.48732
\(741\) 5.33962 0.196156
\(742\) 41.3556 1.51821
\(743\) −9.38431 −0.344277 −0.172139 0.985073i \(-0.555068\pi\)
−0.172139 + 0.985073i \(0.555068\pi\)
\(744\) −0.00324603 −0.000119005 0
\(745\) 62.6876 2.29669
\(746\) −41.2210 −1.50921
\(747\) −5.55963 −0.203416
\(748\) 5.02021 0.183557
\(749\) 28.3449 1.03570
\(750\) −6.77939 −0.247548
\(751\) 7.66846 0.279826 0.139913 0.990164i \(-0.455318\pi\)
0.139913 + 0.990164i \(0.455318\pi\)
\(752\) −12.7260 −0.464068
\(753\) −1.45427 −0.0529965
\(754\) −5.65428 −0.205917
\(755\) −28.2990 −1.02991
\(756\) −19.3436 −0.703521
\(757\) −6.75931 −0.245671 −0.122836 0.992427i \(-0.539199\pi\)
−0.122836 + 0.992427i \(0.539199\pi\)
\(758\) 28.8475 1.04779
\(759\) 5.14356 0.186699
\(760\) −1.02128 −0.0370456
\(761\) −34.8774 −1.26430 −0.632152 0.774844i \(-0.717828\pi\)
−0.632152 + 0.774844i \(0.717828\pi\)
\(762\) 58.9132 2.13420
\(763\) −33.4111 −1.20956
\(764\) 48.2599 1.74598
\(765\) 3.83832 0.138775
\(766\) 25.1142 0.907415
\(767\) −39.2940 −1.41882
\(768\) 24.8207 0.895640
\(769\) −0.00622027 −0.000224309 0 −0.000112154 1.00000i \(-0.500036\pi\)
−0.000112154 1.00000i \(0.500036\pi\)
\(770\) 12.7314 0.458806
\(771\) 54.8269 1.97454
\(772\) 5.50307 0.198060
\(773\) 10.8548 0.390418 0.195209 0.980762i \(-0.437461\pi\)
0.195209 + 0.980762i \(0.437461\pi\)
\(774\) 8.26380 0.297036
\(775\) −0.0305733 −0.00109822
\(776\) −2.38133 −0.0854848
\(777\) 34.8357 1.24973
\(778\) 69.1459 2.47900
\(779\) 6.65137 0.238310
\(780\) −37.3574 −1.33761
\(781\) −14.2688 −0.510576
\(782\) 13.0452 0.466496
\(783\) 4.54221 0.162325
\(784\) 12.1054 0.432337
\(785\) 19.0517 0.679984
\(786\) −46.0544 −1.64271
\(787\) 37.8221 1.34821 0.674106 0.738635i \(-0.264529\pi\)
0.674106 + 0.738635i \(0.264529\pi\)
\(788\) −27.3525 −0.974392
\(789\) −11.0500 −0.393390
\(790\) 12.4215 0.441937
\(791\) 24.7857 0.881277
\(792\) −0.159493 −0.00566735
\(793\) 10.6809 0.379290
\(794\) −41.4483 −1.47095
\(795\) −64.1598 −2.27552
\(796\) 21.8775 0.775428
\(797\) −49.2853 −1.74577 −0.872887 0.487922i \(-0.837755\pi\)
−0.872887 + 0.487922i \(0.837755\pi\)
\(798\) 7.34161 0.259890
\(799\) −8.08583 −0.286056
\(800\) −44.9537 −1.58935
\(801\) 7.61758 0.269154
\(802\) −62.5352 −2.20819
\(803\) 13.2263 0.466747
\(804\) −16.0237 −0.565111
\(805\) 17.1558 0.604662
\(806\) −0.0320311 −0.00112825
\(807\) −20.0905 −0.707219
\(808\) −4.73322 −0.166514
\(809\) 34.0416 1.19684 0.598420 0.801183i \(-0.295796\pi\)
0.598420 + 0.801183i \(0.295796\pi\)
\(810\) 67.9423 2.38725
\(811\) −44.7037 −1.56976 −0.784880 0.619648i \(-0.787275\pi\)
−0.784880 + 0.619648i \(0.787275\pi\)
\(812\) −4.03149 −0.141477
\(813\) 30.4709 1.06866
\(814\) −19.7120 −0.690905
\(815\) −48.3249 −1.69275
\(816\) 16.0059 0.560320
\(817\) 7.99413 0.279679
\(818\) −70.9470 −2.48061
\(819\) 2.78135 0.0971882
\(820\) −46.5348 −1.62506
\(821\) −48.0778 −1.67793 −0.838963 0.544188i \(-0.816838\pi\)
−0.838963 + 0.544188i \(0.816838\pi\)
\(822\) −21.1179 −0.736572
\(823\) 18.6246 0.649211 0.324606 0.945849i \(-0.394768\pi\)
0.324606 + 0.945849i \(0.394768\pi\)
\(824\) −0.170900 −0.00595358
\(825\) −10.3879 −0.361661
\(826\) −54.0265 −1.87982
\(827\) 6.99744 0.243325 0.121662 0.992572i \(-0.461177\pi\)
0.121662 + 0.992572i \(0.461177\pi\)
\(828\) −3.00088 −0.104288
\(829\) 24.9441 0.866344 0.433172 0.901311i \(-0.357394\pi\)
0.433172 + 0.901311i \(0.357394\pi\)
\(830\) 72.5597 2.51859
\(831\) 12.6792 0.439838
\(832\) −26.1829 −0.907727
\(833\) 7.69157 0.266497
\(834\) −33.0848 −1.14563
\(835\) −13.6065 −0.470872
\(836\) −2.15429 −0.0745076
\(837\) 0.0257313 0.000889405 0
\(838\) 18.4351 0.636831
\(839\) 10.2122 0.352566 0.176283 0.984340i \(-0.443593\pi\)
0.176283 + 0.984340i \(0.443593\pi\)
\(840\) −3.67864 −0.126925
\(841\) −28.0533 −0.967356
\(842\) 60.9606 2.10084
\(843\) −32.1091 −1.10590
\(844\) −17.7914 −0.612404
\(845\) 15.8175 0.544139
\(846\) 3.58687 0.123319
\(847\) 1.92338 0.0660879
\(848\) −38.6907 −1.32864
\(849\) −5.52060 −0.189467
\(850\) −26.3461 −0.903663
\(851\) −26.5624 −0.910546
\(852\) 57.5664 1.97219
\(853\) 33.5562 1.14894 0.574472 0.818524i \(-0.305207\pi\)
0.574472 + 0.818524i \(0.305207\pi\)
\(854\) 14.6855 0.502528
\(855\) −1.64711 −0.0563300
\(856\) 4.63440 0.158400
\(857\) 34.8775 1.19139 0.595696 0.803210i \(-0.296876\pi\)
0.595696 + 0.803210i \(0.296876\pi\)
\(858\) −10.8832 −0.371548
\(859\) 13.1320 0.448059 0.224029 0.974582i \(-0.428079\pi\)
0.224029 + 0.974582i \(0.428079\pi\)
\(860\) −55.9290 −1.90716
\(861\) 23.9582 0.816493
\(862\) −28.0053 −0.953863
\(863\) −27.5223 −0.936871 −0.468435 0.883498i \(-0.655182\pi\)
−0.468435 + 0.883498i \(0.655182\pi\)
\(864\) 37.8343 1.28715
\(865\) −2.29649 −0.0780831
\(866\) 6.70315 0.227782
\(867\) −21.6668 −0.735844
\(868\) −0.0228381 −0.000775175 0
\(869\) 1.87656 0.0636581
\(870\) 12.0611 0.408910
\(871\) −11.3243 −0.383708
\(872\) −5.46272 −0.184991
\(873\) −3.84060 −0.129985
\(874\) −5.59800 −0.189355
\(875\) −3.41607 −0.115484
\(876\) −53.3608 −1.80289
\(877\) −18.2679 −0.616865 −0.308432 0.951246i \(-0.599804\pi\)
−0.308432 + 0.951246i \(0.599804\pi\)
\(878\) 26.8490 0.906111
\(879\) 4.82890 0.162875
\(880\) −11.9109 −0.401518
\(881\) −47.0363 −1.58469 −0.792346 0.610072i \(-0.791141\pi\)
−0.792346 + 0.610072i \(0.791141\pi\)
\(882\) −3.41197 −0.114887
\(883\) −24.7005 −0.831238 −0.415619 0.909539i \(-0.636435\pi\)
−0.415619 + 0.909539i \(0.636435\pi\)
\(884\) −14.3137 −0.481423
\(885\) 83.8177 2.81750
\(886\) −50.8500 −1.70834
\(887\) 23.3946 0.785515 0.392758 0.919642i \(-0.371521\pi\)
0.392758 + 0.919642i \(0.371521\pi\)
\(888\) 5.69564 0.191133
\(889\) 29.6858 0.995631
\(890\) −99.4184 −3.33251
\(891\) 10.2643 0.343867
\(892\) −45.7332 −1.53126
\(893\) 3.46982 0.116113
\(894\) −73.6794 −2.46421
\(895\) 70.7853 2.36609
\(896\) −4.82438 −0.161171
\(897\) −14.6654 −0.489664
\(898\) 31.7003 1.05785
\(899\) 0.00536277 0.000178858 0
\(900\) 6.06058 0.202019
\(901\) −24.5833 −0.818989
\(902\) −13.5569 −0.451395
\(903\) 28.7948 0.958231
\(904\) 4.05246 0.134783
\(905\) 9.52897 0.316754
\(906\) 33.2611 1.10503
\(907\) 19.2411 0.638892 0.319446 0.947605i \(-0.396503\pi\)
0.319446 + 0.947605i \(0.396503\pi\)
\(908\) −19.5319 −0.648189
\(909\) −7.63370 −0.253194
\(910\) −36.2999 −1.20333
\(911\) 48.5854 1.60971 0.804853 0.593475i \(-0.202244\pi\)
0.804853 + 0.593475i \(0.202244\pi\)
\(912\) −6.86852 −0.227439
\(913\) 10.9619 0.362785
\(914\) −39.0217 −1.29072
\(915\) −22.7834 −0.753195
\(916\) −11.3220 −0.374089
\(917\) −23.2064 −0.766344
\(918\) 22.1736 0.731839
\(919\) 21.2754 0.701812 0.350906 0.936411i \(-0.385874\pi\)
0.350906 + 0.936411i \(0.385874\pi\)
\(920\) 2.80497 0.0924772
\(921\) −37.0595 −1.22115
\(922\) 68.2891 2.24898
\(923\) 40.6834 1.33911
\(924\) −7.75973 −0.255276
\(925\) 53.6453 1.76385
\(926\) 5.77019 0.189620
\(927\) −0.275626 −0.00905276
\(928\) 7.88521 0.258845
\(929\) 49.9319 1.63821 0.819106 0.573643i \(-0.194470\pi\)
0.819106 + 0.573643i \(0.194470\pi\)
\(930\) 0.0683253 0.00224047
\(931\) −3.30063 −0.108174
\(932\) −12.2551 −0.401429
\(933\) 37.0765 1.21383
\(934\) −41.5217 −1.35863
\(935\) −7.56799 −0.247500
\(936\) 0.454751 0.0148640
\(937\) 11.2142 0.366353 0.183176 0.983080i \(-0.441362\pi\)
0.183176 + 0.983080i \(0.441362\pi\)
\(938\) −15.5701 −0.508381
\(939\) 20.5715 0.671325
\(940\) −24.2757 −0.791787
\(941\) −47.9390 −1.56277 −0.781383 0.624052i \(-0.785485\pi\)
−0.781383 + 0.624052i \(0.785485\pi\)
\(942\) −22.3923 −0.729580
\(943\) −18.2682 −0.594894
\(944\) 50.5451 1.64510
\(945\) 29.1606 0.948594
\(946\) −16.2937 −0.529754
\(947\) 14.4633 0.469993 0.234997 0.971996i \(-0.424492\pi\)
0.234997 + 0.971996i \(0.424492\pi\)
\(948\) −7.57088 −0.245891
\(949\) −37.7112 −1.22416
\(950\) 11.3057 0.366806
\(951\) 18.5093 0.600206
\(952\) −1.40950 −0.0456820
\(953\) 19.3671 0.627363 0.313682 0.949528i \(-0.398438\pi\)
0.313682 + 0.949528i \(0.398438\pi\)
\(954\) 10.9051 0.353067
\(955\) −72.7520 −2.35420
\(956\) −43.9016 −1.41988
\(957\) 1.82212 0.0589007
\(958\) −15.9300 −0.514677
\(959\) −10.6411 −0.343620
\(960\) 55.8505 1.80257
\(961\) −31.0000 −0.999999
\(962\) 56.2033 1.81207
\(963\) 7.47432 0.240857
\(964\) 38.1159 1.22763
\(965\) −8.29591 −0.267055
\(966\) −20.1640 −0.648765
\(967\) −29.6452 −0.953326 −0.476663 0.879086i \(-0.658154\pi\)
−0.476663 + 0.879086i \(0.658154\pi\)
\(968\) 0.314472 0.0101075
\(969\) −4.36412 −0.140196
\(970\) 50.1244 1.60940
\(971\) −27.9572 −0.897190 −0.448595 0.893735i \(-0.648075\pi\)
−0.448595 + 0.893735i \(0.648075\pi\)
\(972\) −11.2393 −0.360500
\(973\) −16.6711 −0.534452
\(974\) −18.5583 −0.594648
\(975\) 29.6183 0.948544
\(976\) −13.7392 −0.439781
\(977\) −25.4860 −0.815369 −0.407684 0.913123i \(-0.633664\pi\)
−0.407684 + 0.913123i \(0.633664\pi\)
\(978\) 56.7983 1.81621
\(979\) −15.0195 −0.480026
\(980\) 23.0921 0.737649
\(981\) −8.81024 −0.281289
\(982\) 70.1499 2.23857
\(983\) −23.7523 −0.757582 −0.378791 0.925482i \(-0.623660\pi\)
−0.378791 + 0.925482i \(0.623660\pi\)
\(984\) 3.91717 0.124875
\(985\) 41.2340 1.31382
\(986\) 4.62130 0.147172
\(987\) 12.4983 0.397824
\(988\) 6.14236 0.195414
\(989\) −21.9561 −0.698164
\(990\) 3.35715 0.106697
\(991\) 10.8187 0.343668 0.171834 0.985126i \(-0.445031\pi\)
0.171834 + 0.985126i \(0.445031\pi\)
\(992\) 0.0446692 0.00141825
\(993\) 48.2415 1.53090
\(994\) 55.9369 1.77421
\(995\) −32.9804 −1.04555
\(996\) −44.2250 −1.40132
\(997\) −55.0261 −1.74270 −0.871348 0.490666i \(-0.836753\pi\)
−0.871348 + 0.490666i \(0.836753\pi\)
\(998\) 15.9143 0.503758
\(999\) −45.1494 −1.42847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 209.2.a.d.1.6 7
3.2 odd 2 1881.2.a.p.1.2 7
4.3 odd 2 3344.2.a.ba.1.2 7
5.4 even 2 5225.2.a.n.1.2 7
11.10 odd 2 2299.2.a.q.1.2 7
19.18 odd 2 3971.2.a.i.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.a.d.1.6 7 1.1 even 1 trivial
1881.2.a.p.1.2 7 3.2 odd 2
2299.2.a.q.1.2 7 11.10 odd 2
3344.2.a.ba.1.2 7 4.3 odd 2
3971.2.a.i.1.2 7 19.18 odd 2
5225.2.a.n.1.2 7 5.4 even 2