Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [209,2,Mod(18,209)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(209, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([7, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("209.18");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 209.k (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.484000000.9 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18.1 |
|
−2.02029 | − | 1.46782i | 0 | 1.30902 | + | 4.02874i | 0.500000 | − | 0.363271i | 0 | −1.80902 | + | 0.587785i | 1.72553 | − | 5.31064i | −2.42705 | − | 1.76336i | −1.54336 | ||||||||||||||||||||||||||||||
18.2 | 2.02029 | + | 1.46782i | 0 | 1.30902 | + | 4.02874i | 0.500000 | − | 0.363271i | 0 | −1.80902 | + | 0.587785i | −1.72553 | + | 5.31064i | −2.42705 | − | 1.76336i | 1.54336 | |||||||||||||||||||||||||||||||
94.1 | −0.410415 | − | 1.26313i | 0 | 0.190983 | − | 0.138757i | 0.500000 | − | 1.53884i | 0 | −0.690983 | − | 0.951057i | −2.40261 | − | 1.74560i | 0.927051 | + | 2.85317i | −2.14896 | |||||||||||||||||||||||||||||||
94.2 | 0.410415 | + | 1.26313i | 0 | 0.190983 | − | 0.138757i | 0.500000 | − | 1.53884i | 0 | −0.690983 | − | 0.951057i | 2.40261 | + | 1.74560i | 0.927051 | + | 2.85317i | 2.14896 | |||||||||||||||||||||||||||||||
151.1 | −2.02029 | + | 1.46782i | 0 | 1.30902 | − | 4.02874i | 0.500000 | + | 0.363271i | 0 | −1.80902 | − | 0.587785i | 1.72553 | + | 5.31064i | −2.42705 | + | 1.76336i | −1.54336 | |||||||||||||||||||||||||||||||
151.2 | 2.02029 | − | 1.46782i | 0 | 1.30902 | − | 4.02874i | 0.500000 | + | 0.363271i | 0 | −1.80902 | − | 0.587785i | −1.72553 | − | 5.31064i | −2.42705 | + | 1.76336i | 1.54336 | |||||||||||||||||||||||||||||||
189.1 | −0.410415 | + | 1.26313i | 0 | 0.190983 | + | 0.138757i | 0.500000 | + | 1.53884i | 0 | −0.690983 | + | 0.951057i | −2.40261 | + | 1.74560i | 0.927051 | − | 2.85317i | −2.14896 | |||||||||||||||||||||||||||||||
189.2 | 0.410415 | − | 1.26313i | 0 | 0.190983 | + | 0.138757i | 0.500000 | + | 1.53884i | 0 | −0.690983 | + | 0.951057i | 2.40261 | − | 1.74560i | 0.927051 | − | 2.85317i | 2.14896 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.d | odd | 10 | 1 | inner |
19.b | odd | 2 | 1 | inner |
209.k | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 209.2.k.b | ✓ | 8 |
11.d | odd | 10 | 1 | inner | 209.2.k.b | ✓ | 8 |
19.b | odd | 2 | 1 | inner | 209.2.k.b | ✓ | 8 |
209.k | even | 10 | 1 | inner | 209.2.k.b | ✓ | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
209.2.k.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
209.2.k.b | ✓ | 8 | 11.d | odd | 10 | 1 | inner |
209.2.k.b | ✓ | 8 | 19.b | odd | 2 | 1 | inner |
209.2.k.b | ✓ | 8 | 209.k | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .