Properties

Label 209.2.a.d.1.6
Level 209209
Weight 22
Character 209.1
Self dual yes
Analytic conductor 1.6691.669
Analytic rank 00
Dimension 77
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(1,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 209=1119 209 = 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 209.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.668873402241.66887340224
Analytic rank: 00
Dimension: 77
Coefficient field: Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x7x614x5+10x4+59x327x266x+30 x^{7} - x^{6} - 14x^{5} + 10x^{4} + 59x^{3} - 27x^{2} - 66x + 30 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.6
Root 2.03821-2.03821 of defining polynomial
Character χ\chi == 209.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.03821q2+1.87275q3+2.15429q43.24760q5+3.81704q6+1.92338q7+0.314472q8+0.507178q96.61928q101.00000q11+4.03444q12+2.85122q13+3.92024q146.08193q153.66762q162.33033q17+1.03373q18+1.00000q196.99626q20+3.60199q212.03821q222.74653q23+0.588926q24+5.54689q25+5.81138q264.66842q27+4.14350q280.972965q2912.3962q300.00551178q318.10431q321.87275q334.74970q346.24635q35+1.09261q36+9.67124q37+2.03821q38+5.33962q391.02128q40+6.65137q41+7.34161q42+7.99413q432.15429q441.64711q455.59800q46+3.46982q476.86852q483.30063q49+11.3057q504.36412q51+6.14236q52+10.5493q539.51521q54+3.24760q55+0.604847q56+1.87275q571.98311q5813.7814q5913.1022q60+3.74608q610.0112342q62+0.975494q639.18303q649.25963q653.81704q663.97172q675.02021q685.14356q6912.7314q70+14.2688q71+0.159493q7213.2263q73+19.7120q74+10.3879q75+2.15429q761.92338q77+10.8832q781.87656q79+11.9109q8010.2643q81+13.5569q8210.9619q83+7.75973q84+7.56799q85+16.2937q861.82212q870.314472q88+15.0195q893.35715q90+5.48397q915.91682q920.0103222q93+7.07220q943.24760q9515.1773q967.57248q976.72736q980.507178q99+O(q100)q+2.03821 q^{2} +1.87275 q^{3} +2.15429 q^{4} -3.24760 q^{5} +3.81704 q^{6} +1.92338 q^{7} +0.314472 q^{8} +0.507178 q^{9} -6.61928 q^{10} -1.00000 q^{11} +4.03444 q^{12} +2.85122 q^{13} +3.92024 q^{14} -6.08193 q^{15} -3.66762 q^{16} -2.33033 q^{17} +1.03373 q^{18} +1.00000 q^{19} -6.99626 q^{20} +3.60199 q^{21} -2.03821 q^{22} -2.74653 q^{23} +0.588926 q^{24} +5.54689 q^{25} +5.81138 q^{26} -4.66842 q^{27} +4.14350 q^{28} -0.972965 q^{29} -12.3962 q^{30} -0.00551178 q^{31} -8.10431 q^{32} -1.87275 q^{33} -4.74970 q^{34} -6.24635 q^{35} +1.09261 q^{36} +9.67124 q^{37} +2.03821 q^{38} +5.33962 q^{39} -1.02128 q^{40} +6.65137 q^{41} +7.34161 q^{42} +7.99413 q^{43} -2.15429 q^{44} -1.64711 q^{45} -5.59800 q^{46} +3.46982 q^{47} -6.86852 q^{48} -3.30063 q^{49} +11.3057 q^{50} -4.36412 q^{51} +6.14236 q^{52} +10.5493 q^{53} -9.51521 q^{54} +3.24760 q^{55} +0.604847 q^{56} +1.87275 q^{57} -1.98311 q^{58} -13.7814 q^{59} -13.1022 q^{60} +3.74608 q^{61} -0.0112342 q^{62} +0.975494 q^{63} -9.18303 q^{64} -9.25963 q^{65} -3.81704 q^{66} -3.97172 q^{67} -5.02021 q^{68} -5.14356 q^{69} -12.7314 q^{70} +14.2688 q^{71} +0.159493 q^{72} -13.2263 q^{73} +19.7120 q^{74} +10.3879 q^{75} +2.15429 q^{76} -1.92338 q^{77} +10.8832 q^{78} -1.87656 q^{79} +11.9109 q^{80} -10.2643 q^{81} +13.5569 q^{82} -10.9619 q^{83} +7.75973 q^{84} +7.56799 q^{85} +16.2937 q^{86} -1.82212 q^{87} -0.314472 q^{88} +15.0195 q^{89} -3.35715 q^{90} +5.48397 q^{91} -5.91682 q^{92} -0.0103222 q^{93} +7.07220 q^{94} -3.24760 q^{95} -15.1773 q^{96} -7.57248 q^{97} -6.72736 q^{98} -0.507178 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 7qq2+2q3+15q4+2q52q6+10q79q8+11q96q107q1116q124q13+6q14+12q15+27q16+2q17+9q18+7q194q20+11q99+O(q100) 7 q - q^{2} + 2 q^{3} + 15 q^{4} + 2 q^{5} - 2 q^{6} + 10 q^{7} - 9 q^{8} + 11 q^{9} - 6 q^{10} - 7 q^{11} - 16 q^{12} - 4 q^{13} + 6 q^{14} + 12 q^{15} + 27 q^{16} + 2 q^{17} + 9 q^{18} + 7 q^{19} - 4 q^{20}+ \cdots - 11 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.03821 1.44123 0.720615 0.693335i 0.243860π-0.243860\pi
0.720615 + 0.693335i 0.243860π0.243860\pi
33 1.87275 1.08123 0.540615 0.841270i 0.318191π-0.318191\pi
0.540615 + 0.841270i 0.318191π0.318191\pi
44 2.15429 1.07714
55 −3.24760 −1.45237 −0.726185 0.687499i 0.758708π-0.758708\pi
−0.726185 + 0.687499i 0.758708π0.758708\pi
66 3.81704 1.55830
77 1.92338 0.726967 0.363484 0.931601i 0.381587π-0.381587\pi
0.363484 + 0.931601i 0.381587π0.381587\pi
88 0.314472 0.111183
99 0.507178 0.169059
1010 −6.61928 −2.09320
1111 −1.00000 −0.301511
1212 4.03444 1.16464
1313 2.85122 0.790787 0.395394 0.918512i 0.370608π-0.370608\pi
0.395394 + 0.918512i 0.370608π0.370608\pi
1414 3.92024 1.04773
1515 −6.08193 −1.57035
1616 −3.66762 −0.916905
1717 −2.33033 −0.565189 −0.282594 0.959239i 0.591195π-0.591195\pi
−0.282594 + 0.959239i 0.591195π0.591195\pi
1818 1.03373 0.243653
1919 1.00000 0.229416
2020 −6.99626 −1.56441
2121 3.60199 0.786019
2222 −2.03821 −0.434547
2323 −2.74653 −0.572691 −0.286346 0.958126i 0.592441π-0.592441\pi
−0.286346 + 0.958126i 0.592441π0.592441\pi
2424 0.588926 0.120214
2525 5.54689 1.10938
2626 5.81138 1.13971
2727 −4.66842 −0.898438
2828 4.14350 0.783049
2929 −0.972965 −0.180675 −0.0903376 0.995911i 0.528795π-0.528795\pi
−0.0903376 + 0.995911i 0.528795π0.528795\pi
3030 −12.3962 −2.26323
3131 −0.00551178 −0.000989945 0 −0.000494973 1.00000i 0.500158π-0.500158\pi
−0.000494973 1.00000i 0.500158π0.500158\pi
3232 −8.10431 −1.43265
3333 −1.87275 −0.326003
3434 −4.74970 −0.814567
3535 −6.24635 −1.05583
3636 1.09261 0.182101
3737 9.67124 1.58994 0.794971 0.606647i 0.207486π-0.207486\pi
0.794971 + 0.606647i 0.207486π0.207486\pi
3838 2.03821 0.330641
3939 5.33962 0.855023
4040 −1.02128 −0.161478
4141 6.65137 1.03877 0.519385 0.854540i 0.326161π-0.326161\pi
0.519385 + 0.854540i 0.326161π0.326161\pi
4242 7.34161 1.13283
4343 7.99413 1.21909 0.609547 0.792750i 0.291352π-0.291352\pi
0.609547 + 0.792750i 0.291352π0.291352\pi
4444 −2.15429 −0.324771
4545 −1.64711 −0.245537
4646 −5.59800 −0.825380
4747 3.46982 0.506125 0.253062 0.967450i 0.418562π-0.418562\pi
0.253062 + 0.967450i 0.418562π0.418562\pi
4848 −6.86852 −0.991385
4949 −3.30063 −0.471518
5050 11.3057 1.59887
5151 −4.36412 −0.611100
5252 6.14236 0.851792
5353 10.5493 1.44905 0.724526 0.689247i 0.242058π-0.242058\pi
0.724526 + 0.689247i 0.242058π0.242058\pi
5454 −9.51521 −1.29486
5555 3.24760 0.437906
5656 0.604847 0.0808261
5757 1.87275 0.248051
5858 −1.98311 −0.260394
5959 −13.7814 −1.79419 −0.897096 0.441836i 0.854327π-0.854327\pi
−0.897096 + 0.441836i 0.854327π0.854327\pi
6060 −13.1022 −1.69149
6161 3.74608 0.479636 0.239818 0.970818i 0.422912π-0.422912\pi
0.239818 + 0.970818i 0.422912π0.422912\pi
6262 −0.0112342 −0.00142674
6363 0.975494 0.122901
6464 −9.18303 −1.14788
6565 −9.25963 −1.14852
6666 −3.81704 −0.469846
6767 −3.97172 −0.485223 −0.242612 0.970124i 0.578004π-0.578004\pi
−0.242612 + 0.970124i 0.578004π0.578004\pi
6868 −5.02021 −0.608790
6969 −5.14356 −0.619211
7070 −12.7314 −1.52169
7171 14.2688 1.69339 0.846695 0.532078i 0.178589π-0.178589\pi
0.846695 + 0.532078i 0.178589π0.178589\pi
7272 0.159493 0.0187965
7373 −13.2263 −1.54803 −0.774013 0.633170i 0.781753π-0.781753\pi
−0.774013 + 0.633170i 0.781753π0.781753\pi
7474 19.7120 2.29147
7575 10.3879 1.19949
7676 2.15429 0.247114
7777 −1.92338 −0.219189
7878 10.8832 1.23229
7979 −1.87656 −0.211130 −0.105565 0.994412i 0.533665π-0.533665\pi
−0.105565 + 0.994412i 0.533665π0.533665\pi
8080 11.9109 1.33168
8181 −10.2643 −1.14048
8282 13.5569 1.49711
8383 −10.9619 −1.20322 −0.601612 0.798789i 0.705474π-0.705474\pi
−0.601612 + 0.798789i 0.705474π0.705474\pi
8484 7.75973 0.846656
8585 7.56799 0.820863
8686 16.2937 1.75699
8787 −1.82212 −0.195351
8888 −0.314472 −0.0335228
8989 15.0195 1.59207 0.796034 0.605253i 0.206928π-0.206928\pi
0.796034 + 0.605253i 0.206928π0.206928\pi
9090 −3.35715 −0.353875
9191 5.48397 0.574876
9292 −5.91682 −0.616871
9393 −0.0103222 −0.00107036
9494 7.07220 0.729442
9595 −3.24760 −0.333196
9696 −15.1773 −1.54903
9797 −7.57248 −0.768869 −0.384434 0.923152i 0.625604π-0.625604\pi
−0.384434 + 0.923152i 0.625604π0.625604\pi
9898 −6.72736 −0.679566
9999 −0.507178 −0.0509733
100100 11.9496 1.19496
101101 −15.0513 −1.49766 −0.748831 0.662761i 0.769385π-0.769385\pi
−0.748831 + 0.662761i 0.769385π0.769385\pi
102102 −8.89499 −0.880735
103103 −0.543451 −0.0535478 −0.0267739 0.999642i 0.508523π-0.508523\pi
−0.0267739 + 0.999642i 0.508523π0.508523\pi
104104 0.896629 0.0879218
105105 −11.6978 −1.14159
106106 21.5016 2.08842
107107 14.7371 1.42469 0.712344 0.701831i 0.247634π-0.247634\pi
0.712344 + 0.701831i 0.247634π0.247634\pi
108108 −10.0571 −0.967748
109109 −17.3711 −1.66385 −0.831925 0.554888i 0.812761π-0.812761\pi
−0.831925 + 0.554888i 0.812761π0.812761\pi
110110 6.61928 0.631123
111111 18.1118 1.71909
112112 −7.05421 −0.666560
113113 12.8865 1.21226 0.606132 0.795364i 0.292720π-0.292720\pi
0.606132 + 0.795364i 0.292720π0.292720\pi
114114 3.81704 0.357499
115115 8.91963 0.831760
116116 −2.09605 −0.194613
117117 1.44608 0.133690
118118 −28.0894 −2.58584
119119 −4.48211 −0.410874
120120 −1.91259 −0.174595
121121 1.00000 0.0909091
122122 7.63529 0.691266
123123 12.4563 1.12315
124124 −0.0118740 −0.00106631
125125 −1.77608 −0.158858
126126 1.98826 0.177128
127127 15.4342 1.36957 0.684784 0.728746i 0.259897π-0.259897\pi
0.684784 + 0.728746i 0.259897π0.259897\pi
128128 −2.50829 −0.221704
129129 14.9710 1.31812
130130 −18.8730 −1.65527
131131 −12.0655 −1.05417 −0.527083 0.849814i 0.676714π-0.676714\pi
−0.527083 + 0.849814i 0.676714π0.676714\pi
132132 −4.03444 −0.351153
133133 1.92338 0.166778
134134 −8.09519 −0.699318
135135 15.1612 1.30486
136136 −0.732824 −0.0628392
137137 −5.53253 −0.472676 −0.236338 0.971671i 0.575947π-0.575947\pi
−0.236338 + 0.971671i 0.575947π0.575947\pi
138138 −10.4836 −0.892426
139139 −8.66764 −0.735180 −0.367590 0.929988i 0.619817π-0.619817\pi
−0.367590 + 0.929988i 0.619817π0.619817\pi
140140 −13.4564 −1.13728
141141 6.49808 0.547237
142142 29.0827 2.44057
143143 −2.85122 −0.238431
144144 −1.86014 −0.155011
145145 3.15980 0.262407
146146 −26.9580 −2.23106
147147 −6.18124 −0.509820
148148 20.8346 1.71260
149149 −19.3027 −1.58134 −0.790671 0.612241i 0.790268π-0.790268\pi
−0.790671 + 0.612241i 0.790268π0.790268\pi
150150 21.1727 1.72875
151151 8.71384 0.709122 0.354561 0.935033i 0.384630π-0.384630\pi
0.354561 + 0.935033i 0.384630π0.384630\pi
152152 0.314472 0.0255070
153153 −1.18189 −0.0955505
154154 −3.92024 −0.315902
155155 0.0179000 0.00143777
156156 11.5031 0.920983
157157 −5.86640 −0.468189 −0.234095 0.972214i 0.575213π-0.575213\pi
−0.234095 + 0.972214i 0.575213π0.575213\pi
158158 −3.82483 −0.304287
159159 19.7561 1.56676
160160 26.3195 2.08074
161161 −5.28261 −0.416328
162162 −20.9208 −1.64369
163163 14.8802 1.16551 0.582753 0.812649i 0.301975π-0.301975\pi
0.582753 + 0.812649i 0.301975π0.301975\pi
164164 14.3290 1.11891
165165 6.08193 0.473477
166166 −22.3426 −1.73412
167167 4.18971 0.324209 0.162105 0.986774i 0.448172π-0.448172\pi
0.162105 + 0.986774i 0.448172π0.448172\pi
168168 1.13273 0.0873917
169169 −4.87053 −0.374656
170170 15.4251 1.18305
171171 0.507178 0.0387849
172172 17.2217 1.31314
173173 0.707136 0.0537626 0.0268813 0.999639i 0.491442π-0.491442\pi
0.0268813 + 0.999639i 0.491442π0.491442\pi
174174 −3.71385 −0.281546
175175 10.6688 0.806482
176176 3.66762 0.276457
177177 −25.8091 −1.93993
178178 30.6129 2.29454
179179 −21.7962 −1.62913 −0.814563 0.580076i 0.803023π-0.803023\pi
−0.814563 + 0.580076i 0.803023π0.803023\pi
180180 −3.54835 −0.264478
181181 −2.93416 −0.218094 −0.109047 0.994037i 0.534780π-0.534780\pi
−0.109047 + 0.994037i 0.534780π0.534780\pi
182182 11.1775 0.828529
183183 7.01546 0.518598
184184 −0.863707 −0.0636733
185185 −31.4083 −2.30918
186186 −0.0210387 −0.00154263
187187 2.33033 0.170411
188188 7.47498 0.545169
189189 −8.97913 −0.653135
190190 −6.61928 −0.480213
191191 22.4018 1.62094 0.810468 0.585783i 0.199213π-0.199213\pi
0.810468 + 0.585783i 0.199213π0.199213\pi
192192 −17.1975 −1.24112
193193 2.55447 0.183875 0.0919375 0.995765i 0.470694π-0.470694\pi
0.0919375 + 0.995765i 0.470694π0.470694\pi
194194 −15.4343 −1.10812
195195 −17.3409 −1.24181
196196 −7.11051 −0.507893
197197 −12.6968 −0.904607 −0.452303 0.891864i 0.649398π-0.649398\pi
−0.452303 + 0.891864i 0.649398π0.649398\pi
198198 −1.03373 −0.0734643
199199 10.1553 0.719892 0.359946 0.932973i 0.382795π-0.382795\pi
0.359946 + 0.932973i 0.382795π0.382795\pi
200200 1.74434 0.123344
201201 −7.43803 −0.524638
202202 −30.6777 −2.15848
203203 −1.87138 −0.131345
204204 −9.40158 −0.658242
205205 −21.6010 −1.50868
206206 −1.10767 −0.0771747
207207 −1.39298 −0.0968188
208208 −10.4572 −0.725076
209209 −1.00000 −0.0691714
210210 −23.8426 −1.64530
211211 −8.25858 −0.568544 −0.284272 0.958744i 0.591752π-0.591752\pi
−0.284272 + 0.958744i 0.591752π0.591752\pi
212212 22.7262 1.56084
213213 26.7218 1.83095
214214 30.0372 2.05330
215215 −25.9617 −1.77057
216216 −1.46809 −0.0998907
217217 −0.0106012 −0.000719658 0
218218 −35.4059 −2.39799
219219 −24.7696 −1.67377
220220 6.99626 0.471688
221221 −6.64430 −0.446944
222222 36.9156 2.47761
223223 −21.2289 −1.42159 −0.710797 0.703398i 0.751665π-0.751665\pi
−0.710797 + 0.703398i 0.751665π0.751665\pi
224224 −15.5876 −1.04149
225225 2.81326 0.187551
226226 26.2655 1.74715
227227 −9.06652 −0.601766 −0.300883 0.953661i 0.597281π-0.597281\pi
−0.300883 + 0.953661i 0.597281π0.597281\pi
228228 4.03444 0.267187
229229 −5.25556 −0.347297 −0.173649 0.984808i 0.555556π-0.555556\pi
−0.173649 + 0.984808i 0.555556π0.555556\pi
230230 18.1800 1.19876
231231 −3.60199 −0.236994
232232 −0.305970 −0.0200879
233233 −5.68870 −0.372679 −0.186340 0.982485i 0.559662π-0.559662\pi
−0.186340 + 0.982485i 0.559662π0.559662\pi
234234 2.94741 0.192678
235235 −11.2686 −0.735080
236236 −29.6892 −1.93260
237237 −3.51433 −0.228280
238238 −9.13546 −0.592164
239239 −20.3787 −1.31819 −0.659094 0.752060i 0.729060π-0.729060\pi
−0.659094 + 0.752060i 0.729060π0.729060\pi
240240 22.3062 1.43986
241241 17.6930 1.13971 0.569854 0.821746i 0.307000π-0.307000\pi
0.569854 + 0.821746i 0.307000π0.307000\pi
242242 2.03821 0.131021
243243 −5.21717 −0.334682
244244 8.07014 0.516638
245245 10.7191 0.684819
246246 25.3886 1.61872
247247 2.85122 0.181419
248248 −0.00173330 −0.000110065 0
249249 −20.5288 −1.30096
250250 −3.62002 −0.228950
251251 −0.776543 −0.0490149 −0.0245075 0.999700i 0.507802π-0.507802\pi
−0.0245075 + 0.999700i 0.507802π0.507802\pi
252252 2.10149 0.132382
253253 2.74653 0.172673
254254 31.4582 1.97386
255255 14.1729 0.887543
256256 13.2536 0.828352
257257 29.2762 1.82620 0.913100 0.407736i 0.133682π-0.133682\pi
0.913100 + 0.407736i 0.133682π0.133682\pi
258258 30.5139 1.89972
259259 18.6014 1.15584
260260 −19.9479 −1.23712
261261 −0.493467 −0.0305448
262262 −24.5919 −1.51929
263263 −5.90041 −0.363835 −0.181918 0.983314i 0.558230π-0.558230\pi
−0.181918 + 0.983314i 0.558230π0.558230\pi
264264 −0.588926 −0.0362459
265265 −34.2598 −2.10456
266266 3.92024 0.240365
267267 28.1278 1.72139
268268 −8.55623 −0.522655
269269 −10.7278 −0.654087 −0.327044 0.945009i 0.606052π-0.606052\pi
−0.327044 + 0.945009i 0.606052π0.606052\pi
270270 30.9016 1.88061
271271 16.2707 0.988375 0.494188 0.869355i 0.335466π-0.335466\pi
0.494188 + 0.869355i 0.335466π0.335466\pi
272272 8.54677 0.518224
273273 10.2701 0.621574
274274 −11.2765 −0.681235
275275 −5.54689 −0.334490
276276 −11.0807 −0.666980
277277 6.77040 0.406794 0.203397 0.979096i 0.434802π-0.434802\pi
0.203397 + 0.979096i 0.434802π0.434802\pi
278278 −17.6664 −1.05956
279279 −0.00279545 −0.000167359 0
280280 −1.96430 −0.117389
281281 −17.1455 −1.02281 −0.511407 0.859339i 0.670876π-0.670876\pi
−0.511407 + 0.859339i 0.670876π0.670876\pi
282282 13.2444 0.788695
283283 −2.94787 −0.175232 −0.0876162 0.996154i 0.527925π-0.527925\pi
−0.0876162 + 0.996154i 0.527925π0.527925\pi
284284 30.7390 1.82403
285285 −6.08193 −0.360262
286286 −5.81138 −0.343634
287287 12.7931 0.755152
288288 −4.11033 −0.242203
289289 −11.5695 −0.680561
290290 6.44033 0.378189
291291 −14.1813 −0.831325
292292 −28.4933 −1.66745
293293 2.57851 0.150638 0.0753192 0.997159i 0.476002π-0.476002\pi
0.0753192 + 0.997159i 0.476002π0.476002\pi
294294 −12.5986 −0.734768
295295 44.7566 2.60583
296296 3.04133 0.176774
297297 4.66842 0.270889
298298 −39.3430 −2.27908
299299 −7.83097 −0.452877
300300 22.3786 1.29203
301301 15.3757 0.886241
302302 17.7606 1.02201
303303 −28.1873 −1.61932
304304 −3.66762 −0.210352
305305 −12.1658 −0.696610
306306 −2.40895 −0.137710
307307 −19.7888 −1.12941 −0.564704 0.825293i 0.691010π-0.691010\pi
−0.564704 + 0.825293i 0.691010π0.691010\pi
308308 −4.14350 −0.236098
309309 −1.01775 −0.0578975
310310 0.0364840 0.00207215
311311 19.7979 1.12264 0.561319 0.827599i 0.310294π-0.310294\pi
0.561319 + 0.827599i 0.310294π0.310294\pi
312312 1.67916 0.0950637
313313 10.9847 0.620890 0.310445 0.950591i 0.399522π-0.399522\pi
0.310445 + 0.950591i 0.399522π0.399522\pi
314314 −11.9569 −0.674769
315315 −3.16801 −0.178497
316316 −4.04266 −0.227417
317317 9.88351 0.555113 0.277557 0.960709i 0.410475π-0.410475\pi
0.277557 + 0.960709i 0.410475π0.410475\pi
318318 40.2670 2.25806
319319 0.972965 0.0544756
320320 29.8228 1.66714
321321 27.5988 1.54042
322322 −10.7671 −0.600024
323323 −2.33033 −0.129663
324324 −22.1123 −1.22846
325325 15.8154 0.877282
326326 30.3289 1.67976
327327 −32.5317 −1.79901
328328 2.09167 0.115493
329329 6.67376 0.367936
330330 12.3962 0.682390
331331 25.7597 1.41588 0.707942 0.706271i 0.249624π-0.249624\pi
0.707942 + 0.706271i 0.249624π0.249624\pi
332332 −23.6151 −1.29604
333333 4.90504 0.268795
334334 8.53949 0.467260
335335 12.8986 0.704723
336336 −13.2107 −0.720705
337337 21.8924 1.19256 0.596278 0.802778i 0.296646π-0.296646\pi
0.596278 + 0.802778i 0.296646π0.296646\pi
338338 −9.92714 −0.539965
339339 24.1332 1.31074
340340 16.3036 0.884188
341341 0.00551178 0.000298480 0
342342 1.03373 0.0558979
343343 −19.8120 −1.06975
344344 2.51393 0.135542
345345 16.7042 0.899324
346346 1.44129 0.0774842
347347 19.2857 1.03531 0.517656 0.855589i 0.326805π-0.326805\pi
0.517656 + 0.855589i 0.326805π0.326805\pi
348348 −3.92537 −0.210422
349349 15.5220 0.830872 0.415436 0.909622i 0.363629π-0.363629\pi
0.415436 + 0.909622i 0.363629π0.363629\pi
350350 21.7451 1.16233
351351 −13.3107 −0.710473
352352 8.10431 0.431961
353353 −8.92859 −0.475221 −0.237610 0.971361i 0.576364π-0.576364\pi
−0.237610 + 0.971361i 0.576364π0.576364\pi
354354 −52.6044 −2.79589
355355 −46.3392 −2.45943
356356 32.3564 1.71489
357357 −8.39385 −0.444249
358358 −44.4252 −2.34794
359359 26.2672 1.38633 0.693165 0.720779i 0.256216π-0.256216\pi
0.693165 + 0.720779i 0.256216π0.256216\pi
360360 −0.517970 −0.0272994
361361 1.00000 0.0526316
362362 −5.98042 −0.314324
363363 1.87275 0.0982937
364364 11.8141 0.619225
365365 42.9538 2.24830
366366 14.2990 0.747418
367367 10.2560 0.535358 0.267679 0.963508i 0.413743π-0.413743\pi
0.267679 + 0.963508i 0.413743π0.413743\pi
368368 10.0732 0.525103
369369 3.37343 0.175614
370370 −64.0166 −3.32807
371371 20.2902 1.05341
372372 −0.0222369 −0.00115293
373373 −20.2242 −1.04717 −0.523584 0.851974i 0.675405π-0.675405\pi
−0.523584 + 0.851974i 0.675405π0.675405\pi
374374 4.74970 0.245601
375375 −3.32615 −0.171762
376376 1.09116 0.0562722
377377 −2.77414 −0.142876
378378 −18.3013 −0.941318
379379 14.1534 0.727011 0.363505 0.931592i 0.381580π-0.381580\pi
0.363505 + 0.931592i 0.381580π0.381580\pi
380380 −6.99626 −0.358901
381381 28.9044 1.48082
382382 45.6595 2.33614
383383 12.3217 0.629611 0.314806 0.949156i 0.398061π-0.398061\pi
0.314806 + 0.949156i 0.398061π0.398061\pi
384384 −4.69739 −0.239713
385385 6.24635 0.318343
386386 5.20655 0.265006
387387 4.05445 0.206099
388388 −16.3133 −0.828183
389389 33.9248 1.72006 0.860029 0.510245i 0.170445π-0.170445\pi
0.860029 + 0.510245i 0.170445π0.170445\pi
390390 −35.3444 −1.78973
391391 6.40033 0.323679
392392 −1.03795 −0.0524246
393393 −22.5956 −1.13980
394394 −25.8786 −1.30375
395395 6.09432 0.306639
396396 −1.09261 −0.0549056
397397 −20.3357 −1.02062 −0.510309 0.859991i 0.670469π-0.670469\pi
−0.510309 + 0.859991i 0.670469π0.670469\pi
398398 20.6987 1.03753
399399 3.60199 0.180325
400400 −20.3439 −1.01719
401401 −30.6815 −1.53216 −0.766080 0.642746i 0.777795π-0.777795\pi
−0.766080 + 0.642746i 0.777795π0.777795\pi
402402 −15.1602 −0.756124
403403 −0.0157153 −0.000782836 0
404404 −32.4249 −1.61320
405405 33.3343 1.65640
406406 −3.81425 −0.189298
407407 −9.67124 −0.479386
408408 −1.37239 −0.0679436
409409 −34.8086 −1.72117 −0.860586 0.509305i 0.829903π-0.829903\pi
−0.860586 + 0.509305i 0.829903π0.829903\pi
410410 −44.0273 −2.17435
411411 −10.3610 −0.511072
412412 −1.17075 −0.0576787
413413 −26.5069 −1.30432
414414 −2.83918 −0.139538
415415 35.5998 1.74752
416416 −23.1072 −1.13292
417417 −16.2323 −0.794899
418418 −2.03821 −0.0996920
419419 9.04478 0.441866 0.220933 0.975289i 0.429090π-0.429090\pi
0.220933 + 0.975289i 0.429090π0.429090\pi
420420 −25.2005 −1.22966
421421 29.9089 1.45767 0.728836 0.684688i 0.240062π-0.240062\pi
0.728836 + 0.684688i 0.240062π0.240062\pi
422422 −16.8327 −0.819402
423423 1.75981 0.0855651
424424 3.31745 0.161109
425425 −12.9261 −0.627008
426426 54.4645 2.63881
427427 7.20512 0.348680
428428 31.7479 1.53459
429429 −5.33962 −0.257799
430430 −52.9154 −2.55180
431431 −13.7402 −0.661840 −0.330920 0.943659i 0.607359π-0.607359\pi
−0.330920 + 0.943659i 0.607359π0.607359\pi
432432 17.1220 0.823782
433433 3.28875 0.158047 0.0790236 0.996873i 0.474820π-0.474820\pi
0.0790236 + 0.996873i 0.474820π0.474820\pi
434434 −0.0216075 −0.00103719
435435 5.91750 0.283723
436436 −37.4224 −1.79221
437437 −2.74653 −0.131384
438438 −50.4855 −2.41229
439439 13.1729 0.628707 0.314353 0.949306i 0.398212π-0.398212\pi
0.314353 + 0.949306i 0.398212π0.398212\pi
440440 1.02128 0.0486875
441441 −1.67401 −0.0797146
442442 −13.5425 −0.644149
443443 −24.9484 −1.18533 −0.592666 0.805448i 0.701925π-0.701925\pi
−0.592666 + 0.805448i 0.701925π0.701925\pi
444444 39.0180 1.85171
445445 −48.7774 −2.31227
446446 −43.2689 −2.04884
447447 −36.1491 −1.70980
448448 −17.6624 −0.834470
449449 15.5530 0.733993 0.366996 0.930222i 0.380386π-0.380386\pi
0.366996 + 0.930222i 0.380386π0.380386\pi
450450 5.73401 0.270304
451451 −6.65137 −0.313201
452452 27.7613 1.30578
453453 16.3188 0.766724
454454 −18.4794 −0.867283
455455 −17.8097 −0.834933
456456 0.588926 0.0275790
457457 −19.1451 −0.895571 −0.447786 0.894141i 0.647787π-0.647787\pi
−0.447786 + 0.894141i 0.647787π0.647787\pi
458458 −10.7119 −0.500535
459459 10.8790 0.507787
460460 19.2155 0.895925
461461 33.5045 1.56046 0.780229 0.625493i 0.215102π-0.215102\pi
0.780229 + 0.625493i 0.215102π0.215102\pi
462462 −7.34161 −0.341563
463463 2.83101 0.131568 0.0657842 0.997834i 0.479045π-0.479045\pi
0.0657842 + 0.997834i 0.479045π0.479045\pi
464464 3.56847 0.165662
465465 0.0335222 0.00155456
466466 −11.5948 −0.537117
467467 −20.3717 −0.942689 −0.471344 0.881949i 0.656231π-0.656231\pi
−0.471344 + 0.881949i 0.656231π0.656231\pi
468468 3.11527 0.144003
469469 −7.63911 −0.352741
470470 −22.9677 −1.05942
471471 −10.9863 −0.506221
472472 −4.33388 −0.199483
473473 −7.99413 −0.367570
474474 −7.16293 −0.329004
475475 5.54689 0.254509
476476 −9.65575 −0.442571
477477 5.35036 0.244976
478478 −41.5360 −1.89981
479479 −7.81572 −0.357109 −0.178555 0.983930i 0.557142π-0.557142\pi
−0.178555 + 0.983930i 0.557142π0.557142\pi
480480 49.2898 2.24976
481481 27.5749 1.25731
482482 36.0621 1.64258
483483 −9.89299 −0.450146
484484 2.15429 0.0979222
485485 24.5924 1.11668
486486 −10.6337 −0.482353
487487 −9.10523 −0.412597 −0.206299 0.978489i 0.566142π-0.566142\pi
−0.206299 + 0.978489i 0.566142π0.566142\pi
488488 1.17804 0.0533272
489489 27.8668 1.26018
490490 21.8478 0.986982
491491 34.4175 1.55324 0.776619 0.629970i 0.216933π-0.216933\pi
0.776619 + 0.629970i 0.216933π0.216933\pi
492492 26.8345 1.20979
493493 2.26733 0.102116
494494 5.81138 0.261467
495495 1.64711 0.0740321
496496 0.0202151 0.000907685 0
497497 27.4442 1.23104
498498 −41.8420 −1.87498
499499 7.80798 0.349533 0.174767 0.984610i 0.444083π-0.444083\pi
0.174767 + 0.984610i 0.444083π0.444083\pi
500500 −3.82619 −0.171113
501501 7.84625 0.350545
502502 −1.58275 −0.0706418
503503 34.9580 1.55870 0.779350 0.626589i 0.215550π-0.215550\pi
0.779350 + 0.626589i 0.215550π0.215550\pi
504504 0.306765 0.0136644
505505 48.8806 2.17516
506506 5.59800 0.248861
507507 −9.12126 −0.405089
508508 33.2498 1.47522
509509 −11.3952 −0.505082 −0.252541 0.967586i 0.581266π-0.581266\pi
−0.252541 + 0.967586i 0.581266π0.581266\pi
510510 28.8873 1.27915
511511 −25.4392 −1.12536
512512 32.0302 1.41555
513513 −4.66842 −0.206116
514514 59.6710 2.63197
515515 1.76491 0.0777712
516516 32.2518 1.41981
517517 −3.46982 −0.152602
518518 37.9136 1.66583
519519 1.32429 0.0581297
520520 −2.91189 −0.127695
521521 −28.0648 −1.22954 −0.614770 0.788707i 0.710751π-0.710751\pi
−0.614770 + 0.788707i 0.710751π0.710751\pi
522522 −1.00579 −0.0440221
523523 20.5683 0.899389 0.449694 0.893182i 0.351533π-0.351533\pi
0.449694 + 0.893182i 0.351533π0.351533\pi
524524 −25.9925 −1.13549
525525 19.9799 0.871993
526526 −12.0263 −0.524370
527527 0.0128443 0.000559506 0
528528 6.86852 0.298914
529529 −15.4566 −0.672025
530530 −69.8285 −3.03316
531531 −6.98965 −0.303325
532532 4.14350 0.179644
533533 18.9645 0.821446
534534 57.3302 2.48092
535535 −47.8601 −2.06917
536536 −1.24899 −0.0539484
537537 −40.8188 −1.76146
538538 −21.8655 −0.942690
539539 3.30063 0.142168
540540 32.6615 1.40553
541541 −4.13908 −0.177953 −0.0889766 0.996034i 0.528360π-0.528360\pi
−0.0889766 + 0.996034i 0.528360π0.528360\pi
542542 33.1631 1.42448
543543 −5.49493 −0.235810
544544 18.8857 0.809720
545545 56.4144 2.41653
546546 20.9326 0.895831
547547 −30.7624 −1.31530 −0.657652 0.753322i 0.728450π-0.728450\pi
−0.657652 + 0.753322i 0.728450π0.728450\pi
548548 −11.9187 −0.509141
549549 1.89993 0.0810870
550550 −11.3057 −0.482077
551551 −0.972965 −0.0414497
552552 −1.61750 −0.0688455
553553 −3.60934 −0.153485
554554 13.7995 0.586284
555555 −58.8198 −2.49676
556556 −18.6726 −0.791895
557557 8.84004 0.374565 0.187282 0.982306i 0.440032π-0.440032\pi
0.187282 + 0.982306i 0.440032π0.440032\pi
558558 −0.00569772 −0.000241204 0
559559 22.7930 0.964043
560560 22.9092 0.968091
561561 4.36412 0.184253
562562 −34.9461 −1.47411
563563 −3.15807 −0.133097 −0.0665484 0.997783i 0.521199π-0.521199\pi
−0.0665484 + 0.997783i 0.521199π0.521199\pi
564564 13.9987 0.589454
565565 −41.8503 −1.76066
566566 −6.00836 −0.252550
567567 −19.7421 −0.829091
568568 4.48712 0.188276
569569 18.7192 0.784749 0.392375 0.919806i 0.371654π-0.371654\pi
0.392375 + 0.919806i 0.371654π0.371654\pi
570570 −12.3962 −0.519221
571571 37.6834 1.57700 0.788500 0.615034i 0.210858π-0.210858\pi
0.788500 + 0.615034i 0.210858π0.210858\pi
572572 −6.14236 −0.256825
573573 41.9529 1.75261
574574 26.0750 1.08835
575575 −15.2347 −0.635331
576576 −4.65743 −0.194060
577577 1.77272 0.0737993 0.0368997 0.999319i 0.488252π-0.488252\pi
0.0368997 + 0.999319i 0.488252π0.488252\pi
578578 −23.5811 −0.980846
579579 4.78388 0.198811
580580 6.80712 0.282650
581581 −21.0838 −0.874704
582582 −28.9045 −1.19813
583583 −10.5493 −0.436906
584584 −4.15931 −0.172113
585585 −4.69628 −0.194167
586586 5.25554 0.217105
587587 −32.1703 −1.32781 −0.663906 0.747816i 0.731103π-0.731103\pi
−0.663906 + 0.747816i 0.731103π0.731103\pi
588588 −13.3162 −0.549150
589589 −0.00551178 −0.000227109 0
590590 91.2232 3.75560
591591 −23.7778 −0.978088
592592 −35.4704 −1.45783
593593 12.2719 0.503946 0.251973 0.967734i 0.418921π-0.418921\pi
0.251973 + 0.967734i 0.418921π0.418921\pi
594594 9.51521 0.390414
595595 14.5561 0.596741
596596 −41.5837 −1.70333
597597 19.0183 0.778369
598598 −15.9611 −0.652700
599599 16.7005 0.682366 0.341183 0.939997i 0.389172π-0.389172\pi
0.341183 + 0.939997i 0.389172π0.389172\pi
600600 3.26671 0.133363
601601 14.3030 0.583432 0.291716 0.956505i 0.405774π-0.405774\pi
0.291716 + 0.956505i 0.405774π0.405774\pi
602602 31.3389 1.27728
603603 −2.01437 −0.0820315
604604 18.7721 0.763827
605605 −3.24760 −0.132034
606606 −57.4516 −2.33381
607607 −9.04370 −0.367073 −0.183536 0.983013i 0.558754π-0.558754\pi
−0.183536 + 0.983013i 0.558754π0.558754\pi
608608 −8.10431 −0.328673
609609 −3.50461 −0.142014
610610 −24.7963 −1.00397
611611 9.89322 0.400237
612612 −2.54614 −0.102922
613613 −24.0096 −0.969738 −0.484869 0.874587i 0.661133π-0.661133\pi
−0.484869 + 0.874587i 0.661133π0.661133\pi
614614 −40.3337 −1.62774
615615 −40.4532 −1.63123
616616 −0.604847 −0.0243700
617617 1.30852 0.0526791 0.0263395 0.999653i 0.491615π-0.491615\pi
0.0263395 + 0.999653i 0.491615π0.491615\pi
618618 −2.07438 −0.0834436
619619 32.2747 1.29723 0.648616 0.761116i 0.275348π-0.275348\pi
0.648616 + 0.761116i 0.275348π0.275348\pi
620620 0.0385619 0.00154868
621621 12.8220 0.514528
622622 40.3523 1.61798
623623 28.8882 1.15738
624624 −19.5837 −0.783975
625625 −21.9665 −0.878658
626626 22.3890 0.894845
627627 −1.87275 −0.0747903
628628 −12.6379 −0.504308
629629 −22.5372 −0.898618
630630 −6.45706 −0.257256
631631 29.6689 1.18110 0.590551 0.807000i 0.298911π-0.298911\pi
0.590551 + 0.807000i 0.298911π0.298911\pi
632632 −0.590127 −0.0234740
633633 −15.4662 −0.614727
634634 20.1446 0.800046
635635 −50.1242 −1.98912
636636 42.5603 1.68763
637637 −9.41083 −0.372871
638638 1.98311 0.0785119
639639 7.23680 0.286283
640640 8.14591 0.321995
641641 22.2716 0.879675 0.439838 0.898077i 0.355036π-0.355036\pi
0.439838 + 0.898077i 0.355036π0.355036\pi
642642 56.2521 2.22009
643643 −16.6461 −0.656456 −0.328228 0.944599i 0.606451π-0.606451\pi
−0.328228 + 0.944599i 0.606451π0.606451\pi
644644 −11.3803 −0.448445
645645 −48.6197 −1.91440
646646 −4.74970 −0.186875
647647 −15.9531 −0.627180 −0.313590 0.949559i 0.601532π-0.601532\pi
−0.313590 + 0.949559i 0.601532π0.601532\pi
648648 −3.22783 −0.126801
649649 13.7814 0.540969
650650 32.2351 1.26437
651651 −0.0198534 −0.000778116 0
652652 32.0562 1.25542
653653 14.7613 0.577655 0.288828 0.957381i 0.406735π-0.406735\pi
0.288828 + 0.957381i 0.406735π0.406735\pi
654654 −66.3063 −2.59278
655655 39.1838 1.53104
656656 −24.3947 −0.952453
657657 −6.70811 −0.261708
658658 13.6025 0.530281
659659 −19.6143 −0.764065 −0.382032 0.924149i 0.624776π-0.624776\pi
−0.382032 + 0.924149i 0.624776π0.624776\pi
660660 13.1022 0.510003
661661 −31.5523 −1.22724 −0.613621 0.789601i 0.710288π-0.710288\pi
−0.613621 + 0.789601i 0.710288π0.710288\pi
662662 52.5037 2.04061
663663 −12.4431 −0.483250
664664 −3.44720 −0.133777
665665 −6.24635 −0.242223
666666 9.99749 0.387395
667667 2.67228 0.103471
668668 9.02583 0.349220
669669 −39.7564 −1.53707
670670 26.2899 1.01567
671671 −3.74608 −0.144616
672672 −29.1917 −1.12609
673673 41.3876 1.59537 0.797687 0.603071i 0.206057π-0.206057\pi
0.797687 + 0.603071i 0.206057π0.206057\pi
674674 44.6213 1.71875
675675 −25.8952 −0.996708
676676 −10.4925 −0.403558
677677 −20.6981 −0.795491 −0.397746 0.917496i 0.630207π-0.630207\pi
−0.397746 + 0.917496i 0.630207π0.630207\pi
678678 49.1885 1.88907
679679 −14.5647 −0.558943
680680 2.37992 0.0912657
681681 −16.9793 −0.650647
682682 0.0112342 0.000430178 0
683683 −0.658543 −0.0251985 −0.0125992 0.999921i 0.504011π-0.504011\pi
−0.0125992 + 0.999921i 0.504011π0.504011\pi
684684 1.09261 0.0417769
685685 17.9674 0.686501
686686 −40.3809 −1.54175
687687 −9.84233 −0.375508
688688 −29.3194 −1.11779
689689 30.0783 1.14589
690690 34.0466 1.29613
691691 34.2462 1.30279 0.651393 0.758741i 0.274185π-0.274185\pi
0.651393 + 0.758741i 0.274185π0.274185\pi
692692 1.52338 0.0579100
693693 −0.975494 −0.0370559
694694 39.3083 1.49212
695695 28.1490 1.06775
696696 −0.573005 −0.0217197
697697 −15.4999 −0.587101
698698 31.6370 1.19748
699699 −10.6535 −0.402952
700700 22.9836 0.868697
701701 22.4638 0.848445 0.424223 0.905558i 0.360547π-0.360547\pi
0.424223 + 0.905558i 0.360547π0.360547\pi
702702 −27.1300 −1.02396
703703 9.67124 0.364758
704704 9.18303 0.346098
705705 −21.1032 −0.794791
706706 −18.1983 −0.684902
707707 −28.9493 −1.08875
708708 −55.6003 −2.08959
709709 −0.410520 −0.0154174 −0.00770870 0.999970i 0.502454π-0.502454\pi
−0.00770870 + 0.999970i 0.502454π0.502454\pi
710710 −94.4489 −3.54460
711711 −0.951752 −0.0356935
712712 4.72322 0.177010
713713 0.0151383 0.000566933 0
714714 −17.1084 −0.640266
715715 9.25963 0.346290
716716 −46.9553 −1.75480
717717 −38.1641 −1.42527
718718 53.5380 1.99802
719719 36.5145 1.36176 0.680880 0.732395i 0.261598π-0.261598\pi
0.680880 + 0.732395i 0.261598π0.261598\pi
720720 6.04097 0.225134
721721 −1.04526 −0.0389275
722722 2.03821 0.0758542
723723 33.1346 1.23229
724724 −6.32102 −0.234919
725725 −5.39693 −0.200437
726726 3.81704 0.141664
727727 −39.2587 −1.45602 −0.728012 0.685564i 0.759556π-0.759556\pi
−0.728012 + 0.685564i 0.759556π0.759556\pi
728728 1.72455 0.0639163
729729 21.0225 0.778610
730730 87.5488 3.24032
731731 −18.6290 −0.689018
732732 15.1133 0.558604
733733 −34.3259 −1.26786 −0.633928 0.773392i 0.718558π-0.718558\pi
−0.633928 + 0.773392i 0.718558π0.718558\pi
734734 20.9038 0.771575
735735 20.0742 0.740447
736736 22.2587 0.820468
737737 3.97172 0.146300
738738 6.87575 0.253100
739739 −26.7732 −0.984870 −0.492435 0.870349i 0.663893π-0.663893\pi
−0.492435 + 0.870349i 0.663893π0.663893\pi
740740 −67.6625 −2.48732
741741 5.33962 0.196156
742742 41.3556 1.51821
743743 −9.38431 −0.344277 −0.172139 0.985073i 0.555068π-0.555068\pi
−0.172139 + 0.985073i 0.555068π0.555068\pi
744744 −0.00324603 −0.000119005 0
745745 62.6876 2.29669
746746 −41.2210 −1.50921
747747 −5.55963 −0.203416
748748 5.02021 0.183557
749749 28.3449 1.03570
750750 −6.77939 −0.247548
751751 7.66846 0.279826 0.139913 0.990164i 0.455318π-0.455318\pi
0.139913 + 0.990164i 0.455318π0.455318\pi
752752 −12.7260 −0.464068
753753 −1.45427 −0.0529965
754754 −5.65428 −0.205917
755755 −28.2990 −1.02991
756756 −19.3436 −0.703521
757757 −6.75931 −0.245671 −0.122836 0.992427i 0.539199π-0.539199\pi
−0.122836 + 0.992427i 0.539199π0.539199\pi
758758 28.8475 1.04779
759759 5.14356 0.186699
760760 −1.02128 −0.0370456
761761 −34.8774 −1.26430 −0.632152 0.774844i 0.717828π-0.717828\pi
−0.632152 + 0.774844i 0.717828π0.717828\pi
762762 58.9132 2.13420
763763 −33.4111 −1.20956
764764 48.2599 1.74598
765765 3.83832 0.138775
766766 25.1142 0.907415
767767 −39.2940 −1.41882
768768 24.8207 0.895640
769769 −0.00622027 −0.000224309 0 −0.000112154 1.00000i 0.500036π-0.500036\pi
−0.000112154 1.00000i 0.500036π0.500036\pi
770770 12.7314 0.458806
771771 54.8269 1.97454
772772 5.50307 0.198060
773773 10.8548 0.390418 0.195209 0.980762i 0.437461π-0.437461\pi
0.195209 + 0.980762i 0.437461π0.437461\pi
774774 8.26380 0.297036
775775 −0.0305733 −0.00109822
776776 −2.38133 −0.0854848
777777 34.8357 1.24973
778778 69.1459 2.47900
779779 6.65137 0.238310
780780 −37.3574 −1.33761
781781 −14.2688 −0.510576
782782 13.0452 0.466496
783783 4.54221 0.162325
784784 12.1054 0.432337
785785 19.0517 0.679984
786786 −46.0544 −1.64271
787787 37.8221 1.34821 0.674106 0.738635i 0.264529π-0.264529\pi
0.674106 + 0.738635i 0.264529π0.264529\pi
788788 −27.3525 −0.974392
789789 −11.0500 −0.393390
790790 12.4215 0.441937
791791 24.7857 0.881277
792792 −0.159493 −0.00566735
793793 10.6809 0.379290
794794 −41.4483 −1.47095
795795 −64.1598 −2.27552
796796 21.8775 0.775428
797797 −49.2853 −1.74577 −0.872887 0.487922i 0.837755π-0.837755\pi
−0.872887 + 0.487922i 0.837755π0.837755\pi
798798 7.34161 0.259890
799799 −8.08583 −0.286056
800800 −44.9537 −1.58935
801801 7.61758 0.269154
802802 −62.5352 −2.20819
803803 13.2263 0.466747
804804 −16.0237 −0.565111
805805 17.1558 0.604662
806806 −0.0320311 −0.00112825
807807 −20.0905 −0.707219
808808 −4.73322 −0.166514
809809 34.0416 1.19684 0.598420 0.801183i 0.295796π-0.295796\pi
0.598420 + 0.801183i 0.295796π0.295796\pi
810810 67.9423 2.38725
811811 −44.7037 −1.56976 −0.784880 0.619648i 0.787275π-0.787275\pi
−0.784880 + 0.619648i 0.787275π0.787275\pi
812812 −4.03149 −0.141477
813813 30.4709 1.06866
814814 −19.7120 −0.690905
815815 −48.3249 −1.69275
816816 16.0059 0.560320
817817 7.99413 0.279679
818818 −70.9470 −2.48061
819819 2.78135 0.0971882
820820 −46.5348 −1.62506
821821 −48.0778 −1.67793 −0.838963 0.544188i 0.816838π-0.816838\pi
−0.838963 + 0.544188i 0.816838π0.816838\pi
822822 −21.1179 −0.736572
823823 18.6246 0.649211 0.324606 0.945849i 0.394768π-0.394768\pi
0.324606 + 0.945849i 0.394768π0.394768\pi
824824 −0.170900 −0.00595358
825825 −10.3879 −0.361661
826826 −54.0265 −1.87982
827827 6.99744 0.243325 0.121662 0.992572i 0.461177π-0.461177\pi
0.121662 + 0.992572i 0.461177π0.461177\pi
828828 −3.00088 −0.104288
829829 24.9441 0.866344 0.433172 0.901311i 0.357394π-0.357394\pi
0.433172 + 0.901311i 0.357394π0.357394\pi
830830 72.5597 2.51859
831831 12.6792 0.439838
832832 −26.1829 −0.907727
833833 7.69157 0.266497
834834 −33.0848 −1.14563
835835 −13.6065 −0.470872
836836 −2.15429 −0.0745076
837837 0.0257313 0.000889405 0
838838 18.4351 0.636831
839839 10.2122 0.352566 0.176283 0.984340i 0.443593π-0.443593\pi
0.176283 + 0.984340i 0.443593π0.443593\pi
840840 −3.67864 −0.126925
841841 −28.0533 −0.967356
842842 60.9606 2.10084
843843 −32.1091 −1.10590
844844 −17.7914 −0.612404
845845 15.8175 0.544139
846846 3.58687 0.123319
847847 1.92338 0.0660879
848848 −38.6907 −1.32864
849849 −5.52060 −0.189467
850850 −26.3461 −0.903663
851851 −26.5624 −0.910546
852852 57.5664 1.97219
853853 33.5562 1.14894 0.574472 0.818524i 0.305207π-0.305207\pi
0.574472 + 0.818524i 0.305207π0.305207\pi
854854 14.6855 0.502528
855855 −1.64711 −0.0563300
856856 4.63440 0.158400
857857 34.8775 1.19139 0.595696 0.803210i 0.296876π-0.296876\pi
0.595696 + 0.803210i 0.296876π0.296876\pi
858858 −10.8832 −0.371548
859859 13.1320 0.448059 0.224029 0.974582i 0.428079π-0.428079\pi
0.224029 + 0.974582i 0.428079π0.428079\pi
860860 −55.9290 −1.90716
861861 23.9582 0.816493
862862 −28.0053 −0.953863
863863 −27.5223 −0.936871 −0.468435 0.883498i 0.655182π-0.655182\pi
−0.468435 + 0.883498i 0.655182π0.655182\pi
864864 37.8343 1.28715
865865 −2.29649 −0.0780831
866866 6.70315 0.227782
867867 −21.6668 −0.735844
868868 −0.0228381 −0.000775175 0
869869 1.87656 0.0636581
870870 12.0611 0.408910
871871 −11.3243 −0.383708
872872 −5.46272 −0.184991
873873 −3.84060 −0.129985
874874 −5.59800 −0.189355
875875 −3.41607 −0.115484
876876 −53.3608 −1.80289
877877 −18.2679 −0.616865 −0.308432 0.951246i 0.599804π-0.599804\pi
−0.308432 + 0.951246i 0.599804π0.599804\pi
878878 26.8490 0.906111
879879 4.82890 0.162875
880880 −11.9109 −0.401518
881881 −47.0363 −1.58469 −0.792346 0.610072i 0.791141π-0.791141\pi
−0.792346 + 0.610072i 0.791141π0.791141\pi
882882 −3.41197 −0.114887
883883 −24.7005 −0.831238 −0.415619 0.909539i 0.636435π-0.636435\pi
−0.415619 + 0.909539i 0.636435π0.636435\pi
884884 −14.3137 −0.481423
885885 83.8177 2.81750
886886 −50.8500 −1.70834
887887 23.3946 0.785515 0.392758 0.919642i 0.371521π-0.371521\pi
0.392758 + 0.919642i 0.371521π0.371521\pi
888888 5.69564 0.191133
889889 29.6858 0.995631
890890 −99.4184 −3.33251
891891 10.2643 0.343867
892892 −45.7332 −1.53126
893893 3.46982 0.116113
894894 −73.6794 −2.46421
895895 70.7853 2.36609
896896 −4.82438 −0.161171
897897 −14.6654 −0.489664
898898 31.7003 1.05785
899899 0.00536277 0.000178858 0
900900 6.06058 0.202019
901901 −24.5833 −0.818989
902902 −13.5569 −0.451395
903903 28.7948 0.958231
904904 4.05246 0.134783
905905 9.52897 0.316754
906906 33.2611 1.10503
907907 19.2411 0.638892 0.319446 0.947605i 0.396503π-0.396503\pi
0.319446 + 0.947605i 0.396503π0.396503\pi
908908 −19.5319 −0.648189
909909 −7.63370 −0.253194
910910 −36.2999 −1.20333
911911 48.5854 1.60971 0.804853 0.593475i 0.202244π-0.202244\pi
0.804853 + 0.593475i 0.202244π0.202244\pi
912912 −6.86852 −0.227439
913913 10.9619 0.362785
914914 −39.0217 −1.29072
915915 −22.7834 −0.753195
916916 −11.3220 −0.374089
917917 −23.2064 −0.766344
918918 22.1736 0.731839
919919 21.2754 0.701812 0.350906 0.936411i 0.385874π-0.385874\pi
0.350906 + 0.936411i 0.385874π0.385874\pi
920920 2.80497 0.0924772
921921 −37.0595 −1.22115
922922 68.2891 2.24898
923923 40.6834 1.33911
924924 −7.75973 −0.255276
925925 53.6453 1.76385
926926 5.77019 0.189620
927927 −0.275626 −0.00905276
928928 7.88521 0.258845
929929 49.9319 1.63821 0.819106 0.573643i 0.194470π-0.194470\pi
0.819106 + 0.573643i 0.194470π0.194470\pi
930930 0.0683253 0.00224047
931931 −3.30063 −0.108174
932932 −12.2551 −0.401429
933933 37.0765 1.21383
934934 −41.5217 −1.35863
935935 −7.56799 −0.247500
936936 0.454751 0.0148640
937937 11.2142 0.366353 0.183176 0.983080i 0.441362π-0.441362\pi
0.183176 + 0.983080i 0.441362π0.441362\pi
938938 −15.5701 −0.508381
939939 20.5715 0.671325
940940 −24.2757 −0.791787
941941 −47.9390 −1.56277 −0.781383 0.624052i 0.785485π-0.785485\pi
−0.781383 + 0.624052i 0.785485π0.785485\pi
942942 −22.3923 −0.729580
943943 −18.2682 −0.594894
944944 50.5451 1.64510
945945 29.1606 0.948594
946946 −16.2937 −0.529754
947947 14.4633 0.469993 0.234997 0.971996i 0.424492π-0.424492\pi
0.234997 + 0.971996i 0.424492π0.424492\pi
948948 −7.57088 −0.245891
949949 −37.7112 −1.22416
950950 11.3057 0.366806
951951 18.5093 0.600206
952952 −1.40950 −0.0456820
953953 19.3671 0.627363 0.313682 0.949528i 0.398438π-0.398438\pi
0.313682 + 0.949528i 0.398438π0.398438\pi
954954 10.9051 0.353067
955955 −72.7520 −2.35420
956956 −43.9016 −1.41988
957957 1.82212 0.0589007
958958 −15.9300 −0.514677
959959 −10.6411 −0.343620
960960 55.8505 1.80257
961961 −31.0000 −0.999999
962962 56.2033 1.81207
963963 7.47432 0.240857
964964 38.1159 1.22763
965965 −8.29591 −0.267055
966966 −20.1640 −0.648765
967967 −29.6452 −0.953326 −0.476663 0.879086i 0.658154π-0.658154\pi
−0.476663 + 0.879086i 0.658154π0.658154\pi
968968 0.314472 0.0101075
969969 −4.36412 −0.140196
970970 50.1244 1.60940
971971 −27.9572 −0.897190 −0.448595 0.893735i 0.648075π-0.648075\pi
−0.448595 + 0.893735i 0.648075π0.648075\pi
972972 −11.2393 −0.360500
973973 −16.6711 −0.534452
974974 −18.5583 −0.594648
975975 29.6183 0.948544
976976 −13.7392 −0.439781
977977 −25.4860 −0.815369 −0.407684 0.913123i 0.633664π-0.633664\pi
−0.407684 + 0.913123i 0.633664π0.633664\pi
978978 56.7983 1.81621
979979 −15.0195 −0.480026
980980 23.0921 0.737649
981981 −8.81024 −0.281289
982982 70.1499 2.23857
983983 −23.7523 −0.757582 −0.378791 0.925482i 0.623660π-0.623660\pi
−0.378791 + 0.925482i 0.623660π0.623660\pi
984984 3.91717 0.124875
985985 41.2340 1.31382
986986 4.62130 0.147172
987987 12.4983 0.397824
988988 6.14236 0.195414
989989 −21.9561 −0.698164
990990 3.35715 0.106697
991991 10.8187 0.343668 0.171834 0.985126i 0.445031π-0.445031\pi
0.171834 + 0.985126i 0.445031π0.445031\pi
992992 0.0446692 0.00141825
993993 48.2415 1.53090
994994 55.9369 1.77421
995995 −32.9804 −1.04555
996996 −44.2250 −1.40132
997997 −55.0261 −1.74270 −0.871348 0.490666i 0.836753π-0.836753\pi
−0.871348 + 0.490666i 0.836753π0.836753\pi
998998 15.9143 0.503758
999999 −45.1494 −1.42847
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 209.2.a.d.1.6 7
3.2 odd 2 1881.2.a.p.1.2 7
4.3 odd 2 3344.2.a.ba.1.2 7
5.4 even 2 5225.2.a.n.1.2 7
11.10 odd 2 2299.2.a.q.1.2 7
19.18 odd 2 3971.2.a.i.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.a.d.1.6 7 1.1 even 1 trivial
1881.2.a.p.1.2 7 3.2 odd 2
2299.2.a.q.1.2 7 11.10 odd 2
3344.2.a.ba.1.2 7 4.3 odd 2
3971.2.a.i.1.2 7 19.18 odd 2
5225.2.a.n.1.2 7 5.4 even 2