Properties

Label 209.2.k.b
Level 209209
Weight 22
Character orbit 209.k
Analytic conductor 1.6691.669
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(18,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([7, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.18");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 209=1119 209 = 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 209.k (of order 1010, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.668873402241.66887340224
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: 8.0.484000000.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+x6+16x4+66x2+121 x^{8} + x^{6} + 16x^{4} + 66x^{2} + 121 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C10]\mathrm{SU}(2)[C_{10}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4β1)q2+(3β53β3β21)q4+(β3+β2+1)q5+(β21)q7+(2β7+β6+β1)q8++(6β56β3+3β2)q99+O(q100) q + ( - \beta_{4} - \beta_1) q^{2} + (3 \beta_{5} - 3 \beta_{3} - \beta_{2} - 1) q^{4} + (\beta_{3} + \beta_{2} + 1) q^{5} + (\beta_{2} - 1) q^{7} + ( - 2 \beta_{7} + \beta_{6} + \cdots - \beta_1) q^{8}+ \cdots + ( - 6 \beta_{5} - 6 \beta_{3} + 3 \beta_{2}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+6q4+4q510q76q9+18q1122q1630q1710q19+8q2012q23+2q25+4q2620q2810q35+18q36+32q38+56q44+12q45+6q99+O(q100) 8 q + 6 q^{4} + 4 q^{5} - 10 q^{7} - 6 q^{9} + 18 q^{11} - 22 q^{16} - 30 q^{17} - 10 q^{19} + 8 q^{20} - 12 q^{23} + 2 q^{25} + 4 q^{26} - 20 q^{28} - 10 q^{35} + 18 q^{36} + 32 q^{38} + 56 q^{44} + 12 q^{45}+ \cdots - 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+x6+16x4+66x2+121 x^{8} + x^{6} + 16x^{4} + 66x^{2} + 121 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (7ν637ν4+629ν2363)/1991 ( 7\nu^{6} - 37\nu^{4} + 629\nu^{2} - 363 ) / 1991 Copy content Toggle raw display
β3\beta_{3}== (28ν6+148ν4525ν2539)/1991 ( -28\nu^{6} + 148\nu^{4} - 525\nu^{2} - 539 ) / 1991 Copy content Toggle raw display
β4\beta_{4}== (28ν7+148ν5525ν3539ν)/1991 ( -28\nu^{7} + 148\nu^{5} - 525\nu^{3} - 539\nu ) / 1991 Copy content Toggle raw display
β5\beta_{5}== (40ν6+73ν4+750ν2+2761)/1991 ( 40\nu^{6} + 73\nu^{4} + 750\nu^{2} + 2761 ) / 1991 Copy content Toggle raw display
β6\beta_{6}== (61ν7+38ν5646ν31672ν)/1991 ( -61\nu^{7} + 38\nu^{5} - 646\nu^{3} - 1672\nu ) / 1991 Copy content Toggle raw display
β7\beta_{7}== (68ν775ν5+1275ν3+3300ν)/1991 ( 68\nu^{7} - 75\nu^{5} + 1275\nu^{3} + 3300\nu ) / 1991 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+4β2+1 \beta_{3} + 4\beta_{2} + 1 Copy content Toggle raw display
ν3\nu^{3}== 4β7+4β6+β43β1 4\beta_{7} + 4\beta_{6} + \beta_{4} - 3\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 7β5+10β37 7\beta_{5} + 10\beta_{3} - 7 Copy content Toggle raw display
ν5\nu^{5}== 7β7+17β47β1 7\beta_{7} + 17\beta_{4} - 7\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 37β537β375β275 37\beta_{5} - 37\beta_{3} - 75\beta_{2} - 75 Copy content Toggle raw display
ν7\nu^{7}== 38β775β6 -38\beta_{7} - 75\beta_{6} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/209Z)×\left(\mathbb{Z}/209\mathbb{Z}\right)^\times.

nn 7878 134134
χ(n)\chi(n) 1-1 1+β2+β3β51 + \beta_{2} + \beta_{3} - \beta_{5}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
18.1
0.476925 + 1.46782i
−0.476925 1.46782i
−1.73855 + 1.26313i
1.73855 1.26313i
0.476925 1.46782i
−0.476925 + 1.46782i
−1.73855 1.26313i
1.73855 + 1.26313i
−2.02029 1.46782i 0 1.30902 + 4.02874i 0.500000 0.363271i 0 −1.80902 + 0.587785i 1.72553 5.31064i −2.42705 1.76336i −1.54336
18.2 2.02029 + 1.46782i 0 1.30902 + 4.02874i 0.500000 0.363271i 0 −1.80902 + 0.587785i −1.72553 + 5.31064i −2.42705 1.76336i 1.54336
94.1 −0.410415 1.26313i 0 0.190983 0.138757i 0.500000 1.53884i 0 −0.690983 0.951057i −2.40261 1.74560i 0.927051 + 2.85317i −2.14896
94.2 0.410415 + 1.26313i 0 0.190983 0.138757i 0.500000 1.53884i 0 −0.690983 0.951057i 2.40261 + 1.74560i 0.927051 + 2.85317i 2.14896
151.1 −2.02029 + 1.46782i 0 1.30902 4.02874i 0.500000 + 0.363271i 0 −1.80902 0.587785i 1.72553 + 5.31064i −2.42705 + 1.76336i −1.54336
151.2 2.02029 1.46782i 0 1.30902 4.02874i 0.500000 + 0.363271i 0 −1.80902 0.587785i −1.72553 5.31064i −2.42705 + 1.76336i 1.54336
189.1 −0.410415 + 1.26313i 0 0.190983 + 0.138757i 0.500000 + 1.53884i 0 −0.690983 + 0.951057i −2.40261 + 1.74560i 0.927051 2.85317i −2.14896
189.2 0.410415 1.26313i 0 0.190983 + 0.138757i 0.500000 + 1.53884i 0 −0.690983 + 0.951057i 2.40261 1.74560i 0.927051 2.85317i 2.14896
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 18.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.d odd 10 1 inner
19.b odd 2 1 inner
209.k even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 209.2.k.b 8
11.d odd 10 1 inner 209.2.k.b 8
19.b odd 2 1 inner 209.2.k.b 8
209.k even 10 1 inner 209.2.k.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
209.2.k.b 8 1.a even 1 1 trivial
209.2.k.b 8 11.d odd 10 1 inner
209.2.k.b 8 19.b odd 2 1 inner
209.2.k.b 8 209.k even 10 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T28T26+31T24+99T22+121 T_{2}^{8} - T_{2}^{6} + 31T_{2}^{4} + 99T_{2}^{2} + 121 acting on S2new(209,[χ])S_{2}^{\mathrm{new}}(209, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8T6++121 T^{8} - T^{6} + \cdots + 121 Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T42T3+4T2++1)2 (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
77 (T4+5T3+10T2++5)2 (T^{4} + 5 T^{3} + 10 T^{2} + \cdots + 5)^{2} Copy content Toggle raw display
1111 (T49T3++121)2 (T^{4} - 9 T^{3} + \cdots + 121)^{2} Copy content Toggle raw display
1313 T84T6++30976 T^{8} - 4 T^{6} + \cdots + 30976 Copy content Toggle raw display
1717 (T4+15T3++405)2 (T^{4} + 15 T^{3} + \cdots + 405)^{2} Copy content Toggle raw display
1919 T8+10T7++130321 T^{8} + 10 T^{7} + \cdots + 130321 Copy content Toggle raw display
2323 (T2+3T+1)4 (T^{2} + 3 T + 1)^{4} Copy content Toggle raw display
2929 T824T6++30976 T^{8} - 24 T^{6} + \cdots + 30976 Copy content Toggle raw display
3131 T820T6++774400 T^{8} - 20 T^{6} + \cdots + 774400 Copy content Toggle raw display
3737 T8+20T6++774400 T^{8} + 20 T^{6} + \cdots + 774400 Copy content Toggle raw display
4141 T8+20T6++19360000 T^{8} + 20 T^{6} + \cdots + 19360000 Copy content Toggle raw display
4343 (T4+145T2+4805)2 (T^{4} + 145 T^{2} + 4805)^{2} Copy content Toggle raw display
4747 (T48T3++121)2 (T^{4} - 8 T^{3} + \cdots + 121)^{2} Copy content Toggle raw display
5353 T8280T6++774400 T^{8} - 280 T^{6} + \cdots + 774400 Copy content Toggle raw display
5959 T8140T6++774400 T^{8} - 140 T^{6} + \cdots + 774400 Copy content Toggle raw display
6161 (T415T3++125)2 (T^{4} - 15 T^{3} + \cdots + 125)^{2} Copy content Toggle raw display
6767 (T4+180T2+880)2 (T^{4} + 180 T^{2} + 880)^{2} Copy content Toggle raw display
7171 T8100T6++484000000 T^{8} - 100 T^{6} + \cdots + 484000000 Copy content Toggle raw display
7373 (T4+320T+1280)2 (T^{4} + 320 T + 1280)^{2} Copy content Toggle raw display
7979 T820T6++19360000 T^{8} - 20 T^{6} + \cdots + 19360000 Copy content Toggle raw display
8383 (T4+20T3++125)2 (T^{4} + 20 T^{3} + \cdots + 125)^{2} Copy content Toggle raw display
8989 (T4+60T2+880)2 (T^{4} + 60 T^{2} + 880)^{2} Copy content Toggle raw display
9797 T8+40T6++774400 T^{8} + 40 T^{6} + \cdots + 774400 Copy content Toggle raw display
show more
show less