Properties

Label 209.4.a.c.1.1
Level $209$
Weight $4$
Character 209.1
Self dual yes
Analytic conductor $12.331$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,4,Mod(1,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 209.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3313991912\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 2 x^{12} - 91 x^{11} + 176 x^{10} + 3117 x^{9} - 5786 x^{8} - 49725 x^{7} + 87196 x^{6} + \cdots - 86016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.62918\) of defining polynomial
Character \(\chi\) \(=\) 209.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.62918 q^{2} +10.0382 q^{3} +23.6877 q^{4} -2.17343 q^{5} -56.5070 q^{6} +1.58350 q^{7} -88.3091 q^{8} +73.7660 q^{9} +12.2346 q^{10} -11.0000 q^{11} +237.783 q^{12} +48.8093 q^{13} -8.91380 q^{14} -21.8174 q^{15} +307.606 q^{16} +50.8475 q^{17} -415.242 q^{18} -19.0000 q^{19} -51.4836 q^{20} +15.8955 q^{21} +61.9210 q^{22} -29.9557 q^{23} -886.467 q^{24} -120.276 q^{25} -274.757 q^{26} +469.447 q^{27} +37.5094 q^{28} +59.8413 q^{29} +122.814 q^{30} +229.019 q^{31} -1025.10 q^{32} -110.420 q^{33} -286.230 q^{34} -3.44162 q^{35} +1747.35 q^{36} +30.5522 q^{37} +106.955 q^{38} +489.959 q^{39} +191.934 q^{40} -44.1228 q^{41} -89.4787 q^{42} +279.983 q^{43} -260.565 q^{44} -160.325 q^{45} +168.626 q^{46} -337.116 q^{47} +3087.82 q^{48} -340.493 q^{49} +677.057 q^{50} +510.419 q^{51} +1156.18 q^{52} +108.326 q^{53} -2642.61 q^{54} +23.9077 q^{55} -139.837 q^{56} -190.726 q^{57} -336.857 q^{58} +147.196 q^{59} -516.804 q^{60} +457.035 q^{61} -1289.19 q^{62} +116.808 q^{63} +3309.63 q^{64} -106.084 q^{65} +621.577 q^{66} -265.095 q^{67} +1204.46 q^{68} -300.702 q^{69} +19.3735 q^{70} +746.973 q^{71} -6514.20 q^{72} -643.087 q^{73} -171.984 q^{74} -1207.36 q^{75} -450.067 q^{76} -17.4185 q^{77} -2758.07 q^{78} -543.570 q^{79} -668.561 q^{80} +2720.74 q^{81} +248.375 q^{82} +766.485 q^{83} +376.528 q^{84} -110.514 q^{85} -1576.07 q^{86} +600.700 q^{87} +971.400 q^{88} -377.916 q^{89} +902.500 q^{90} +77.2894 q^{91} -709.581 q^{92} +2298.94 q^{93} +1897.69 q^{94} +41.2952 q^{95} -10290.2 q^{96} +661.607 q^{97} +1916.70 q^{98} -811.426 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - 2 q^{2} + 11 q^{3} + 82 q^{4} + 8 q^{5} + 13 q^{6} + 39 q^{7} + 6 q^{8} + 156 q^{9} + 124 q^{10} - 143 q^{11} + 247 q^{12} - 23 q^{13} + 47 q^{14} + 278 q^{15} + 526 q^{16} + 73 q^{17} - 165 q^{18}+ \cdots - 1716 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.62918 −1.99022 −0.995109 0.0987859i \(-0.968504\pi\)
−0.995109 + 0.0987859i \(0.968504\pi\)
\(3\) 10.0382 1.93186 0.965929 0.258809i \(-0.0833299\pi\)
0.965929 + 0.258809i \(0.0833299\pi\)
\(4\) 23.6877 2.96097
\(5\) −2.17343 −0.194398 −0.0971988 0.995265i \(-0.530988\pi\)
−0.0971988 + 0.995265i \(0.530988\pi\)
\(6\) −56.5070 −3.84482
\(7\) 1.58350 0.0855008 0.0427504 0.999086i \(-0.486388\pi\)
0.0427504 + 0.999086i \(0.486388\pi\)
\(8\) −88.3091 −3.90275
\(9\) 73.7660 2.73207
\(10\) 12.2346 0.386893
\(11\) −11.0000 −0.301511
\(12\) 237.783 5.72016
\(13\) 48.8093 1.04133 0.520664 0.853762i \(-0.325684\pi\)
0.520664 + 0.853762i \(0.325684\pi\)
\(14\) −8.91380 −0.170165
\(15\) −21.8174 −0.375548
\(16\) 307.606 4.80635
\(17\) 50.8475 0.725431 0.362716 0.931900i \(-0.381850\pi\)
0.362716 + 0.931900i \(0.381850\pi\)
\(18\) −415.242 −5.43742
\(19\) −19.0000 −0.229416
\(20\) −51.4836 −0.575604
\(21\) 15.8955 0.165175
\(22\) 61.9210 0.600073
\(23\) −29.9557 −0.271573 −0.135787 0.990738i \(-0.543356\pi\)
−0.135787 + 0.990738i \(0.543356\pi\)
\(24\) −886.467 −7.53955
\(25\) −120.276 −0.962210
\(26\) −274.757 −2.07247
\(27\) 469.447 3.34612
\(28\) 37.5094 0.253165
\(29\) 59.8413 0.383181 0.191590 0.981475i \(-0.438635\pi\)
0.191590 + 0.981475i \(0.438635\pi\)
\(30\) 122.814 0.747423
\(31\) 229.019 1.32687 0.663436 0.748233i \(-0.269098\pi\)
0.663436 + 0.748233i \(0.269098\pi\)
\(32\) −1025.10 −5.66294
\(33\) −110.420 −0.582477
\(34\) −286.230 −1.44377
\(35\) −3.44162 −0.0166212
\(36\) 1747.35 8.08957
\(37\) 30.5522 0.135750 0.0678750 0.997694i \(-0.478378\pi\)
0.0678750 + 0.997694i \(0.478378\pi\)
\(38\) 106.955 0.456587
\(39\) 489.959 2.01170
\(40\) 191.934 0.758685
\(41\) −44.1228 −0.168069 −0.0840345 0.996463i \(-0.526781\pi\)
−0.0840345 + 0.996463i \(0.526781\pi\)
\(42\) −89.4787 −0.328735
\(43\) 279.983 0.992953 0.496476 0.868050i \(-0.334627\pi\)
0.496476 + 0.868050i \(0.334627\pi\)
\(44\) −260.565 −0.892765
\(45\) −160.325 −0.531108
\(46\) 168.626 0.540490
\(47\) −337.116 −1.04624 −0.523121 0.852258i \(-0.675232\pi\)
−0.523121 + 0.852258i \(0.675232\pi\)
\(48\) 3087.82 9.28518
\(49\) −340.493 −0.992690
\(50\) 677.057 1.91501
\(51\) 510.419 1.40143
\(52\) 1156.18 3.08334
\(53\) 108.326 0.280749 0.140374 0.990099i \(-0.455169\pi\)
0.140374 + 0.990099i \(0.455169\pi\)
\(54\) −2642.61 −6.65950
\(55\) 23.9077 0.0586131
\(56\) −139.837 −0.333688
\(57\) −190.726 −0.443198
\(58\) −336.857 −0.762613
\(59\) 147.196 0.324801 0.162401 0.986725i \(-0.448076\pi\)
0.162401 + 0.986725i \(0.448076\pi\)
\(60\) −516.804 −1.11199
\(61\) 457.035 0.959300 0.479650 0.877460i \(-0.340764\pi\)
0.479650 + 0.877460i \(0.340764\pi\)
\(62\) −1289.19 −2.64076
\(63\) 116.808 0.233594
\(64\) 3309.63 6.46412
\(65\) −106.084 −0.202432
\(66\) 621.577 1.15926
\(67\) −265.095 −0.483381 −0.241690 0.970353i \(-0.577702\pi\)
−0.241690 + 0.970353i \(0.577702\pi\)
\(68\) 1204.46 2.14798
\(69\) −300.702 −0.524641
\(70\) 19.3735 0.0330797
\(71\) 746.973 1.24858 0.624292 0.781191i \(-0.285388\pi\)
0.624292 + 0.781191i \(0.285388\pi\)
\(72\) −6514.20 −10.6626
\(73\) −643.087 −1.03106 −0.515532 0.856870i \(-0.672406\pi\)
−0.515532 + 0.856870i \(0.672406\pi\)
\(74\) −171.984 −0.270172
\(75\) −1207.36 −1.85885
\(76\) −450.067 −0.679292
\(77\) −17.4185 −0.0257795
\(78\) −2758.07 −4.00372
\(79\) −543.570 −0.774132 −0.387066 0.922052i \(-0.626511\pi\)
−0.387066 + 0.922052i \(0.626511\pi\)
\(80\) −668.561 −0.934343
\(81\) 2720.74 3.73215
\(82\) 248.375 0.334494
\(83\) 766.485 1.01365 0.506823 0.862050i \(-0.330820\pi\)
0.506823 + 0.862050i \(0.330820\pi\)
\(84\) 376.528 0.489079
\(85\) −110.514 −0.141022
\(86\) −1576.07 −1.97619
\(87\) 600.700 0.740250
\(88\) 971.400 1.17672
\(89\) −377.916 −0.450101 −0.225051 0.974347i \(-0.572255\pi\)
−0.225051 + 0.974347i \(0.572255\pi\)
\(90\) 902.500 1.05702
\(91\) 77.2894 0.0890344
\(92\) −709.581 −0.804119
\(93\) 2298.94 2.56333
\(94\) 1897.69 2.08225
\(95\) 41.2952 0.0445979
\(96\) −10290.2 −10.9400
\(97\) 661.607 0.692536 0.346268 0.938136i \(-0.387449\pi\)
0.346268 + 0.938136i \(0.387449\pi\)
\(98\) 1916.70 1.97567
\(99\) −811.426 −0.823751
\(100\) −2849.07 −2.84907
\(101\) 258.982 0.255145 0.127573 0.991829i \(-0.459281\pi\)
0.127573 + 0.991829i \(0.459281\pi\)
\(102\) −2873.24 −2.78915
\(103\) −888.492 −0.849958 −0.424979 0.905203i \(-0.639719\pi\)
−0.424979 + 0.905203i \(0.639719\pi\)
\(104\) −4310.31 −4.06404
\(105\) −34.5478 −0.0321097
\(106\) −609.785 −0.558751
\(107\) 704.131 0.636176 0.318088 0.948061i \(-0.396959\pi\)
0.318088 + 0.948061i \(0.396959\pi\)
\(108\) 11120.1 9.90774
\(109\) 1846.39 1.62249 0.811247 0.584704i \(-0.198789\pi\)
0.811247 + 0.584704i \(0.198789\pi\)
\(110\) −134.581 −0.116653
\(111\) 306.690 0.262249
\(112\) 487.094 0.410947
\(113\) −1239.58 −1.03195 −0.515974 0.856604i \(-0.672570\pi\)
−0.515974 + 0.856604i \(0.672570\pi\)
\(114\) 1073.63 0.882061
\(115\) 65.1066 0.0527932
\(116\) 1417.50 1.13458
\(117\) 3600.47 2.84498
\(118\) −828.593 −0.646425
\(119\) 80.5169 0.0620250
\(120\) 1926.67 1.46567
\(121\) 121.000 0.0909091
\(122\) −2572.73 −1.90922
\(123\) −442.915 −0.324685
\(124\) 5424.94 3.92882
\(125\) 533.091 0.381449
\(126\) −657.535 −0.464904
\(127\) −1524.76 −1.06536 −0.532678 0.846318i \(-0.678814\pi\)
−0.532678 + 0.846318i \(0.678814\pi\)
\(128\) −10429.7 −7.20207
\(129\) 2810.53 1.91824
\(130\) 597.165 0.402883
\(131\) −1354.99 −0.903712 −0.451856 0.892091i \(-0.649238\pi\)
−0.451856 + 0.892091i \(0.649238\pi\)
\(132\) −2615.61 −1.72469
\(133\) −30.0865 −0.0196152
\(134\) 1492.27 0.962032
\(135\) −1020.31 −0.650477
\(136\) −4490.30 −2.83118
\(137\) −2504.42 −1.56181 −0.780903 0.624652i \(-0.785241\pi\)
−0.780903 + 0.624652i \(0.785241\pi\)
\(138\) 1692.71 1.04415
\(139\) −1374.36 −0.838643 −0.419322 0.907838i \(-0.637732\pi\)
−0.419322 + 0.907838i \(0.637732\pi\)
\(140\) −81.5242 −0.0492147
\(141\) −3384.04 −2.02119
\(142\) −4204.85 −2.48495
\(143\) −536.903 −0.313972
\(144\) 22690.9 13.1313
\(145\) −130.061 −0.0744894
\(146\) 3620.06 2.05204
\(147\) −3417.94 −1.91773
\(148\) 723.712 0.401951
\(149\) −3053.35 −1.67879 −0.839396 0.543520i \(-0.817091\pi\)
−0.839396 + 0.543520i \(0.817091\pi\)
\(150\) 6796.45 3.69952
\(151\) −42.8789 −0.0231088 −0.0115544 0.999933i \(-0.503678\pi\)
−0.0115544 + 0.999933i \(0.503678\pi\)
\(152\) 1677.87 0.895352
\(153\) 3750.82 1.98193
\(154\) 98.0518 0.0513067
\(155\) −497.757 −0.257941
\(156\) 11606.0 5.95657
\(157\) −2412.15 −1.22618 −0.613090 0.790013i \(-0.710074\pi\)
−0.613090 + 0.790013i \(0.710074\pi\)
\(158\) 3059.86 1.54069
\(159\) 1087.40 0.542366
\(160\) 2227.99 1.10086
\(161\) −47.4347 −0.0232197
\(162\) −15315.5 −7.42779
\(163\) −1927.73 −0.926328 −0.463164 0.886273i \(-0.653286\pi\)
−0.463164 + 0.886273i \(0.653286\pi\)
\(164\) −1045.17 −0.497646
\(165\) 239.991 0.113232
\(166\) −4314.69 −2.01738
\(167\) 2083.92 0.965622 0.482811 0.875725i \(-0.339616\pi\)
0.482811 + 0.875725i \(0.339616\pi\)
\(168\) −1403.72 −0.644638
\(169\) 185.350 0.0843650
\(170\) 622.101 0.280665
\(171\) −1401.55 −0.626780
\(172\) 6632.15 2.94010
\(173\) 889.638 0.390971 0.195485 0.980707i \(-0.437372\pi\)
0.195485 + 0.980707i \(0.437372\pi\)
\(174\) −3381.45 −1.47326
\(175\) −190.457 −0.0822697
\(176\) −3383.67 −1.44917
\(177\) 1477.59 0.627470
\(178\) 2127.36 0.895800
\(179\) −2660.34 −1.11086 −0.555428 0.831564i \(-0.687446\pi\)
−0.555428 + 0.831564i \(0.687446\pi\)
\(180\) −3797.74 −1.57259
\(181\) 2582.66 1.06060 0.530298 0.847811i \(-0.322080\pi\)
0.530298 + 0.847811i \(0.322080\pi\)
\(182\) −435.077 −0.177198
\(183\) 4587.82 1.85323
\(184\) 2645.36 1.05988
\(185\) −66.4030 −0.0263895
\(186\) −12941.2 −5.10158
\(187\) −559.323 −0.218726
\(188\) −7985.50 −3.09789
\(189\) 743.368 0.286096
\(190\) −232.458 −0.0887594
\(191\) 1848.27 0.700190 0.350095 0.936714i \(-0.386149\pi\)
0.350095 + 0.936714i \(0.386149\pi\)
\(192\) 33222.8 12.4878
\(193\) −1588.06 −0.592285 −0.296142 0.955144i \(-0.595700\pi\)
−0.296142 + 0.955144i \(0.595700\pi\)
\(194\) −3724.31 −1.37830
\(195\) −1064.89 −0.391069
\(196\) −8065.49 −2.93932
\(197\) −1885.40 −0.681875 −0.340938 0.940086i \(-0.610744\pi\)
−0.340938 + 0.940086i \(0.610744\pi\)
\(198\) 4567.66 1.63944
\(199\) 1372.30 0.488842 0.244421 0.969669i \(-0.421402\pi\)
0.244421 + 0.969669i \(0.421402\pi\)
\(200\) 10621.5 3.75526
\(201\) −2661.08 −0.933822
\(202\) −1457.86 −0.507794
\(203\) 94.7585 0.0327623
\(204\) 12090.7 4.14958
\(205\) 95.8979 0.0326722
\(206\) 5001.48 1.69160
\(207\) −2209.71 −0.741958
\(208\) 15014.1 5.00499
\(209\) 209.000 0.0691714
\(210\) 194.476 0.0639053
\(211\) −2677.68 −0.873645 −0.436822 0.899548i \(-0.643896\pi\)
−0.436822 + 0.899548i \(0.643896\pi\)
\(212\) 2565.99 0.831287
\(213\) 7498.28 2.41208
\(214\) −3963.68 −1.26613
\(215\) −608.523 −0.193028
\(216\) −41456.5 −13.0590
\(217\) 362.651 0.113449
\(218\) −10393.7 −3.22911
\(219\) −6455.45 −1.99187
\(220\) 566.320 0.173551
\(221\) 2481.83 0.755412
\(222\) −1726.41 −0.521933
\(223\) −1230.38 −0.369473 −0.184737 0.982788i \(-0.559143\pi\)
−0.184737 + 0.982788i \(0.559143\pi\)
\(224\) −1623.24 −0.484186
\(225\) −8872.29 −2.62883
\(226\) 6977.84 2.05380
\(227\) −2478.72 −0.724752 −0.362376 0.932032i \(-0.618034\pi\)
−0.362376 + 0.932032i \(0.618034\pi\)
\(228\) −4517.87 −1.31230
\(229\) −5486.63 −1.58326 −0.791630 0.611001i \(-0.790767\pi\)
−0.791630 + 0.611001i \(0.790767\pi\)
\(230\) −366.497 −0.105070
\(231\) −174.851 −0.0498023
\(232\) −5284.53 −1.49546
\(233\) 1054.22 0.296412 0.148206 0.988957i \(-0.452650\pi\)
0.148206 + 0.988957i \(0.452650\pi\)
\(234\) −20267.7 −5.66214
\(235\) 732.698 0.203387
\(236\) 3486.74 0.961725
\(237\) −5456.48 −1.49551
\(238\) −453.245 −0.123443
\(239\) 157.540 0.0426377 0.0213188 0.999773i \(-0.493213\pi\)
0.0213188 + 0.999773i \(0.493213\pi\)
\(240\) −6711.17 −1.80502
\(241\) −1989.66 −0.531805 −0.265903 0.964000i \(-0.585670\pi\)
−0.265903 + 0.964000i \(0.585670\pi\)
\(242\) −681.131 −0.180929
\(243\) 14636.3 3.86386
\(244\) 10826.1 2.84045
\(245\) 740.037 0.192976
\(246\) 2493.25 0.646194
\(247\) −927.377 −0.238897
\(248\) −20224.4 −5.17844
\(249\) 7694.15 1.95822
\(250\) −3000.87 −0.759166
\(251\) 3911.56 0.983648 0.491824 0.870695i \(-0.336330\pi\)
0.491824 + 0.870695i \(0.336330\pi\)
\(252\) 2766.92 0.691665
\(253\) 329.512 0.0818824
\(254\) 8583.13 2.12029
\(255\) −1109.36 −0.272435
\(256\) 32233.7 7.86957
\(257\) 117.568 0.0285358 0.0142679 0.999898i \(-0.495458\pi\)
0.0142679 + 0.999898i \(0.495458\pi\)
\(258\) −15821.0 −3.81772
\(259\) 48.3793 0.0116067
\(260\) −2512.88 −0.599393
\(261\) 4414.25 1.04688
\(262\) 7627.51 1.79858
\(263\) −6832.09 −1.60184 −0.800922 0.598769i \(-0.795657\pi\)
−0.800922 + 0.598769i \(0.795657\pi\)
\(264\) 9751.13 2.27326
\(265\) −235.438 −0.0545769
\(266\) 169.362 0.0390386
\(267\) −3793.61 −0.869532
\(268\) −6279.49 −1.43127
\(269\) 760.862 0.172456 0.0862278 0.996275i \(-0.472519\pi\)
0.0862278 + 0.996275i \(0.472519\pi\)
\(270\) 5743.52 1.29459
\(271\) −2203.58 −0.493941 −0.246970 0.969023i \(-0.579435\pi\)
−0.246970 + 0.969023i \(0.579435\pi\)
\(272\) 15641.0 3.48668
\(273\) 775.849 0.172002
\(274\) 14097.9 3.10833
\(275\) 1323.04 0.290117
\(276\) −7122.94 −1.55344
\(277\) 3847.52 0.834567 0.417284 0.908776i \(-0.362982\pi\)
0.417284 + 0.908776i \(0.362982\pi\)
\(278\) 7736.51 1.66908
\(279\) 16893.8 3.62511
\(280\) 303.927 0.0648682
\(281\) 5965.21 1.26639 0.633194 0.773994i \(-0.281744\pi\)
0.633194 + 0.773994i \(0.281744\pi\)
\(282\) 19049.4 4.02261
\(283\) −6968.74 −1.46378 −0.731888 0.681425i \(-0.761360\pi\)
−0.731888 + 0.681425i \(0.761360\pi\)
\(284\) 17694.1 3.69701
\(285\) 414.530 0.0861567
\(286\) 3022.32 0.624873
\(287\) −69.8684 −0.0143700
\(288\) −75617.5 −15.4715
\(289\) −2327.53 −0.473749
\(290\) 732.136 0.148250
\(291\) 6641.36 1.33788
\(292\) −15233.3 −3.05294
\(293\) 4916.72 0.980334 0.490167 0.871629i \(-0.336936\pi\)
0.490167 + 0.871629i \(0.336936\pi\)
\(294\) 19240.2 3.81671
\(295\) −319.920 −0.0631406
\(296\) −2698.04 −0.529798
\(297\) −5163.92 −1.00889
\(298\) 17187.9 3.34116
\(299\) −1462.12 −0.282797
\(300\) −28599.6 −5.50400
\(301\) 443.352 0.0848983
\(302\) 241.373 0.0459916
\(303\) 2599.72 0.492904
\(304\) −5844.52 −1.10265
\(305\) −993.334 −0.186486
\(306\) −21114.0 −3.94447
\(307\) 5505.90 1.02358 0.511788 0.859112i \(-0.328983\pi\)
0.511788 + 0.859112i \(0.328983\pi\)
\(308\) −412.604 −0.0763321
\(309\) −8918.88 −1.64200
\(310\) 2801.96 0.513358
\(311\) 9389.51 1.71199 0.855997 0.516980i \(-0.172944\pi\)
0.855997 + 0.516980i \(0.172944\pi\)
\(312\) −43267.8 −7.85115
\(313\) −6970.63 −1.25880 −0.629398 0.777083i \(-0.716699\pi\)
−0.629398 + 0.777083i \(0.716699\pi\)
\(314\) 13578.4 2.44036
\(315\) −253.875 −0.0454102
\(316\) −12875.9 −2.29218
\(317\) −326.797 −0.0579014 −0.0289507 0.999581i \(-0.509217\pi\)
−0.0289507 + 0.999581i \(0.509217\pi\)
\(318\) −6121.16 −1.07943
\(319\) −658.254 −0.115533
\(320\) −7193.25 −1.25661
\(321\) 7068.22 1.22900
\(322\) 267.019 0.0462123
\(323\) −966.103 −0.166425
\(324\) 64448.0 11.0508
\(325\) −5870.60 −1.00198
\(326\) 10851.5 1.84359
\(327\) 18534.4 3.13443
\(328\) 3896.45 0.655931
\(329\) −533.822 −0.0894546
\(330\) −1350.96 −0.225356
\(331\) −1572.30 −0.261092 −0.130546 0.991442i \(-0.541673\pi\)
−0.130546 + 0.991442i \(0.541673\pi\)
\(332\) 18156.3 3.00137
\(333\) 2253.71 0.370879
\(334\) −11730.8 −1.92180
\(335\) 576.165 0.0939680
\(336\) 4889.56 0.793891
\(337\) −7617.59 −1.23133 −0.615663 0.788010i \(-0.711112\pi\)
−0.615663 + 0.788010i \(0.711112\pi\)
\(338\) −1043.37 −0.167905
\(339\) −12443.2 −1.99358
\(340\) −2617.81 −0.417561
\(341\) −2519.21 −0.400067
\(342\) 7889.60 1.24743
\(343\) −1082.31 −0.170377
\(344\) −24725.0 −3.87524
\(345\) 653.554 0.101989
\(346\) −5007.94 −0.778117
\(347\) −9768.47 −1.51124 −0.755618 0.655013i \(-0.772663\pi\)
−0.755618 + 0.655013i \(0.772663\pi\)
\(348\) 14229.2 2.19186
\(349\) −2950.04 −0.452470 −0.226235 0.974073i \(-0.572642\pi\)
−0.226235 + 0.974073i \(0.572642\pi\)
\(350\) 1072.12 0.163735
\(351\) 22913.4 3.48441
\(352\) 11276.1 1.70744
\(353\) −10041.1 −1.51398 −0.756991 0.653425i \(-0.773331\pi\)
−0.756991 + 0.653425i \(0.773331\pi\)
\(354\) −8317.60 −1.24880
\(355\) −1623.49 −0.242722
\(356\) −8951.97 −1.33273
\(357\) 808.247 0.119823
\(358\) 14975.6 2.21085
\(359\) 982.859 0.144494 0.0722470 0.997387i \(-0.476983\pi\)
0.0722470 + 0.997387i \(0.476983\pi\)
\(360\) 14158.2 2.07278
\(361\) 361.000 0.0526316
\(362\) −14538.3 −2.11082
\(363\) 1214.63 0.175623
\(364\) 1830.81 0.263628
\(365\) 1397.71 0.200436
\(366\) −25825.7 −3.68833
\(367\) −9105.92 −1.29516 −0.647582 0.761996i \(-0.724220\pi\)
−0.647582 + 0.761996i \(0.724220\pi\)
\(368\) −9214.55 −1.30528
\(369\) −3254.76 −0.459176
\(370\) 373.795 0.0525208
\(371\) 171.533 0.0240042
\(372\) 54456.7 7.58992
\(373\) −10470.1 −1.45340 −0.726702 0.686953i \(-0.758948\pi\)
−0.726702 + 0.686953i \(0.758948\pi\)
\(374\) 3148.53 0.435312
\(375\) 5351.29 0.736905
\(376\) 29770.4 4.08322
\(377\) 2920.81 0.399017
\(378\) −4184.56 −0.569393
\(379\) 12680.1 1.71855 0.859277 0.511510i \(-0.170914\pi\)
0.859277 + 0.511510i \(0.170914\pi\)
\(380\) 978.189 0.132053
\(381\) −15305.8 −2.05811
\(382\) −10404.3 −1.39353
\(383\) 3880.72 0.517742 0.258871 0.965912i \(-0.416649\pi\)
0.258871 + 0.965912i \(0.416649\pi\)
\(384\) −104696. −13.9134
\(385\) 37.8578 0.00501147
\(386\) 8939.48 1.17878
\(387\) 20653.2 2.71282
\(388\) 15672.0 2.05058
\(389\) 12623.5 1.64534 0.822671 0.568518i \(-0.192483\pi\)
0.822671 + 0.568518i \(0.192483\pi\)
\(390\) 5994.47 0.778313
\(391\) −1523.17 −0.197008
\(392\) 30068.6 3.87422
\(393\) −13601.7 −1.74584
\(394\) 10613.3 1.35708
\(395\) 1181.41 0.150489
\(396\) −19220.8 −2.43910
\(397\) −8104.35 −1.02455 −0.512274 0.858822i \(-0.671197\pi\)
−0.512274 + 0.858822i \(0.671197\pi\)
\(398\) −7724.92 −0.972902
\(399\) −302.015 −0.0378938
\(400\) −36997.7 −4.62472
\(401\) 3453.29 0.430047 0.215024 0.976609i \(-0.431017\pi\)
0.215024 + 0.976609i \(0.431017\pi\)
\(402\) 14979.7 1.85851
\(403\) 11178.3 1.38171
\(404\) 6134.69 0.755476
\(405\) −5913.33 −0.725520
\(406\) −533.413 −0.0652040
\(407\) −336.074 −0.0409301
\(408\) −45074.6 −5.46943
\(409\) −307.510 −0.0371770 −0.0185885 0.999827i \(-0.505917\pi\)
−0.0185885 + 0.999827i \(0.505917\pi\)
\(410\) −539.827 −0.0650248
\(411\) −25140.0 −3.01719
\(412\) −21046.3 −2.51670
\(413\) 233.084 0.0277708
\(414\) 12438.9 1.47666
\(415\) −1665.90 −0.197051
\(416\) −50034.5 −5.89698
\(417\) −13796.1 −1.62014
\(418\) −1176.50 −0.137666
\(419\) −1856.97 −0.216513 −0.108257 0.994123i \(-0.534527\pi\)
−0.108257 + 0.994123i \(0.534527\pi\)
\(420\) −818.358 −0.0950757
\(421\) 10492.3 1.21464 0.607321 0.794457i \(-0.292244\pi\)
0.607321 + 0.794457i \(0.292244\pi\)
\(422\) 15073.2 1.73874
\(423\) −24867.7 −2.85841
\(424\) −9566.14 −1.09569
\(425\) −6115.74 −0.698017
\(426\) −42209.2 −4.80057
\(427\) 723.713 0.0820210
\(428\) 16679.3 1.88370
\(429\) −5389.55 −0.606550
\(430\) 3425.49 0.384167
\(431\) 4910.65 0.548811 0.274405 0.961614i \(-0.411519\pi\)
0.274405 + 0.961614i \(0.411519\pi\)
\(432\) 144405. 16.0826
\(433\) 5459.77 0.605958 0.302979 0.952997i \(-0.402019\pi\)
0.302979 + 0.952997i \(0.402019\pi\)
\(434\) −2041.43 −0.225787
\(435\) −1305.58 −0.143903
\(436\) 43736.7 4.80415
\(437\) 569.158 0.0623032
\(438\) 36338.9 3.96425
\(439\) 9674.02 1.05174 0.525872 0.850564i \(-0.323739\pi\)
0.525872 + 0.850564i \(0.323739\pi\)
\(440\) −2111.27 −0.228752
\(441\) −25116.8 −2.71210
\(442\) −13970.7 −1.50343
\(443\) −3314.76 −0.355505 −0.177753 0.984075i \(-0.556883\pi\)
−0.177753 + 0.984075i \(0.556883\pi\)
\(444\) 7264.78 0.776512
\(445\) 821.375 0.0874986
\(446\) 6926.06 0.735332
\(447\) −30650.2 −3.24319
\(448\) 5240.79 0.552688
\(449\) −14828.8 −1.55861 −0.779305 0.626644i \(-0.784428\pi\)
−0.779305 + 0.626644i \(0.784428\pi\)
\(450\) 49943.8 5.23194
\(451\) 485.351 0.0506747
\(452\) −29362.9 −3.05556
\(453\) −430.428 −0.0446430
\(454\) 13953.2 1.44241
\(455\) −167.983 −0.0173081
\(456\) 16842.9 1.72969
\(457\) 8906.30 0.911639 0.455820 0.890072i \(-0.349346\pi\)
0.455820 + 0.890072i \(0.349346\pi\)
\(458\) 30885.2 3.15103
\(459\) 23870.2 2.42738
\(460\) 1542.23 0.156319
\(461\) 5846.42 0.590661 0.295331 0.955395i \(-0.404570\pi\)
0.295331 + 0.955395i \(0.404570\pi\)
\(462\) 984.266 0.0991173
\(463\) 18029.8 1.80976 0.904879 0.425669i \(-0.139961\pi\)
0.904879 + 0.425669i \(0.139961\pi\)
\(464\) 18407.6 1.84170
\(465\) −4996.59 −0.498304
\(466\) −5934.38 −0.589924
\(467\) −5105.03 −0.505851 −0.252926 0.967486i \(-0.581393\pi\)
−0.252926 + 0.967486i \(0.581393\pi\)
\(468\) 85286.9 8.42390
\(469\) −419.777 −0.0413294
\(470\) −4124.49 −0.404784
\(471\) −24213.7 −2.36880
\(472\) −12998.7 −1.26762
\(473\) −3079.81 −0.299387
\(474\) 30715.5 2.97639
\(475\) 2285.25 0.220746
\(476\) 1907.26 0.183654
\(477\) 7990.75 0.767026
\(478\) −886.821 −0.0848582
\(479\) −1008.00 −0.0961516 −0.0480758 0.998844i \(-0.515309\pi\)
−0.0480758 + 0.998844i \(0.515309\pi\)
\(480\) 22365.0 2.12671
\(481\) 1491.23 0.141360
\(482\) 11200.1 1.05841
\(483\) −476.160 −0.0448572
\(484\) 2866.21 0.269179
\(485\) −1437.96 −0.134627
\(486\) −82390.3 −7.68992
\(487\) −8551.87 −0.795733 −0.397867 0.917443i \(-0.630249\pi\)
−0.397867 + 0.917443i \(0.630249\pi\)
\(488\) −40360.3 −3.74391
\(489\) −19351.0 −1.78953
\(490\) −4165.81 −0.384065
\(491\) 4870.52 0.447665 0.223832 0.974628i \(-0.428143\pi\)
0.223832 + 0.974628i \(0.428143\pi\)
\(492\) −10491.6 −0.961382
\(493\) 3042.78 0.277971
\(494\) 5220.38 0.475457
\(495\) 1763.58 0.160135
\(496\) 70447.7 6.37741
\(497\) 1182.83 0.106755
\(498\) −43311.8 −3.89729
\(499\) 1737.82 0.155903 0.0779514 0.996957i \(-0.475162\pi\)
0.0779514 + 0.996957i \(0.475162\pi\)
\(500\) 12627.7 1.12946
\(501\) 20918.9 1.86544
\(502\) −22018.9 −1.95767
\(503\) 8680.66 0.769486 0.384743 0.923024i \(-0.374290\pi\)
0.384743 + 0.923024i \(0.374290\pi\)
\(504\) −10315.2 −0.911660
\(505\) −562.879 −0.0495996
\(506\) −1854.89 −0.162964
\(507\) 1860.58 0.162981
\(508\) −36118.0 −3.15448
\(509\) 11094.7 0.966141 0.483071 0.875581i \(-0.339521\pi\)
0.483071 + 0.875581i \(0.339521\pi\)
\(510\) 6244.79 0.542204
\(511\) −1018.33 −0.0881568
\(512\) −98012.0 −8.46008
\(513\) −8919.50 −0.767652
\(514\) −661.812 −0.0567924
\(515\) 1931.07 0.165230
\(516\) 66575.0 5.67985
\(517\) 3708.27 0.315454
\(518\) −272.336 −0.0230999
\(519\) 8930.39 0.755300
\(520\) 9368.15 0.790040
\(521\) 17892.1 1.50455 0.752273 0.658852i \(-0.228958\pi\)
0.752273 + 0.658852i \(0.228958\pi\)
\(522\) −24848.6 −2.08351
\(523\) −660.395 −0.0552143 −0.0276071 0.999619i \(-0.508789\pi\)
−0.0276071 + 0.999619i \(0.508789\pi\)
\(524\) −32096.7 −2.67586
\(525\) −1911.85 −0.158933
\(526\) 38459.1 3.18802
\(527\) 11645.0 0.962554
\(528\) −33966.0 −2.79959
\(529\) −11269.7 −0.926248
\(530\) 1325.33 0.108620
\(531\) 10858.0 0.887381
\(532\) −712.680 −0.0580800
\(533\) −2153.60 −0.175015
\(534\) 21354.9 1.73056
\(535\) −1530.38 −0.123671
\(536\) 23410.3 1.88651
\(537\) −26705.1 −2.14602
\(538\) −4283.03 −0.343224
\(539\) 3745.42 0.299307
\(540\) −24168.8 −1.92604
\(541\) −4518.62 −0.359095 −0.179548 0.983749i \(-0.557463\pi\)
−0.179548 + 0.983749i \(0.557463\pi\)
\(542\) 12404.4 0.983049
\(543\) 25925.4 2.04892
\(544\) −52123.8 −4.10807
\(545\) −4012.99 −0.315409
\(546\) −4367.40 −0.342321
\(547\) 1450.22 0.113358 0.0566790 0.998392i \(-0.481949\pi\)
0.0566790 + 0.998392i \(0.481949\pi\)
\(548\) −59324.1 −4.62445
\(549\) 33713.6 2.62088
\(550\) −7447.63 −0.577396
\(551\) −1136.98 −0.0879077
\(552\) 26554.7 2.04754
\(553\) −860.742 −0.0661889
\(554\) −21658.4 −1.66097
\(555\) −666.569 −0.0509807
\(556\) −32555.4 −2.48319
\(557\) 9000.42 0.684668 0.342334 0.939578i \(-0.388783\pi\)
0.342334 + 0.939578i \(0.388783\pi\)
\(558\) −95098.3 −7.21475
\(559\) 13665.8 1.03399
\(560\) −1058.67 −0.0798871
\(561\) −5614.61 −0.422547
\(562\) −33579.3 −2.52039
\(563\) 15050.8 1.12667 0.563335 0.826228i \(-0.309518\pi\)
0.563335 + 0.826228i \(0.309518\pi\)
\(564\) −80160.3 −5.98467
\(565\) 2694.15 0.200608
\(566\) 39228.3 2.91323
\(567\) 4308.28 0.319102
\(568\) −65964.5 −4.87290
\(569\) −15142.9 −1.11568 −0.557840 0.829948i \(-0.688370\pi\)
−0.557840 + 0.829948i \(0.688370\pi\)
\(570\) −2333.47 −0.171471
\(571\) 19227.6 1.40919 0.704596 0.709608i \(-0.251128\pi\)
0.704596 + 0.709608i \(0.251128\pi\)
\(572\) −12718.0 −0.929661
\(573\) 18553.4 1.35267
\(574\) 393.302 0.0285995
\(575\) 3602.95 0.261310
\(576\) 244138. 17.6604
\(577\) 13397.4 0.966625 0.483313 0.875448i \(-0.339433\pi\)
0.483313 + 0.875448i \(0.339433\pi\)
\(578\) 13102.1 0.942864
\(579\) −15941.3 −1.14421
\(580\) −3080.84 −0.220561
\(581\) 1213.73 0.0866676
\(582\) −37385.4 −2.66267
\(583\) −1191.58 −0.0846489
\(584\) 56790.4 4.02398
\(585\) −7825.37 −0.553058
\(586\) −27677.1 −1.95108
\(587\) 9119.43 0.641225 0.320613 0.947210i \(-0.396111\pi\)
0.320613 + 0.947210i \(0.396111\pi\)
\(588\) −80963.2 −5.67835
\(589\) −4351.36 −0.304405
\(590\) 1800.89 0.125663
\(591\) −18926.1 −1.31729
\(592\) 9398.05 0.652462
\(593\) 21237.3 1.47068 0.735340 0.677698i \(-0.237022\pi\)
0.735340 + 0.677698i \(0.237022\pi\)
\(594\) 29068.7 2.00791
\(595\) −174.998 −0.0120575
\(596\) −72326.9 −4.97085
\(597\) 13775.4 0.944373
\(598\) 8230.52 0.562828
\(599\) 18566.7 1.26647 0.633235 0.773960i \(-0.281727\pi\)
0.633235 + 0.773960i \(0.281727\pi\)
\(600\) 106621. 7.25463
\(601\) −14151.5 −0.960485 −0.480242 0.877136i \(-0.659451\pi\)
−0.480242 + 0.877136i \(0.659451\pi\)
\(602\) −2495.71 −0.168966
\(603\) −19555.0 −1.32063
\(604\) −1015.70 −0.0684245
\(605\) −262.985 −0.0176725
\(606\) −14634.3 −0.980986
\(607\) −16435.0 −1.09897 −0.549486 0.835503i \(-0.685176\pi\)
−0.549486 + 0.835503i \(0.685176\pi\)
\(608\) 19476.9 1.29917
\(609\) 951.207 0.0632920
\(610\) 5591.66 0.371147
\(611\) −16454.4 −1.08948
\(612\) 88848.3 5.86843
\(613\) −11170.1 −0.735983 −0.367992 0.929829i \(-0.619954\pi\)
−0.367992 + 0.929829i \(0.619954\pi\)
\(614\) −30993.7 −2.03714
\(615\) 962.645 0.0631180
\(616\) 1538.21 0.100611
\(617\) −12177.1 −0.794541 −0.397271 0.917701i \(-0.630043\pi\)
−0.397271 + 0.917701i \(0.630043\pi\)
\(618\) 50206.0 3.26793
\(619\) 14948.4 0.970642 0.485321 0.874336i \(-0.338703\pi\)
0.485321 + 0.874336i \(0.338703\pi\)
\(620\) −11790.7 −0.763753
\(621\) −14062.6 −0.908716
\(622\) −52855.3 −3.40724
\(623\) −598.429 −0.0384840
\(624\) 150715. 9.66893
\(625\) 13875.9 0.888057
\(626\) 39239.0 2.50528
\(627\) 2097.99 0.133629
\(628\) −57138.2 −3.63067
\(629\) 1553.50 0.0984772
\(630\) 1429.11 0.0903762
\(631\) −2802.70 −0.176820 −0.0884102 0.996084i \(-0.528179\pi\)
−0.0884102 + 0.996084i \(0.528179\pi\)
\(632\) 48002.2 3.02124
\(633\) −26879.1 −1.68776
\(634\) 1839.60 0.115236
\(635\) 3313.95 0.207102
\(636\) 25758.0 1.60593
\(637\) −16619.2 −1.03372
\(638\) 3705.43 0.229936
\(639\) 55101.2 3.41122
\(640\) 22668.3 1.40007
\(641\) 793.890 0.0489185 0.0244593 0.999701i \(-0.492214\pi\)
0.0244593 + 0.999701i \(0.492214\pi\)
\(642\) −39788.3 −2.44598
\(643\) 4344.62 0.266462 0.133231 0.991085i \(-0.457465\pi\)
0.133231 + 0.991085i \(0.457465\pi\)
\(644\) −1123.62 −0.0687529
\(645\) −6108.49 −0.372902
\(646\) 5438.37 0.331223
\(647\) −4860.64 −0.295350 −0.147675 0.989036i \(-0.547179\pi\)
−0.147675 + 0.989036i \(0.547179\pi\)
\(648\) −240266. −14.5656
\(649\) −1619.16 −0.0979313
\(650\) 33046.7 1.99415
\(651\) 3640.37 0.219166
\(652\) −45663.5 −2.74283
\(653\) −20401.8 −1.22264 −0.611321 0.791382i \(-0.709362\pi\)
−0.611321 + 0.791382i \(0.709362\pi\)
\(654\) −104334. −6.23819
\(655\) 2944.98 0.175680
\(656\) −13572.5 −0.807798
\(657\) −47437.9 −2.81694
\(658\) 3004.98 0.178034
\(659\) 22495.6 1.32975 0.664875 0.746955i \(-0.268485\pi\)
0.664875 + 0.746955i \(0.268485\pi\)
\(660\) 5684.85 0.335276
\(661\) −3331.21 −0.196020 −0.0980098 0.995185i \(-0.531248\pi\)
−0.0980098 + 0.995185i \(0.531248\pi\)
\(662\) 8850.75 0.519629
\(663\) 24913.2 1.45935
\(664\) −67687.6 −3.95601
\(665\) 65.3908 0.00381315
\(666\) −12686.6 −0.738129
\(667\) −1792.58 −0.104062
\(668\) 49363.4 2.85917
\(669\) −12350.9 −0.713770
\(670\) −3243.34 −0.187017
\(671\) −5027.38 −0.289240
\(672\) −16294.5 −0.935378
\(673\) −24944.3 −1.42872 −0.714361 0.699777i \(-0.753283\pi\)
−0.714361 + 0.699777i \(0.753283\pi\)
\(674\) 42880.9 2.45061
\(675\) −56463.3 −3.21967
\(676\) 4390.52 0.249802
\(677\) 23004.0 1.30593 0.652964 0.757389i \(-0.273525\pi\)
0.652964 + 0.757389i \(0.273525\pi\)
\(678\) 70045.2 3.96765
\(679\) 1047.65 0.0592124
\(680\) 9759.35 0.550374
\(681\) −24882.0 −1.40012
\(682\) 14181.1 0.796220
\(683\) 9990.42 0.559697 0.279848 0.960044i \(-0.409716\pi\)
0.279848 + 0.960044i \(0.409716\pi\)
\(684\) −33199.6 −1.85588
\(685\) 5443.19 0.303611
\(686\) 6092.52 0.339086
\(687\) −55076.0 −3.05863
\(688\) 86124.5 4.77248
\(689\) 5287.30 0.292352
\(690\) −3678.98 −0.202980
\(691\) −4683.53 −0.257844 −0.128922 0.991655i \(-0.541152\pi\)
−0.128922 + 0.991655i \(0.541152\pi\)
\(692\) 21073.5 1.15765
\(693\) −1284.89 −0.0704314
\(694\) 54988.5 3.00769
\(695\) 2987.07 0.163030
\(696\) −53047.3 −2.88901
\(697\) −2243.54 −0.121922
\(698\) 16606.3 0.900514
\(699\) 10582.5 0.572626
\(700\) −4511.49 −0.243598
\(701\) −30340.8 −1.63474 −0.817372 0.576110i \(-0.804570\pi\)
−0.817372 + 0.576110i \(0.804570\pi\)
\(702\) −128984. −6.93473
\(703\) −580.491 −0.0311432
\(704\) −36405.9 −1.94901
\(705\) 7354.98 0.392914
\(706\) 56523.4 3.01315
\(707\) 410.097 0.0218151
\(708\) 35000.6 1.85792
\(709\) −14079.4 −0.745785 −0.372893 0.927874i \(-0.621634\pi\)
−0.372893 + 0.927874i \(0.621634\pi\)
\(710\) 9138.95 0.483069
\(711\) −40097.0 −2.11498
\(712\) 33373.4 1.75663
\(713\) −6860.41 −0.360343
\(714\) −4549.77 −0.238475
\(715\) 1166.92 0.0610355
\(716\) −63017.5 −3.28921
\(717\) 1581.42 0.0823699
\(718\) −5532.70 −0.287574
\(719\) 21941.5 1.13808 0.569041 0.822309i \(-0.307315\pi\)
0.569041 + 0.822309i \(0.307315\pi\)
\(720\) −49317.1 −2.55269
\(721\) −1406.92 −0.0726721
\(722\) −2032.14 −0.104748
\(723\) −19972.6 −1.02737
\(724\) 61177.4 3.14039
\(725\) −7197.48 −0.368700
\(726\) −6837.35 −0.349529
\(727\) 10903.1 0.556224 0.278112 0.960549i \(-0.410291\pi\)
0.278112 + 0.960549i \(0.410291\pi\)
\(728\) −6825.36 −0.347479
\(729\) 73462.4 3.73228
\(730\) −7867.94 −0.398912
\(731\) 14236.4 0.720319
\(732\) 108675. 5.48735
\(733\) 33298.0 1.67788 0.838942 0.544220i \(-0.183174\pi\)
0.838942 + 0.544220i \(0.183174\pi\)
\(734\) 51258.9 2.57766
\(735\) 7428.66 0.372803
\(736\) 30707.6 1.53790
\(737\) 2916.04 0.145745
\(738\) 18321.7 0.913861
\(739\) −797.502 −0.0396977 −0.0198489 0.999803i \(-0.506319\pi\)
−0.0198489 + 0.999803i \(0.506319\pi\)
\(740\) −1572.94 −0.0781383
\(741\) −9309.22 −0.461515
\(742\) −965.594 −0.0477737
\(743\) −30701.6 −1.51593 −0.757963 0.652298i \(-0.773805\pi\)
−0.757963 + 0.652298i \(0.773805\pi\)
\(744\) −203018. −10.0040
\(745\) 6636.24 0.326353
\(746\) 58937.9 2.89259
\(747\) 56540.5 2.76936
\(748\) −13249.1 −0.647639
\(749\) 1114.99 0.0543936
\(750\) −30123.4 −1.46660
\(751\) 4727.79 0.229719 0.114860 0.993382i \(-0.463358\pi\)
0.114860 + 0.993382i \(0.463358\pi\)
\(752\) −103699. −5.02861
\(753\) 39265.1 1.90027
\(754\) −16441.8 −0.794131
\(755\) 93.1943 0.00449230
\(756\) 17608.7 0.847120
\(757\) 18149.4 0.871402 0.435701 0.900092i \(-0.356501\pi\)
0.435701 + 0.900092i \(0.356501\pi\)
\(758\) −71378.5 −3.42030
\(759\) 3307.72 0.158185
\(760\) −3646.74 −0.174054
\(761\) 32588.1 1.55232 0.776162 0.630533i \(-0.217164\pi\)
0.776162 + 0.630533i \(0.217164\pi\)
\(762\) 86159.4 4.09610
\(763\) 2923.75 0.138725
\(764\) 43781.3 2.07324
\(765\) −8152.14 −0.385283
\(766\) −21845.3 −1.03042
\(767\) 7184.53 0.338225
\(768\) 323570. 15.2029
\(769\) 8274.90 0.388037 0.194019 0.980998i \(-0.437848\pi\)
0.194019 + 0.980998i \(0.437848\pi\)
\(770\) −213.109 −0.00997391
\(771\) 1180.17 0.0551270
\(772\) −37617.5 −1.75373
\(773\) 26523.6 1.23414 0.617069 0.786909i \(-0.288320\pi\)
0.617069 + 0.786909i \(0.288320\pi\)
\(774\) −116261. −5.39910
\(775\) −27545.5 −1.27673
\(776\) −58425.9 −2.70279
\(777\) 485.642 0.0224225
\(778\) −71060.1 −3.27459
\(779\) 838.333 0.0385577
\(780\) −25224.9 −1.15794
\(781\) −8216.70 −0.376462
\(782\) 8574.21 0.392088
\(783\) 28092.3 1.28217
\(784\) −104738. −4.77121
\(785\) 5242.63 0.238366
\(786\) 76566.7 3.47461
\(787\) −8455.16 −0.382965 −0.191483 0.981496i \(-0.561330\pi\)
−0.191483 + 0.981496i \(0.561330\pi\)
\(788\) −44660.9 −2.01901
\(789\) −68582.1 −3.09453
\(790\) −6650.38 −0.299506
\(791\) −1962.88 −0.0882324
\(792\) 71656.3 3.21489
\(793\) 22307.6 0.998947
\(794\) 45620.9 2.03907
\(795\) −2363.38 −0.105435
\(796\) 32506.6 1.44744
\(797\) 15760.8 0.700473 0.350236 0.936661i \(-0.386101\pi\)
0.350236 + 0.936661i \(0.386101\pi\)
\(798\) 1700.10 0.0754170
\(799\) −17141.5 −0.758977
\(800\) 123295. 5.44893
\(801\) −27877.3 −1.22971
\(802\) −19439.2 −0.855887
\(803\) 7073.96 0.310877
\(804\) −63035.0 −2.76502
\(805\) 103.096 0.00451386
\(806\) −62924.5 −2.74990
\(807\) 7637.70 0.333160
\(808\) −22870.5 −0.995767
\(809\) −2909.63 −0.126449 −0.0632244 0.997999i \(-0.520138\pi\)
−0.0632244 + 0.997999i \(0.520138\pi\)
\(810\) 33287.2 1.44394
\(811\) 22893.2 0.991233 0.495616 0.868542i \(-0.334942\pi\)
0.495616 + 0.868542i \(0.334942\pi\)
\(812\) 2244.61 0.0970079
\(813\) −22120.0 −0.954223
\(814\) 1891.82 0.0814599
\(815\) 4189.79 0.180076
\(816\) 157008. 6.73576
\(817\) −5319.67 −0.227799
\(818\) 1731.03 0.0739902
\(819\) 5701.33 0.243249
\(820\) 2271.60 0.0967412
\(821\) −27306.7 −1.16079 −0.580397 0.814334i \(-0.697103\pi\)
−0.580397 + 0.814334i \(0.697103\pi\)
\(822\) 141518. 6.00486
\(823\) 11324.7 0.479653 0.239827 0.970816i \(-0.422909\pi\)
0.239827 + 0.970816i \(0.422909\pi\)
\(824\) 78461.9 3.31717
\(825\) 13281.0 0.560465
\(826\) −1312.07 −0.0552699
\(827\) −44894.9 −1.88772 −0.943862 0.330340i \(-0.892837\pi\)
−0.943862 + 0.330340i \(0.892837\pi\)
\(828\) −52342.9 −2.19691
\(829\) −13391.2 −0.561034 −0.280517 0.959849i \(-0.590506\pi\)
−0.280517 + 0.959849i \(0.590506\pi\)
\(830\) 9377.68 0.392173
\(831\) 38622.3 1.61226
\(832\) 161541. 6.73127
\(833\) −17313.2 −0.720128
\(834\) 77660.8 3.22443
\(835\) −4529.26 −0.187715
\(836\) 4950.73 0.204814
\(837\) 107512. 4.43987
\(838\) 10453.3 0.430909
\(839\) −21482.9 −0.883994 −0.441997 0.897016i \(-0.645730\pi\)
−0.441997 + 0.897016i \(0.645730\pi\)
\(840\) 3050.88 0.125316
\(841\) −20808.0 −0.853173
\(842\) −59063.2 −2.41740
\(843\) 59880.1 2.44648
\(844\) −63428.1 −2.58683
\(845\) −402.845 −0.0164004
\(846\) 139985. 5.68886
\(847\) 191.603 0.00777280
\(848\) 33321.7 1.34938
\(849\) −69953.8 −2.82781
\(850\) 34426.7 1.38921
\(851\) −915.211 −0.0368661
\(852\) 177617. 7.14210
\(853\) 34746.6 1.39473 0.697363 0.716718i \(-0.254357\pi\)
0.697363 + 0.716718i \(0.254357\pi\)
\(854\) −4073.92 −0.163240
\(855\) 3046.18 0.121845
\(856\) −62181.1 −2.48284
\(857\) −4839.63 −0.192904 −0.0964520 0.995338i \(-0.530749\pi\)
−0.0964520 + 0.995338i \(0.530749\pi\)
\(858\) 30338.8 1.20717
\(859\) 33496.2 1.33047 0.665235 0.746634i \(-0.268331\pi\)
0.665235 + 0.746634i \(0.268331\pi\)
\(860\) −14414.5 −0.571548
\(861\) −701.354 −0.0277608
\(862\) −27642.9 −1.09225
\(863\) 19334.5 0.762636 0.381318 0.924444i \(-0.375470\pi\)
0.381318 + 0.924444i \(0.375470\pi\)
\(864\) −481231. −18.9488
\(865\) −1933.57 −0.0760038
\(866\) −30734.0 −1.20599
\(867\) −23364.3 −0.915216
\(868\) 8590.37 0.335917
\(869\) 5979.27 0.233409
\(870\) 7349.35 0.286398
\(871\) −12939.1 −0.503358
\(872\) −163053. −6.33218
\(873\) 48804.1 1.89206
\(874\) −3203.89 −0.123997
\(875\) 844.148 0.0326142
\(876\) −152915. −5.89785
\(877\) −7181.41 −0.276510 −0.138255 0.990397i \(-0.544149\pi\)
−0.138255 + 0.990397i \(0.544149\pi\)
\(878\) −54456.8 −2.09320
\(879\) 49355.1 1.89387
\(880\) 7354.17 0.281715
\(881\) −39644.4 −1.51607 −0.758033 0.652216i \(-0.773839\pi\)
−0.758033 + 0.652216i \(0.773839\pi\)
\(882\) 141387. 5.39767
\(883\) −7245.50 −0.276139 −0.138069 0.990423i \(-0.544090\pi\)
−0.138069 + 0.990423i \(0.544090\pi\)
\(884\) 58789.0 2.23675
\(885\) −3211.43 −0.121979
\(886\) 18659.4 0.707532
\(887\) −32690.9 −1.23749 −0.618746 0.785591i \(-0.712359\pi\)
−0.618746 + 0.785591i \(0.712359\pi\)
\(888\) −27083.5 −1.02349
\(889\) −2414.45 −0.0910888
\(890\) −4623.67 −0.174141
\(891\) −29928.1 −1.12528
\(892\) −29145.0 −1.09400
\(893\) 6405.20 0.240024
\(894\) 172536. 6.45465
\(895\) 5782.07 0.215948
\(896\) −16515.4 −0.615783
\(897\) −14677.0 −0.546324
\(898\) 83474.3 3.10197
\(899\) 13704.8 0.508431
\(900\) −210164. −7.78386
\(901\) 5508.09 0.203664
\(902\) −2732.13 −0.100854
\(903\) 4450.47 0.164011
\(904\) 109466. 4.02743
\(905\) −5613.24 −0.206177
\(906\) 2422.96 0.0888492
\(907\) 50455.7 1.84714 0.923568 0.383434i \(-0.125259\pi\)
0.923568 + 0.383434i \(0.125259\pi\)
\(908\) −58715.3 −2.14597
\(909\) 19104.0 0.697075
\(910\) 945.609 0.0344468
\(911\) 13736.4 0.499569 0.249785 0.968301i \(-0.419640\pi\)
0.249785 + 0.968301i \(0.419640\pi\)
\(912\) −58668.6 −2.13017
\(913\) −8431.34 −0.305626
\(914\) −50135.2 −1.81436
\(915\) −9971.31 −0.360264
\(916\) −129966. −4.68798
\(917\) −2145.63 −0.0772682
\(918\) −134370. −4.83101
\(919\) 2873.98 0.103160 0.0515800 0.998669i \(-0.483574\pi\)
0.0515800 + 0.998669i \(0.483574\pi\)
\(920\) −5749.50 −0.206039
\(921\) 55269.4 1.97740
\(922\) −32910.6 −1.17554
\(923\) 36459.3 1.30019
\(924\) −4141.81 −0.147463
\(925\) −3674.70 −0.130620
\(926\) −101493. −3.60181
\(927\) −65540.4 −2.32215
\(928\) −61343.3 −2.16993
\(929\) −37090.3 −1.30990 −0.654948 0.755674i \(-0.727310\pi\)
−0.654948 + 0.755674i \(0.727310\pi\)
\(930\) 28126.7 0.991734
\(931\) 6469.36 0.227739
\(932\) 24972.0 0.877666
\(933\) 94254.0 3.30733
\(934\) 28737.1 1.00675
\(935\) 1215.65 0.0425198
\(936\) −317954. −11.1033
\(937\) 33019.5 1.15123 0.575614 0.817721i \(-0.304763\pi\)
0.575614 + 0.817721i \(0.304763\pi\)
\(938\) 2363.00 0.0822546
\(939\) −69972.8 −2.43182
\(940\) 17355.9 0.602222
\(941\) −17507.5 −0.606513 −0.303257 0.952909i \(-0.598074\pi\)
−0.303257 + 0.952909i \(0.598074\pi\)
\(942\) 136303. 4.71443
\(943\) 1321.73 0.0456430
\(944\) 45278.4 1.56111
\(945\) −1615.66 −0.0556163
\(946\) 17336.8 0.595844
\(947\) −15368.9 −0.527373 −0.263687 0.964608i \(-0.584938\pi\)
−0.263687 + 0.964608i \(0.584938\pi\)
\(948\) −129252. −4.42816
\(949\) −31388.6 −1.07368
\(950\) −12864.1 −0.439333
\(951\) −3280.46 −0.111857
\(952\) −7110.37 −0.242068
\(953\) 19354.5 0.657875 0.328938 0.944352i \(-0.393309\pi\)
0.328938 + 0.944352i \(0.393309\pi\)
\(954\) −44981.4 −1.52655
\(955\) −4017.09 −0.136115
\(956\) 3731.76 0.126249
\(957\) −6607.70 −0.223194
\(958\) 5674.21 0.191363
\(959\) −3965.75 −0.133536
\(960\) −72207.5 −2.42759
\(961\) 22658.6 0.760587
\(962\) −8394.42 −0.281338
\(963\) 51940.9 1.73808
\(964\) −47130.4 −1.57466
\(965\) 3451.54 0.115139
\(966\) 2680.39 0.0892756
\(967\) −8986.83 −0.298859 −0.149430 0.988772i \(-0.547744\pi\)
−0.149430 + 0.988772i \(0.547744\pi\)
\(968\) −10685.4 −0.354795
\(969\) −9697.96 −0.321510
\(970\) 8094.53 0.267938
\(971\) −16014.7 −0.529284 −0.264642 0.964347i \(-0.585254\pi\)
−0.264642 + 0.964347i \(0.585254\pi\)
\(972\) 346700. 11.4408
\(973\) −2176.29 −0.0717047
\(974\) 48140.1 1.58368
\(975\) −58930.4 −1.93568
\(976\) 140587. 4.61073
\(977\) 42465.7 1.39058 0.695291 0.718728i \(-0.255276\pi\)
0.695291 + 0.718728i \(0.255276\pi\)
\(978\) 108930. 3.56156
\(979\) 4157.08 0.135711
\(980\) 17529.8 0.571397
\(981\) 136200. 4.43277
\(982\) −27417.0 −0.890950
\(983\) −9815.35 −0.318475 −0.159238 0.987240i \(-0.550904\pi\)
−0.159238 + 0.987240i \(0.550904\pi\)
\(984\) 39113.4 1.26716
\(985\) 4097.79 0.132555
\(986\) −17128.4 −0.553223
\(987\) −5358.62 −0.172813
\(988\) −21967.5 −0.707366
\(989\) −8387.07 −0.269659
\(990\) −9927.50 −0.318704
\(991\) −1750.83 −0.0561220 −0.0280610 0.999606i \(-0.508933\pi\)
−0.0280610 + 0.999606i \(0.508933\pi\)
\(992\) −234767. −7.51398
\(993\) −15783.1 −0.504392
\(994\) −6658.37 −0.212465
\(995\) −2982.59 −0.0950297
\(996\) 182257. 5.79823
\(997\) −4947.66 −0.157166 −0.0785828 0.996908i \(-0.525039\pi\)
−0.0785828 + 0.996908i \(0.525039\pi\)
\(998\) −9782.51 −0.310280
\(999\) 14342.6 0.454235
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 209.4.a.c.1.1 13
3.2 odd 2 1881.4.a.k.1.13 13
11.10 odd 2 2299.4.a.k.1.13 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.4.a.c.1.1 13 1.1 even 1 trivial
1881.4.a.k.1.13 13 3.2 odd 2
2299.4.a.k.1.13 13 11.10 odd 2