Properties

Label 209.4.a.c.1.10
Level $209$
Weight $4$
Character 209.1
Self dual yes
Analytic conductor $12.331$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,4,Mod(1,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 209.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3313991912\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 2 x^{12} - 91 x^{11} + 176 x^{10} + 3117 x^{9} - 5786 x^{8} - 49725 x^{7} + 87196 x^{6} + \cdots - 86016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-3.02090\) of defining polynomial
Character \(\chi\) \(=\) 209.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.02090 q^{2} -8.02896 q^{3} +1.12583 q^{4} -20.1089 q^{5} -24.2547 q^{6} +33.1653 q^{7} -20.7662 q^{8} +37.4642 q^{9} -60.7468 q^{10} -11.0000 q^{11} -9.03920 q^{12} +53.7348 q^{13} +100.189 q^{14} +161.453 q^{15} -71.7391 q^{16} +27.9300 q^{17} +113.175 q^{18} -19.0000 q^{19} -22.6391 q^{20} -266.283 q^{21} -33.2299 q^{22} +104.096 q^{23} +166.731 q^{24} +279.366 q^{25} +162.327 q^{26} -84.0162 q^{27} +37.3383 q^{28} +82.7061 q^{29} +487.734 q^{30} -11.0218 q^{31} -50.5871 q^{32} +88.3185 q^{33} +84.3736 q^{34} -666.916 q^{35} +42.1781 q^{36} +63.2850 q^{37} -57.3971 q^{38} -431.435 q^{39} +417.584 q^{40} -100.073 q^{41} -804.413 q^{42} -58.5957 q^{43} -12.3841 q^{44} -753.361 q^{45} +314.463 q^{46} -322.672 q^{47} +575.990 q^{48} +756.937 q^{49} +843.937 q^{50} -224.248 q^{51} +60.4960 q^{52} +478.924 q^{53} -253.804 q^{54} +221.197 q^{55} -688.717 q^{56} +152.550 q^{57} +249.847 q^{58} -717.320 q^{59} +181.768 q^{60} -598.511 q^{61} -33.2956 q^{62} +1242.51 q^{63} +421.094 q^{64} -1080.55 q^{65} +266.801 q^{66} +652.627 q^{67} +31.4443 q^{68} -835.782 q^{69} -2014.69 q^{70} +577.080 q^{71} -777.987 q^{72} +1102.66 q^{73} +191.178 q^{74} -2243.02 q^{75} -21.3907 q^{76} -364.818 q^{77} -1303.32 q^{78} +1026.47 q^{79} +1442.59 q^{80} -336.969 q^{81} -302.312 q^{82} +1307.91 q^{83} -299.788 q^{84} -561.640 q^{85} -177.012 q^{86} -664.044 q^{87} +228.428 q^{88} +5.18117 q^{89} -2275.83 q^{90} +1782.13 q^{91} +117.194 q^{92} +88.4932 q^{93} -974.759 q^{94} +382.068 q^{95} +406.162 q^{96} +336.438 q^{97} +2286.63 q^{98} -412.106 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - 2 q^{2} + 11 q^{3} + 82 q^{4} + 8 q^{5} + 13 q^{6} + 39 q^{7} + 6 q^{8} + 156 q^{9} + 124 q^{10} - 143 q^{11} + 247 q^{12} - 23 q^{13} + 47 q^{14} + 278 q^{15} + 526 q^{16} + 73 q^{17} - 165 q^{18}+ \cdots - 1716 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.02090 1.06805 0.534024 0.845469i \(-0.320679\pi\)
0.534024 + 0.845469i \(0.320679\pi\)
\(3\) −8.02896 −1.54517 −0.772587 0.634909i \(-0.781037\pi\)
−0.772587 + 0.634909i \(0.781037\pi\)
\(4\) 1.12583 0.140728
\(5\) −20.1089 −1.79859 −0.899295 0.437342i \(-0.855920\pi\)
−0.899295 + 0.437342i \(0.855920\pi\)
\(6\) −24.2547 −1.65032
\(7\) 33.1653 1.79076 0.895379 0.445305i \(-0.146905\pi\)
0.895379 + 0.445305i \(0.146905\pi\)
\(8\) −20.7662 −0.917744
\(9\) 37.4642 1.38756
\(10\) −60.7468 −1.92098
\(11\) −11.0000 −0.301511
\(12\) −9.03920 −0.217449
\(13\) 53.7348 1.14641 0.573206 0.819411i \(-0.305699\pi\)
0.573206 + 0.819411i \(0.305699\pi\)
\(14\) 100.189 1.91262
\(15\) 161.453 2.77914
\(16\) −71.7391 −1.12092
\(17\) 27.9300 0.398471 0.199236 0.979952i \(-0.436154\pi\)
0.199236 + 0.979952i \(0.436154\pi\)
\(18\) 113.175 1.48198
\(19\) −19.0000 −0.229416
\(20\) −22.6391 −0.253112
\(21\) −266.283 −2.76703
\(22\) −33.2299 −0.322029
\(23\) 104.096 0.943718 0.471859 0.881674i \(-0.343583\pi\)
0.471859 + 0.881674i \(0.343583\pi\)
\(24\) 166.731 1.41807
\(25\) 279.366 2.23493
\(26\) 162.327 1.22442
\(27\) −84.0162 −0.598849
\(28\) 37.3383 0.252010
\(29\) 82.7061 0.529591 0.264795 0.964305i \(-0.414696\pi\)
0.264795 + 0.964305i \(0.414696\pi\)
\(30\) 487.734 2.96825
\(31\) −11.0218 −0.0638570 −0.0319285 0.999490i \(-0.510165\pi\)
−0.0319285 + 0.999490i \(0.510165\pi\)
\(32\) −50.5871 −0.279457
\(33\) 88.3185 0.465887
\(34\) 84.3736 0.425587
\(35\) −666.916 −3.22084
\(36\) 42.1781 0.195269
\(37\) 63.2850 0.281189 0.140594 0.990067i \(-0.455099\pi\)
0.140594 + 0.990067i \(0.455099\pi\)
\(38\) −57.3971 −0.245027
\(39\) −431.435 −1.77141
\(40\) 417.584 1.65065
\(41\) −100.073 −0.381191 −0.190596 0.981669i \(-0.561042\pi\)
−0.190596 + 0.981669i \(0.561042\pi\)
\(42\) −804.413 −2.95532
\(43\) −58.5957 −0.207808 −0.103904 0.994587i \(-0.533134\pi\)
−0.103904 + 0.994587i \(0.533134\pi\)
\(44\) −12.3841 −0.0424311
\(45\) −753.361 −2.49565
\(46\) 314.463 1.00794
\(47\) −322.672 −1.00142 −0.500708 0.865616i \(-0.666927\pi\)
−0.500708 + 0.865616i \(0.666927\pi\)
\(48\) 575.990 1.73202
\(49\) 756.937 2.20681
\(50\) 843.937 2.38701
\(51\) −224.248 −0.615707
\(52\) 60.4960 0.161332
\(53\) 478.924 1.24123 0.620616 0.784115i \(-0.286883\pi\)
0.620616 + 0.784115i \(0.286883\pi\)
\(54\) −253.804 −0.639600
\(55\) 221.197 0.542296
\(56\) −688.717 −1.64346
\(57\) 152.550 0.354487
\(58\) 249.847 0.565629
\(59\) −717.320 −1.58283 −0.791416 0.611278i \(-0.790656\pi\)
−0.791416 + 0.611278i \(0.790656\pi\)
\(60\) 181.768 0.391103
\(61\) −598.511 −1.25625 −0.628126 0.778111i \(-0.716178\pi\)
−0.628126 + 0.778111i \(0.716178\pi\)
\(62\) −33.2956 −0.0682024
\(63\) 1242.51 2.48479
\(64\) 421.094 0.822450
\(65\) −1080.55 −2.06193
\(66\) 266.801 0.497590
\(67\) 652.627 1.19002 0.595008 0.803720i \(-0.297149\pi\)
0.595008 + 0.803720i \(0.297149\pi\)
\(68\) 31.4443 0.0560761
\(69\) −835.782 −1.45821
\(70\) −2014.69 −3.44001
\(71\) 577.080 0.964603 0.482301 0.876005i \(-0.339801\pi\)
0.482301 + 0.876005i \(0.339801\pi\)
\(72\) −777.987 −1.27343
\(73\) 1102.66 1.76790 0.883952 0.467577i \(-0.154873\pi\)
0.883952 + 0.467577i \(0.154873\pi\)
\(74\) 191.178 0.300323
\(75\) −2243.02 −3.45335
\(76\) −21.3907 −0.0322853
\(77\) −364.818 −0.539934
\(78\) −1303.32 −1.89195
\(79\) 1026.47 1.46186 0.730929 0.682453i \(-0.239087\pi\)
0.730929 + 0.682453i \(0.239087\pi\)
\(80\) 1442.59 2.01608
\(81\) −336.969 −0.462235
\(82\) −302.312 −0.407131
\(83\) 1307.91 1.72966 0.864830 0.502066i \(-0.167426\pi\)
0.864830 + 0.502066i \(0.167426\pi\)
\(84\) −299.788 −0.389399
\(85\) −561.640 −0.716687
\(86\) −177.012 −0.221950
\(87\) −664.044 −0.818310
\(88\) 228.428 0.276710
\(89\) 5.18117 0.00617082 0.00308541 0.999995i \(-0.499018\pi\)
0.00308541 + 0.999995i \(0.499018\pi\)
\(90\) −2275.83 −2.66548
\(91\) 1782.13 2.05295
\(92\) 117.194 0.132808
\(93\) 88.4932 0.0986701
\(94\) −974.759 −1.06956
\(95\) 382.068 0.412625
\(96\) 406.162 0.431810
\(97\) 336.438 0.352166 0.176083 0.984375i \(-0.443657\pi\)
0.176083 + 0.984375i \(0.443657\pi\)
\(98\) 2286.63 2.35698
\(99\) −412.106 −0.418365
\(100\) 314.517 0.314517
\(101\) 600.569 0.591672 0.295836 0.955239i \(-0.404402\pi\)
0.295836 + 0.955239i \(0.404402\pi\)
\(102\) −677.432 −0.657605
\(103\) 568.289 0.543643 0.271821 0.962348i \(-0.412374\pi\)
0.271821 + 0.962348i \(0.412374\pi\)
\(104\) −1115.87 −1.05211
\(105\) 5354.64 4.97676
\(106\) 1446.78 1.32570
\(107\) 362.013 0.327076 0.163538 0.986537i \(-0.447709\pi\)
0.163538 + 0.986537i \(0.447709\pi\)
\(108\) −94.5876 −0.0842750
\(109\) −121.435 −0.106710 −0.0533549 0.998576i \(-0.516991\pi\)
−0.0533549 + 0.998576i \(0.516991\pi\)
\(110\) 668.215 0.579198
\(111\) −508.113 −0.434486
\(112\) −2379.25 −2.00730
\(113\) −1918.51 −1.59715 −0.798577 0.601892i \(-0.794414\pi\)
−0.798577 + 0.601892i \(0.794414\pi\)
\(114\) 460.839 0.378610
\(115\) −2093.25 −1.69736
\(116\) 93.1126 0.0745283
\(117\) 2013.13 1.59072
\(118\) −2166.95 −1.69054
\(119\) 926.305 0.713565
\(120\) −3352.77 −2.55054
\(121\) 121.000 0.0909091
\(122\) −1808.04 −1.34174
\(123\) 803.485 0.589007
\(124\) −12.4086 −0.00898648
\(125\) −3104.13 −2.22113
\(126\) 3753.50 2.65387
\(127\) 2419.55 1.69056 0.845278 0.534328i \(-0.179435\pi\)
0.845278 + 0.534328i \(0.179435\pi\)
\(128\) 1676.78 1.15787
\(129\) 470.462 0.321100
\(130\) −3264.22 −2.20224
\(131\) 1561.14 1.04120 0.520601 0.853800i \(-0.325708\pi\)
0.520601 + 0.853800i \(0.325708\pi\)
\(132\) 99.4312 0.0655635
\(133\) −630.141 −0.410828
\(134\) 1971.52 1.27100
\(135\) 1689.47 1.07708
\(136\) −579.999 −0.365695
\(137\) 1187.46 0.740522 0.370261 0.928928i \(-0.379268\pi\)
0.370261 + 0.928928i \(0.379268\pi\)
\(138\) −2524.81 −1.55744
\(139\) −1577.59 −0.962655 −0.481327 0.876541i \(-0.659845\pi\)
−0.481327 + 0.876541i \(0.659845\pi\)
\(140\) −750.831 −0.453263
\(141\) 2590.72 1.54736
\(142\) 1743.30 1.03024
\(143\) −591.083 −0.345656
\(144\) −2687.65 −1.55535
\(145\) −1663.12 −0.952517
\(146\) 3331.03 1.88821
\(147\) −6077.41 −3.40991
\(148\) 71.2478 0.0395712
\(149\) −2126.58 −1.16924 −0.584618 0.811308i \(-0.698756\pi\)
−0.584618 + 0.811308i \(0.698756\pi\)
\(150\) −6775.93 −3.68835
\(151\) −2279.54 −1.22852 −0.614260 0.789104i \(-0.710545\pi\)
−0.614260 + 0.789104i \(0.710545\pi\)
\(152\) 394.557 0.210545
\(153\) 1046.37 0.552903
\(154\) −1102.08 −0.576676
\(155\) 221.635 0.114853
\(156\) −485.720 −0.249287
\(157\) −3165.23 −1.60900 −0.804501 0.593952i \(-0.797567\pi\)
−0.804501 + 0.593952i \(0.797567\pi\)
\(158\) 3100.86 1.56134
\(159\) −3845.26 −1.91792
\(160\) 1017.25 0.502629
\(161\) 3452.37 1.68997
\(162\) −1017.95 −0.493690
\(163\) −386.062 −0.185514 −0.0927569 0.995689i \(-0.529568\pi\)
−0.0927569 + 0.995689i \(0.529568\pi\)
\(164\) −112.665 −0.0536443
\(165\) −1775.98 −0.837941
\(166\) 3951.06 1.84736
\(167\) −3129.08 −1.44991 −0.724957 0.688794i \(-0.758141\pi\)
−0.724957 + 0.688794i \(0.758141\pi\)
\(168\) 5529.68 2.53943
\(169\) 690.430 0.314260
\(170\) −1696.66 −0.765456
\(171\) −711.819 −0.318328
\(172\) −65.9685 −0.0292445
\(173\) −1068.60 −0.469618 −0.234809 0.972041i \(-0.575447\pi\)
−0.234809 + 0.972041i \(0.575447\pi\)
\(174\) −2006.01 −0.873995
\(175\) 9265.26 4.00222
\(176\) 789.130 0.337971
\(177\) 5759.33 2.44575
\(178\) 15.6518 0.00659074
\(179\) 4264.59 1.78073 0.890363 0.455250i \(-0.150450\pi\)
0.890363 + 0.455250i \(0.150450\pi\)
\(180\) −848.153 −0.351209
\(181\) −81.3880 −0.0334228 −0.0167114 0.999860i \(-0.505320\pi\)
−0.0167114 + 0.999860i \(0.505320\pi\)
\(182\) 5383.64 2.19265
\(183\) 4805.42 1.94113
\(184\) −2161.68 −0.866092
\(185\) −1272.59 −0.505744
\(186\) 267.329 0.105385
\(187\) −307.230 −0.120144
\(188\) −363.272 −0.140927
\(189\) −2786.42 −1.07239
\(190\) 1154.19 0.440704
\(191\) −3976.16 −1.50631 −0.753154 0.657844i \(-0.771469\pi\)
−0.753154 + 0.657844i \(0.771469\pi\)
\(192\) −3380.95 −1.27083
\(193\) 2762.18 1.03019 0.515094 0.857134i \(-0.327757\pi\)
0.515094 + 0.857134i \(0.327757\pi\)
\(194\) 1016.35 0.376131
\(195\) 8675.66 3.18603
\(196\) 852.179 0.310561
\(197\) 1765.73 0.638593 0.319297 0.947655i \(-0.396553\pi\)
0.319297 + 0.947655i \(0.396553\pi\)
\(198\) −1244.93 −0.446835
\(199\) 2717.24 0.967940 0.483970 0.875085i \(-0.339194\pi\)
0.483970 + 0.875085i \(0.339194\pi\)
\(200\) −5801.37 −2.05109
\(201\) −5239.91 −1.83878
\(202\) 1814.26 0.631935
\(203\) 2742.97 0.948369
\(204\) −252.465 −0.0866473
\(205\) 2012.36 0.685607
\(206\) 1716.74 0.580637
\(207\) 3899.87 1.30947
\(208\) −3854.89 −1.28504
\(209\) 209.000 0.0691714
\(210\) 16175.8 5.31542
\(211\) 1179.97 0.384988 0.192494 0.981298i \(-0.438342\pi\)
0.192494 + 0.981298i \(0.438342\pi\)
\(212\) 539.185 0.174676
\(213\) −4633.35 −1.49048
\(214\) 1093.61 0.349333
\(215\) 1178.29 0.373762
\(216\) 1744.70 0.549590
\(217\) −365.540 −0.114352
\(218\) −366.843 −0.113971
\(219\) −8853.24 −2.73172
\(220\) 249.030 0.0763163
\(221\) 1500.81 0.456812
\(222\) −1534.96 −0.464052
\(223\) 2626.18 0.788618 0.394309 0.918978i \(-0.370984\pi\)
0.394309 + 0.918978i \(0.370984\pi\)
\(224\) −1677.74 −0.500440
\(225\) 10466.2 3.10110
\(226\) −5795.63 −1.70584
\(227\) −1059.38 −0.309751 −0.154876 0.987934i \(-0.549498\pi\)
−0.154876 + 0.987934i \(0.549498\pi\)
\(228\) 171.745 0.0498863
\(229\) −1748.59 −0.504586 −0.252293 0.967651i \(-0.581185\pi\)
−0.252293 + 0.967651i \(0.581185\pi\)
\(230\) −6323.50 −1.81287
\(231\) 2929.11 0.834291
\(232\) −1717.49 −0.486029
\(233\) 587.803 0.165271 0.0826357 0.996580i \(-0.473666\pi\)
0.0826357 + 0.996580i \(0.473666\pi\)
\(234\) 6081.46 1.69896
\(235\) 6488.56 1.80114
\(236\) −807.576 −0.222749
\(237\) −8241.48 −2.25883
\(238\) 2798.27 0.762123
\(239\) 4392.65 1.18886 0.594428 0.804149i \(-0.297378\pi\)
0.594428 + 0.804149i \(0.297378\pi\)
\(240\) −11582.5 −3.11520
\(241\) −439.180 −0.117386 −0.0586931 0.998276i \(-0.518693\pi\)
−0.0586931 + 0.998276i \(0.518693\pi\)
\(242\) 365.529 0.0970953
\(243\) 4973.95 1.31308
\(244\) −673.818 −0.176790
\(245\) −15221.1 −3.96915
\(246\) 2427.25 0.629088
\(247\) −1020.96 −0.263005
\(248\) 228.880 0.0586044
\(249\) −10501.1 −2.67262
\(250\) −9377.25 −2.37228
\(251\) 1482.33 0.372764 0.186382 0.982477i \(-0.440324\pi\)
0.186382 + 0.982477i \(0.440324\pi\)
\(252\) 1398.85 0.349679
\(253\) −1145.06 −0.284542
\(254\) 7309.22 1.80560
\(255\) 4509.38 1.10741
\(256\) 1696.63 0.414216
\(257\) −3958.76 −0.960860 −0.480430 0.877033i \(-0.659519\pi\)
−0.480430 + 0.877033i \(0.659519\pi\)
\(258\) 1421.22 0.342951
\(259\) 2098.87 0.503541
\(260\) −1216.51 −0.290171
\(261\) 3098.51 0.734840
\(262\) 4716.04 1.11205
\(263\) −5878.13 −1.37818 −0.689089 0.724677i \(-0.741989\pi\)
−0.689089 + 0.724677i \(0.741989\pi\)
\(264\) −1834.04 −0.427565
\(265\) −9630.62 −2.23247
\(266\) −1903.59 −0.438784
\(267\) −41.5994 −0.00953499
\(268\) 734.744 0.167469
\(269\) 2753.10 0.624014 0.312007 0.950080i \(-0.398999\pi\)
0.312007 + 0.950080i \(0.398999\pi\)
\(270\) 5103.72 1.15038
\(271\) 2057.27 0.461145 0.230572 0.973055i \(-0.425940\pi\)
0.230572 + 0.973055i \(0.425940\pi\)
\(272\) −2003.67 −0.446656
\(273\) −14308.7 −3.17216
\(274\) 3587.20 0.790914
\(275\) −3073.03 −0.673857
\(276\) −940.945 −0.205211
\(277\) 787.784 0.170879 0.0854393 0.996343i \(-0.472771\pi\)
0.0854393 + 0.996343i \(0.472771\pi\)
\(278\) −4765.72 −1.02816
\(279\) −412.921 −0.0886055
\(280\) 13849.3 2.95591
\(281\) 1496.27 0.317652 0.158826 0.987307i \(-0.449229\pi\)
0.158826 + 0.987307i \(0.449229\pi\)
\(282\) 7826.30 1.65266
\(283\) 8586.05 1.80349 0.901745 0.432268i \(-0.142287\pi\)
0.901745 + 0.432268i \(0.142287\pi\)
\(284\) 649.691 0.135747
\(285\) −3067.61 −0.637577
\(286\) −1785.60 −0.369178
\(287\) −3318.96 −0.682621
\(288\) −1895.20 −0.387764
\(289\) −4132.92 −0.841221
\(290\) −5024.13 −1.01733
\(291\) −2701.25 −0.544158
\(292\) 1241.41 0.248794
\(293\) 1971.90 0.393173 0.196586 0.980486i \(-0.437014\pi\)
0.196586 + 0.980486i \(0.437014\pi\)
\(294\) −18359.2 −3.64195
\(295\) 14424.5 2.84687
\(296\) −1314.19 −0.258059
\(297\) 924.179 0.180560
\(298\) −6424.18 −1.24880
\(299\) 5593.58 1.08189
\(300\) −2525.25 −0.485984
\(301\) −1943.34 −0.372135
\(302\) −6886.27 −1.31212
\(303\) −4821.95 −0.914236
\(304\) 1363.04 0.257158
\(305\) 12035.4 2.25949
\(306\) 3160.98 0.590528
\(307\) −7238.32 −1.34564 −0.672822 0.739804i \(-0.734918\pi\)
−0.672822 + 0.739804i \(0.734918\pi\)
\(308\) −410.722 −0.0759839
\(309\) −4562.77 −0.840023
\(310\) 669.537 0.122668
\(311\) 2043.10 0.372520 0.186260 0.982500i \(-0.440363\pi\)
0.186260 + 0.982500i \(0.440363\pi\)
\(312\) 8959.25 1.62570
\(313\) −4268.16 −0.770769 −0.385384 0.922756i \(-0.625931\pi\)
−0.385384 + 0.922756i \(0.625931\pi\)
\(314\) −9561.85 −1.71849
\(315\) −24985.4 −4.46911
\(316\) 1155.63 0.205725
\(317\) −1484.41 −0.263006 −0.131503 0.991316i \(-0.541980\pi\)
−0.131503 + 0.991316i \(0.541980\pi\)
\(318\) −11616.1 −2.04843
\(319\) −909.767 −0.159678
\(320\) −8467.73 −1.47925
\(321\) −2906.59 −0.505389
\(322\) 10429.3 1.80497
\(323\) −530.669 −0.0914156
\(324\) −379.369 −0.0650495
\(325\) 15011.7 2.56215
\(326\) −1166.26 −0.198138
\(327\) 974.998 0.164885
\(328\) 2078.14 0.349836
\(329\) −10701.5 −1.79329
\(330\) −5365.07 −0.894962
\(331\) −6834.20 −1.13487 −0.567434 0.823419i \(-0.692064\pi\)
−0.567434 + 0.823419i \(0.692064\pi\)
\(332\) 1472.48 0.243412
\(333\) 2370.92 0.390167
\(334\) −9452.64 −1.54858
\(335\) −13123.6 −2.14035
\(336\) 19102.9 3.10163
\(337\) 3538.42 0.571959 0.285979 0.958236i \(-0.407681\pi\)
0.285979 + 0.958236i \(0.407681\pi\)
\(338\) 2085.72 0.335645
\(339\) 15403.7 2.46788
\(340\) −632.308 −0.100858
\(341\) 121.239 0.0192536
\(342\) −2150.33 −0.339990
\(343\) 13728.3 2.16111
\(344\) 1216.81 0.190715
\(345\) 16806.6 2.62272
\(346\) −3228.13 −0.501575
\(347\) 4587.35 0.709688 0.354844 0.934926i \(-0.384534\pi\)
0.354844 + 0.934926i \(0.384534\pi\)
\(348\) −747.597 −0.115159
\(349\) −4643.30 −0.712178 −0.356089 0.934452i \(-0.615890\pi\)
−0.356089 + 0.934452i \(0.615890\pi\)
\(350\) 27989.4 4.27456
\(351\) −4514.60 −0.686528
\(352\) 556.458 0.0842594
\(353\) −10052.1 −1.51564 −0.757821 0.652462i \(-0.773736\pi\)
−0.757821 + 0.652462i \(0.773736\pi\)
\(354\) 17398.3 2.61218
\(355\) −11604.4 −1.73493
\(356\) 5.83309 0.000868408 0
\(357\) −7437.27 −1.10258
\(358\) 12882.9 1.90190
\(359\) −3099.77 −0.455709 −0.227854 0.973695i \(-0.573171\pi\)
−0.227854 + 0.973695i \(0.573171\pi\)
\(360\) 15644.4 2.29037
\(361\) 361.000 0.0526316
\(362\) −245.865 −0.0356971
\(363\) −971.504 −0.140470
\(364\) 2006.37 0.288907
\(365\) −22173.3 −3.17974
\(366\) 14516.7 2.07322
\(367\) 1900.26 0.270280 0.135140 0.990827i \(-0.456852\pi\)
0.135140 + 0.990827i \(0.456852\pi\)
\(368\) −7467.75 −1.05784
\(369\) −3749.17 −0.528926
\(370\) −3844.36 −0.540159
\(371\) 15883.7 2.22274
\(372\) 99.6279 0.0138857
\(373\) −3441.59 −0.477745 −0.238872 0.971051i \(-0.576778\pi\)
−0.238872 + 0.971051i \(0.576778\pi\)
\(374\) −928.109 −0.128319
\(375\) 24922.9 3.43204
\(376\) 6700.66 0.919043
\(377\) 4444.20 0.607129
\(378\) −8417.50 −1.14537
\(379\) 9560.54 1.29576 0.647878 0.761744i \(-0.275656\pi\)
0.647878 + 0.761744i \(0.275656\pi\)
\(380\) 430.142 0.0580680
\(381\) −19426.5 −2.61220
\(382\) −12011.6 −1.60881
\(383\) −4409.84 −0.588335 −0.294168 0.955754i \(-0.595042\pi\)
−0.294168 + 0.955754i \(0.595042\pi\)
\(384\) −13462.8 −1.78912
\(385\) 7336.08 0.971120
\(386\) 8344.27 1.10029
\(387\) −2195.24 −0.288347
\(388\) 378.771 0.0495597
\(389\) 10734.7 1.39916 0.699578 0.714556i \(-0.253371\pi\)
0.699578 + 0.714556i \(0.253371\pi\)
\(390\) 26208.3 3.40284
\(391\) 2907.40 0.376044
\(392\) −15718.7 −2.02529
\(393\) −12534.3 −1.60884
\(394\) 5334.08 0.682049
\(395\) −20641.1 −2.62929
\(396\) −463.959 −0.0588758
\(397\) −7337.36 −0.927586 −0.463793 0.885944i \(-0.653512\pi\)
−0.463793 + 0.885944i \(0.653512\pi\)
\(398\) 8208.50 1.03381
\(399\) 5059.37 0.634800
\(400\) −20041.5 −2.50519
\(401\) 10828.0 1.34844 0.674221 0.738530i \(-0.264480\pi\)
0.674221 + 0.738530i \(0.264480\pi\)
\(402\) −15829.2 −1.96391
\(403\) −592.252 −0.0732064
\(404\) 676.136 0.0832649
\(405\) 6776.07 0.831372
\(406\) 8286.24 1.01290
\(407\) −696.135 −0.0847816
\(408\) 4656.78 0.565062
\(409\) 2281.31 0.275803 0.137901 0.990446i \(-0.455964\pi\)
0.137901 + 0.990446i \(0.455964\pi\)
\(410\) 6079.14 0.732262
\(411\) −9534.07 −1.14424
\(412\) 639.795 0.0765059
\(413\) −23790.1 −2.83447
\(414\) 11781.1 1.39857
\(415\) −26300.6 −3.11095
\(416\) −2718.29 −0.320373
\(417\) 12666.4 1.48747
\(418\) 631.368 0.0738785
\(419\) 6420.27 0.748570 0.374285 0.927314i \(-0.377888\pi\)
0.374285 + 0.927314i \(0.377888\pi\)
\(420\) 6028.39 0.700370
\(421\) 9310.51 1.07783 0.538915 0.842360i \(-0.318834\pi\)
0.538915 + 0.842360i \(0.318834\pi\)
\(422\) 3564.57 0.411186
\(423\) −12088.6 −1.38953
\(424\) −9945.42 −1.13913
\(425\) 7802.69 0.890555
\(426\) −13996.9 −1.59190
\(427\) −19849.8 −2.24964
\(428\) 407.564 0.0460288
\(429\) 4745.78 0.534099
\(430\) 3559.50 0.399196
\(431\) 6421.57 0.717671 0.358836 0.933401i \(-0.383174\pi\)
0.358836 + 0.933401i \(0.383174\pi\)
\(432\) 6027.25 0.671264
\(433\) −6990.77 −0.775878 −0.387939 0.921685i \(-0.626813\pi\)
−0.387939 + 0.921685i \(0.626813\pi\)
\(434\) −1104.26 −0.122134
\(435\) 13353.2 1.47180
\(436\) −136.715 −0.0150171
\(437\) −1977.82 −0.216504
\(438\) −26744.7 −2.91761
\(439\) 5319.50 0.578327 0.289164 0.957280i \(-0.406623\pi\)
0.289164 + 0.957280i \(0.406623\pi\)
\(440\) −4593.43 −0.497689
\(441\) 28358.0 3.06209
\(442\) 4533.80 0.487898
\(443\) 104.923 0.0112529 0.00562647 0.999984i \(-0.498209\pi\)
0.00562647 + 0.999984i \(0.498209\pi\)
\(444\) −572.046 −0.0611444
\(445\) −104.187 −0.0110988
\(446\) 7933.42 0.842283
\(447\) 17074.2 1.80667
\(448\) 13965.7 1.47281
\(449\) 16239.5 1.70689 0.853443 0.521186i \(-0.174510\pi\)
0.853443 + 0.521186i \(0.174510\pi\)
\(450\) 31617.4 3.31213
\(451\) 1100.81 0.114933
\(452\) −2159.91 −0.224765
\(453\) 18302.4 1.89828
\(454\) −3200.28 −0.330830
\(455\) −35836.6 −3.69241
\(456\) −3167.88 −0.325329
\(457\) 994.277 0.101773 0.0508865 0.998704i \(-0.483795\pi\)
0.0508865 + 0.998704i \(0.483795\pi\)
\(458\) −5282.31 −0.538922
\(459\) −2346.57 −0.238624
\(460\) −2356.64 −0.238867
\(461\) −8645.56 −0.873458 −0.436729 0.899593i \(-0.643863\pi\)
−0.436729 + 0.899593i \(0.643863\pi\)
\(462\) 8848.54 0.891064
\(463\) 4818.01 0.483611 0.241806 0.970325i \(-0.422260\pi\)
0.241806 + 0.970325i \(0.422260\pi\)
\(464\) −5933.26 −0.593631
\(465\) −1779.50 −0.177467
\(466\) 1775.69 0.176518
\(467\) −6978.48 −0.691489 −0.345745 0.938329i \(-0.612374\pi\)
−0.345745 + 0.938329i \(0.612374\pi\)
\(468\) 2266.43 0.223859
\(469\) 21644.6 2.13103
\(470\) 19601.3 1.92370
\(471\) 25413.5 2.48619
\(472\) 14896.0 1.45263
\(473\) 644.553 0.0626566
\(474\) −24896.7 −2.41254
\(475\) −5307.96 −0.512728
\(476\) 1042.86 0.100419
\(477\) 17942.5 1.72228
\(478\) 13269.7 1.26976
\(479\) 7316.33 0.697895 0.348947 0.937142i \(-0.386539\pi\)
0.348947 + 0.937142i \(0.386539\pi\)
\(480\) −8167.45 −0.776649
\(481\) 3400.61 0.322358
\(482\) −1326.72 −0.125374
\(483\) −27719.0 −2.61130
\(484\) 136.225 0.0127935
\(485\) −6765.39 −0.633403
\(486\) 15025.8 1.40244
\(487\) 1795.41 0.167059 0.0835293 0.996505i \(-0.473381\pi\)
0.0835293 + 0.996505i \(0.473381\pi\)
\(488\) 12428.8 1.15292
\(489\) 3099.68 0.286651
\(490\) −45981.5 −4.23925
\(491\) −13897.1 −1.27733 −0.638664 0.769486i \(-0.720513\pi\)
−0.638664 + 0.769486i \(0.720513\pi\)
\(492\) 904.584 0.0828898
\(493\) 2309.98 0.211027
\(494\) −3084.22 −0.280902
\(495\) 8286.97 0.752468
\(496\) 790.691 0.0715788
\(497\) 19139.0 1.72737
\(498\) −31722.9 −2.85449
\(499\) −11916.6 −1.06906 −0.534528 0.845151i \(-0.679511\pi\)
−0.534528 + 0.845151i \(0.679511\pi\)
\(500\) −3494.70 −0.312576
\(501\) 25123.3 2.24037
\(502\) 4477.97 0.398130
\(503\) 10936.1 0.969419 0.484709 0.874675i \(-0.338925\pi\)
0.484709 + 0.874675i \(0.338925\pi\)
\(504\) −25802.2 −2.28040
\(505\) −12076.8 −1.06418
\(506\) −3459.10 −0.303904
\(507\) −5543.43 −0.485587
\(508\) 2723.99 0.237909
\(509\) 9826.31 0.855685 0.427842 0.903853i \(-0.359274\pi\)
0.427842 + 0.903853i \(0.359274\pi\)
\(510\) 13622.4 1.18276
\(511\) 36570.2 3.16589
\(512\) −8288.91 −0.715471
\(513\) 1596.31 0.137385
\(514\) −11959.0 −1.02624
\(515\) −11427.7 −0.977791
\(516\) 529.658 0.0451878
\(517\) 3549.39 0.301938
\(518\) 6340.46 0.537807
\(519\) 8579.73 0.725642
\(520\) 22438.8 1.89232
\(521\) −4280.73 −0.359965 −0.179983 0.983670i \(-0.557604\pi\)
−0.179983 + 0.983670i \(0.557604\pi\)
\(522\) 9360.29 0.784845
\(523\) 16829.3 1.40706 0.703530 0.710665i \(-0.251606\pi\)
0.703530 + 0.710665i \(0.251606\pi\)
\(524\) 1757.57 0.146526
\(525\) −74390.4 −6.18412
\(526\) −17757.2 −1.47196
\(527\) −307.837 −0.0254452
\(528\) −6335.89 −0.522224
\(529\) −1331.03 −0.109396
\(530\) −29093.1 −2.38438
\(531\) −26873.8 −2.19628
\(532\) −709.428 −0.0578151
\(533\) −5377.43 −0.437002
\(534\) −125.668 −0.0101838
\(535\) −7279.67 −0.588276
\(536\) −13552.6 −1.09213
\(537\) −34240.2 −2.75153
\(538\) 8316.84 0.666477
\(539\) −8326.30 −0.665379
\(540\) 1902.05 0.151576
\(541\) −17854.5 −1.41890 −0.709450 0.704756i \(-0.751056\pi\)
−0.709450 + 0.704756i \(0.751056\pi\)
\(542\) 6214.80 0.492525
\(543\) 653.460 0.0516440
\(544\) −1412.90 −0.111356
\(545\) 2441.92 0.191927
\(546\) −43225.0 −3.38802
\(547\) −707.278 −0.0552852 −0.0276426 0.999618i \(-0.508800\pi\)
−0.0276426 + 0.999618i \(0.508800\pi\)
\(548\) 1336.87 0.104212
\(549\) −22422.7 −1.74313
\(550\) −9283.30 −0.719712
\(551\) −1571.42 −0.121496
\(552\) 17356.0 1.33826
\(553\) 34043.2 2.61783
\(554\) 2379.82 0.182507
\(555\) 10217.6 0.781462
\(556\) −1776.09 −0.135473
\(557\) 2995.26 0.227851 0.113926 0.993489i \(-0.463657\pi\)
0.113926 + 0.993489i \(0.463657\pi\)
\(558\) −1247.39 −0.0946350
\(559\) −3148.63 −0.238234
\(560\) 47844.0 3.61032
\(561\) 2466.73 0.185643
\(562\) 4520.09 0.339268
\(563\) 15356.0 1.14952 0.574758 0.818323i \(-0.305096\pi\)
0.574758 + 0.818323i \(0.305096\pi\)
\(564\) 2916.70 0.217757
\(565\) 38579.1 2.87263
\(566\) 25937.6 1.92622
\(567\) −11175.7 −0.827751
\(568\) −11983.7 −0.885259
\(569\) −4459.09 −0.328532 −0.164266 0.986416i \(-0.552526\pi\)
−0.164266 + 0.986416i \(0.552526\pi\)
\(570\) −9266.94 −0.680964
\(571\) 20286.6 1.48681 0.743404 0.668842i \(-0.233210\pi\)
0.743404 + 0.668842i \(0.233210\pi\)
\(572\) −665.456 −0.0486436
\(573\) 31924.4 2.32751
\(574\) −10026.3 −0.729073
\(575\) 29080.9 2.10914
\(576\) 15775.9 1.14120
\(577\) −48.7580 −0.00351789 −0.00175895 0.999998i \(-0.500560\pi\)
−0.00175895 + 0.999998i \(0.500560\pi\)
\(578\) −12485.1 −0.898465
\(579\) −22177.4 −1.59182
\(580\) −1872.39 −0.134046
\(581\) 43377.2 3.09740
\(582\) −8160.19 −0.581187
\(583\) −5268.16 −0.374245
\(584\) −22898.1 −1.62248
\(585\) −40481.7 −2.86105
\(586\) 5956.91 0.419928
\(587\) 8763.15 0.616174 0.308087 0.951358i \(-0.400311\pi\)
0.308087 + 0.951358i \(0.400311\pi\)
\(588\) −6842.10 −0.479870
\(589\) 209.413 0.0146498
\(590\) 43574.9 3.04059
\(591\) −14177.0 −0.986738
\(592\) −4540.01 −0.315191
\(593\) −9164.58 −0.634644 −0.317322 0.948318i \(-0.602784\pi\)
−0.317322 + 0.948318i \(0.602784\pi\)
\(594\) 2791.85 0.192847
\(595\) −18626.9 −1.28341
\(596\) −2394.16 −0.164545
\(597\) −21816.6 −1.49563
\(598\) 16897.6 1.15551
\(599\) −11023.0 −0.751896 −0.375948 0.926641i \(-0.622683\pi\)
−0.375948 + 0.926641i \(0.622683\pi\)
\(600\) 46578.9 3.16930
\(601\) 7851.38 0.532886 0.266443 0.963851i \(-0.414152\pi\)
0.266443 + 0.963851i \(0.414152\pi\)
\(602\) −5870.64 −0.397458
\(603\) 24450.1 1.65122
\(604\) −2566.37 −0.172887
\(605\) −2433.17 −0.163508
\(606\) −14566.6 −0.976449
\(607\) 16438.8 1.09923 0.549613 0.835419i \(-0.314775\pi\)
0.549613 + 0.835419i \(0.314775\pi\)
\(608\) 961.155 0.0641118
\(609\) −22023.2 −1.46539
\(610\) 36357.6 2.41324
\(611\) −17338.7 −1.14803
\(612\) 1178.03 0.0778090
\(613\) 2609.28 0.171921 0.0859606 0.996299i \(-0.472604\pi\)
0.0859606 + 0.996299i \(0.472604\pi\)
\(614\) −21866.2 −1.43721
\(615\) −16157.2 −1.05938
\(616\) 7575.88 0.495521
\(617\) −10673.7 −0.696443 −0.348222 0.937412i \(-0.613214\pi\)
−0.348222 + 0.937412i \(0.613214\pi\)
\(618\) −13783.7 −0.897185
\(619\) −14303.1 −0.928739 −0.464369 0.885642i \(-0.653719\pi\)
−0.464369 + 0.885642i \(0.653719\pi\)
\(620\) 249.522 0.0161630
\(621\) −8745.75 −0.565145
\(622\) 6172.01 0.397870
\(623\) 171.835 0.0110504
\(624\) 30950.7 1.98561
\(625\) 27499.7 1.75998
\(626\) −12893.7 −0.823219
\(627\) −1678.05 −0.106882
\(628\) −3563.50 −0.226432
\(629\) 1767.55 0.112046
\(630\) −75478.5 −4.77323
\(631\) −11490.5 −0.724927 −0.362463 0.931998i \(-0.618064\pi\)
−0.362463 + 0.931998i \(0.618064\pi\)
\(632\) −21315.8 −1.34161
\(633\) −9473.94 −0.594874
\(634\) −4484.26 −0.280903
\(635\) −48654.4 −3.04062
\(636\) −4329.09 −0.269905
\(637\) 40673.9 2.52992
\(638\) −2748.31 −0.170544
\(639\) 21619.8 1.33845
\(640\) −33718.1 −2.08254
\(641\) −14840.9 −0.914477 −0.457238 0.889344i \(-0.651161\pi\)
−0.457238 + 0.889344i \(0.651161\pi\)
\(642\) −8780.51 −0.539781
\(643\) −5505.56 −0.337664 −0.168832 0.985645i \(-0.554000\pi\)
−0.168832 + 0.985645i \(0.554000\pi\)
\(644\) 3886.77 0.237826
\(645\) −9460.46 −0.577528
\(646\) −1603.10 −0.0976363
\(647\) −3214.30 −0.195312 −0.0976561 0.995220i \(-0.531135\pi\)
−0.0976561 + 0.995220i \(0.531135\pi\)
\(648\) 6997.57 0.424214
\(649\) 7890.52 0.477242
\(650\) 45348.8 2.73650
\(651\) 2934.90 0.176694
\(652\) −434.639 −0.0261070
\(653\) −25969.5 −1.55630 −0.778151 0.628077i \(-0.783842\pi\)
−0.778151 + 0.628077i \(0.783842\pi\)
\(654\) 2945.37 0.176106
\(655\) −31392.7 −1.87270
\(656\) 7179.18 0.427286
\(657\) 41310.4 2.45308
\(658\) −32328.2 −1.91532
\(659\) 23185.8 1.37054 0.685272 0.728287i \(-0.259683\pi\)
0.685272 + 0.728287i \(0.259683\pi\)
\(660\) −1999.45 −0.117922
\(661\) −17201.4 −1.01219 −0.506094 0.862478i \(-0.668911\pi\)
−0.506094 + 0.862478i \(0.668911\pi\)
\(662\) −20645.4 −1.21210
\(663\) −12049.9 −0.705854
\(664\) −27160.3 −1.58738
\(665\) 12671.4 0.738911
\(666\) 7162.30 0.416717
\(667\) 8609.37 0.499784
\(668\) −3522.80 −0.204044
\(669\) −21085.5 −1.21855
\(670\) −39645.0 −2.28600
\(671\) 6583.62 0.378775
\(672\) 13470.5 0.773266
\(673\) 17592.1 1.00762 0.503809 0.863815i \(-0.331931\pi\)
0.503809 + 0.863815i \(0.331931\pi\)
\(674\) 10689.2 0.610880
\(675\) −23471.3 −1.33839
\(676\) 777.304 0.0442253
\(677\) 18276.0 1.03752 0.518762 0.854919i \(-0.326393\pi\)
0.518762 + 0.854919i \(0.326393\pi\)
\(678\) 46532.9 2.63582
\(679\) 11158.1 0.630644
\(680\) 11663.1 0.657735
\(681\) 8505.72 0.478620
\(682\) 366.252 0.0205638
\(683\) 19656.4 1.10122 0.550610 0.834763i \(-0.314395\pi\)
0.550610 + 0.834763i \(0.314395\pi\)
\(684\) −801.384 −0.0447978
\(685\) −23878.5 −1.33190
\(686\) 41471.9 2.30817
\(687\) 14039.4 0.779673
\(688\) 4203.60 0.232937
\(689\) 25734.9 1.42296
\(690\) 50771.1 2.80119
\(691\) −16507.6 −0.908794 −0.454397 0.890799i \(-0.650145\pi\)
−0.454397 + 0.890799i \(0.650145\pi\)
\(692\) −1203.05 −0.0660885
\(693\) −13667.6 −0.749191
\(694\) 13857.9 0.757981
\(695\) 31723.4 1.73142
\(696\) 13789.6 0.750999
\(697\) −2795.05 −0.151894
\(698\) −14026.9 −0.760641
\(699\) −4719.44 −0.255373
\(700\) 10431.1 0.563225
\(701\) −17434.9 −0.939381 −0.469690 0.882831i \(-0.655634\pi\)
−0.469690 + 0.882831i \(0.655634\pi\)
\(702\) −13638.1 −0.733245
\(703\) −1202.41 −0.0645092
\(704\) −4632.04 −0.247978
\(705\) −52096.4 −2.78307
\(706\) −30366.5 −1.61878
\(707\) 19918.1 1.05954
\(708\) 6484.00 0.344186
\(709\) −7296.09 −0.386475 −0.193237 0.981152i \(-0.561899\pi\)
−0.193237 + 0.981152i \(0.561899\pi\)
\(710\) −35055.8 −1.85299
\(711\) 38455.8 2.02842
\(712\) −107.593 −0.00566324
\(713\) −1147.32 −0.0602630
\(714\) −22467.2 −1.17761
\(715\) 11886.0 0.621694
\(716\) 4801.18 0.250598
\(717\) −35268.4 −1.83699
\(718\) −9364.08 −0.486719
\(719\) 23481.2 1.21794 0.608972 0.793192i \(-0.291582\pi\)
0.608972 + 0.793192i \(0.291582\pi\)
\(720\) 54045.5 2.79744
\(721\) 18847.5 0.973533
\(722\) 1090.54 0.0562131
\(723\) 3526.16 0.181382
\(724\) −91.6286 −0.00470352
\(725\) 23105.3 1.18360
\(726\) −2934.81 −0.150029
\(727\) −37543.3 −1.91527 −0.957637 0.287979i \(-0.907017\pi\)
−0.957637 + 0.287979i \(0.907017\pi\)
\(728\) −37008.1 −1.88408
\(729\) −30837.5 −1.56671
\(730\) −66983.3 −3.39611
\(731\) −1636.58 −0.0828057
\(732\) 5410.06 0.273171
\(733\) −27235.8 −1.37241 −0.686205 0.727408i \(-0.740725\pi\)
−0.686205 + 0.727408i \(0.740725\pi\)
\(734\) 5740.49 0.288672
\(735\) 122210. 6.13303
\(736\) −5265.92 −0.263729
\(737\) −7178.90 −0.358803
\(738\) −11325.8 −0.564919
\(739\) −941.766 −0.0468788 −0.0234394 0.999725i \(-0.507462\pi\)
−0.0234394 + 0.999725i \(0.507462\pi\)
\(740\) −1432.71 −0.0711724
\(741\) 8197.26 0.406388
\(742\) 47982.9 2.37400
\(743\) 9417.06 0.464978 0.232489 0.972599i \(-0.425313\pi\)
0.232489 + 0.972599i \(0.425313\pi\)
\(744\) −1837.67 −0.0905539
\(745\) 42763.1 2.10298
\(746\) −10396.7 −0.510255
\(747\) 48999.7 2.40001
\(748\) −345.887 −0.0169076
\(749\) 12006.3 0.585714
\(750\) 75289.6 3.66558
\(751\) −34968.9 −1.69911 −0.849557 0.527498i \(-0.823130\pi\)
−0.849557 + 0.527498i \(0.823130\pi\)
\(752\) 23148.2 1.12251
\(753\) −11901.6 −0.575986
\(754\) 13425.5 0.648444
\(755\) 45839.0 2.20961
\(756\) −3137.03 −0.150916
\(757\) −8652.21 −0.415416 −0.207708 0.978191i \(-0.566600\pi\)
−0.207708 + 0.978191i \(0.566600\pi\)
\(758\) 28881.4 1.38393
\(759\) 9193.60 0.439666
\(760\) −7934.10 −0.378684
\(761\) 12889.6 0.613990 0.306995 0.951711i \(-0.400676\pi\)
0.306995 + 0.951711i \(0.400676\pi\)
\(762\) −58685.4 −2.78996
\(763\) −4027.43 −0.191092
\(764\) −4476.46 −0.211980
\(765\) −21041.4 −0.994447
\(766\) −13321.7 −0.628370
\(767\) −38545.0 −1.81458
\(768\) −13622.1 −0.640035
\(769\) −8873.14 −0.416091 −0.208045 0.978119i \(-0.566710\pi\)
−0.208045 + 0.978119i \(0.566710\pi\)
\(770\) 22161.5 1.03720
\(771\) 31784.7 1.48469
\(772\) 3109.74 0.144976
\(773\) −7548.76 −0.351242 −0.175621 0.984458i \(-0.556193\pi\)
−0.175621 + 0.984458i \(0.556193\pi\)
\(774\) −6631.59 −0.307969
\(775\) −3079.11 −0.142716
\(776\) −6986.54 −0.323199
\(777\) −16851.7 −0.778058
\(778\) 32428.5 1.49437
\(779\) 1901.39 0.0874513
\(780\) 9767.27 0.448365
\(781\) −6347.88 −0.290839
\(782\) 8782.95 0.401634
\(783\) −6948.65 −0.317145
\(784\) −54302.0 −2.47367
\(785\) 63649.3 2.89394
\(786\) −37864.9 −1.71832
\(787\) −10222.6 −0.463018 −0.231509 0.972833i \(-0.574366\pi\)
−0.231509 + 0.972833i \(0.574366\pi\)
\(788\) 1987.90 0.0898681
\(789\) 47195.2 2.12952
\(790\) −62354.7 −2.80821
\(791\) −63628.0 −2.86012
\(792\) 8557.86 0.383952
\(793\) −32160.9 −1.44018
\(794\) −22165.4 −0.990707
\(795\) 77323.8 3.44955
\(796\) 3059.14 0.136216
\(797\) 21763.8 0.967268 0.483634 0.875270i \(-0.339317\pi\)
0.483634 + 0.875270i \(0.339317\pi\)
\(798\) 15283.8 0.677998
\(799\) −9012.21 −0.399035
\(800\) −14132.3 −0.624567
\(801\) 194.108 0.00856239
\(802\) 32710.3 1.44020
\(803\) −12129.3 −0.533043
\(804\) −5899.23 −0.258768
\(805\) −69423.3 −3.03956
\(806\) −1789.13 −0.0781880
\(807\) −22104.5 −0.964209
\(808\) −12471.5 −0.543004
\(809\) 10357.5 0.450124 0.225062 0.974344i \(-0.427741\pi\)
0.225062 + 0.974344i \(0.427741\pi\)
\(810\) 20469.8 0.887946
\(811\) 33252.4 1.43977 0.719883 0.694096i \(-0.244196\pi\)
0.719883 + 0.694096i \(0.244196\pi\)
\(812\) 3088.11 0.133462
\(813\) −16517.7 −0.712548
\(814\) −2102.95 −0.0905509
\(815\) 7763.27 0.333663
\(816\) 16087.4 0.690161
\(817\) 1113.32 0.0476745
\(818\) 6891.60 0.294571
\(819\) 66766.0 2.84859
\(820\) 2265.57 0.0964842
\(821\) −15293.1 −0.650102 −0.325051 0.945697i \(-0.605381\pi\)
−0.325051 + 0.945697i \(0.605381\pi\)
\(822\) −28801.4 −1.22210
\(823\) −38928.2 −1.64879 −0.824393 0.566017i \(-0.808484\pi\)
−0.824393 + 0.566017i \(0.808484\pi\)
\(824\) −11801.2 −0.498925
\(825\) 24673.2 1.04123
\(826\) −71867.5 −3.02735
\(827\) 27259.5 1.14620 0.573099 0.819486i \(-0.305741\pi\)
0.573099 + 0.819486i \(0.305741\pi\)
\(828\) 4390.57 0.184279
\(829\) 24738.3 1.03643 0.518213 0.855251i \(-0.326597\pi\)
0.518213 + 0.855251i \(0.326597\pi\)
\(830\) −79451.3 −3.32265
\(831\) −6325.08 −0.264037
\(832\) 22627.4 0.942867
\(833\) 21141.2 0.879351
\(834\) 38263.8 1.58869
\(835\) 62922.3 2.60780
\(836\) 235.297 0.00973437
\(837\) 926.007 0.0382407
\(838\) 19395.0 0.799510
\(839\) 30458.1 1.25331 0.626656 0.779296i \(-0.284423\pi\)
0.626656 + 0.779296i \(0.284423\pi\)
\(840\) −111195. −4.56739
\(841\) −17548.7 −0.719534
\(842\) 28126.1 1.15117
\(843\) −12013.5 −0.490828
\(844\) 1328.44 0.0541787
\(845\) −13883.8 −0.565226
\(846\) −36518.5 −1.48408
\(847\) 4013.00 0.162796
\(848\) −34357.6 −1.39133
\(849\) −68937.0 −2.78671
\(850\) 23571.1 0.951156
\(851\) 6587.71 0.265363
\(852\) −5216.34 −0.209752
\(853\) 12483.2 0.501076 0.250538 0.968107i \(-0.419392\pi\)
0.250538 + 0.968107i \(0.419392\pi\)
\(854\) −59964.2 −2.40273
\(855\) 14313.9 0.572543
\(856\) −7517.63 −0.300172
\(857\) −14799.9 −0.589914 −0.294957 0.955511i \(-0.595305\pi\)
−0.294957 + 0.955511i \(0.595305\pi\)
\(858\) 14336.5 0.570444
\(859\) −12561.9 −0.498960 −0.249480 0.968380i \(-0.580260\pi\)
−0.249480 + 0.968380i \(0.580260\pi\)
\(860\) 1326.55 0.0525989
\(861\) 26647.8 1.05477
\(862\) 19398.9 0.766508
\(863\) −29702.4 −1.17159 −0.585795 0.810460i \(-0.699217\pi\)
−0.585795 + 0.810460i \(0.699217\pi\)
\(864\) 4250.14 0.167353
\(865\) 21488.3 0.844652
\(866\) −21118.4 −0.828675
\(867\) 33183.0 1.29983
\(868\) −411.534 −0.0160926
\(869\) −11291.2 −0.440767
\(870\) 40338.5 1.57196
\(871\) 35068.8 1.36425
\(872\) 2521.74 0.0979324
\(873\) 12604.4 0.488652
\(874\) −5974.80 −0.231237
\(875\) −102949. −3.97751
\(876\) −9967.20 −0.384430
\(877\) −3455.14 −0.133035 −0.0665175 0.997785i \(-0.521189\pi\)
−0.0665175 + 0.997785i \(0.521189\pi\)
\(878\) 16069.7 0.617682
\(879\) −15832.3 −0.607520
\(880\) −15868.5 −0.607872
\(881\) 25856.9 0.988810 0.494405 0.869232i \(-0.335386\pi\)
0.494405 + 0.869232i \(0.335386\pi\)
\(882\) 85666.6 3.27046
\(883\) 30864.0 1.17628 0.588140 0.808759i \(-0.299860\pi\)
0.588140 + 0.808759i \(0.299860\pi\)
\(884\) 1689.65 0.0642863
\(885\) −115814. −4.39890
\(886\) 316.963 0.0120187
\(887\) 29488.1 1.11625 0.558126 0.829756i \(-0.311521\pi\)
0.558126 + 0.829756i \(0.311521\pi\)
\(888\) 10551.6 0.398747
\(889\) 80245.1 3.02737
\(890\) −314.740 −0.0118540
\(891\) 3706.66 0.139369
\(892\) 2956.62 0.110981
\(893\) 6130.77 0.229740
\(894\) 51579.5 1.92962
\(895\) −85756.0 −3.20280
\(896\) 55610.9 2.07347
\(897\) −44910.6 −1.67171
\(898\) 49058.0 1.82304
\(899\) −911.567 −0.0338181
\(900\) 11783.1 0.436412
\(901\) 13376.3 0.494595
\(902\) 3325.43 0.122755
\(903\) 15603.0 0.575012
\(904\) 39840.2 1.46578
\(905\) 1636.62 0.0601139
\(906\) 55289.5 2.02745
\(907\) −2539.54 −0.0929703 −0.0464851 0.998919i \(-0.514802\pi\)
−0.0464851 + 0.998919i \(0.514802\pi\)
\(908\) −1192.68 −0.0435908
\(909\) 22499.8 0.820981
\(910\) −108259. −3.94367
\(911\) −38095.0 −1.38545 −0.692725 0.721202i \(-0.743590\pi\)
−0.692725 + 0.721202i \(0.743590\pi\)
\(912\) −10943.8 −0.397353
\(913\) −14387.0 −0.521512
\(914\) 3003.61 0.108699
\(915\) −96631.4 −3.49130
\(916\) −1968.61 −0.0710094
\(917\) 51775.6 1.86454
\(918\) −7088.75 −0.254862
\(919\) 40134.8 1.44061 0.720307 0.693656i \(-0.244001\pi\)
0.720307 + 0.693656i \(0.244001\pi\)
\(920\) 43468.8 1.55774
\(921\) 58116.2 2.07925
\(922\) −26117.4 −0.932895
\(923\) 31009.3 1.10583
\(924\) 3297.67 0.117408
\(925\) 17679.7 0.628437
\(926\) 14554.7 0.516520
\(927\) 21290.5 0.754338
\(928\) −4183.86 −0.147998
\(929\) −39198.6 −1.38435 −0.692177 0.721728i \(-0.743348\pi\)
−0.692177 + 0.721728i \(0.743348\pi\)
\(930\) −5375.68 −0.189544
\(931\) −14381.8 −0.506278
\(932\) 661.763 0.0232583
\(933\) −16404.0 −0.575609
\(934\) −21081.3 −0.738544
\(935\) 6178.04 0.216089
\(936\) −41805.0 −1.45987
\(937\) −5253.97 −0.183180 −0.0915900 0.995797i \(-0.529195\pi\)
−0.0915900 + 0.995797i \(0.529195\pi\)
\(938\) 65386.0 2.27604
\(939\) 34268.9 1.19097
\(940\) 7304.99 0.253471
\(941\) 2750.80 0.0952960 0.0476480 0.998864i \(-0.484827\pi\)
0.0476480 + 0.998864i \(0.484827\pi\)
\(942\) 76771.7 2.65537
\(943\) −10417.2 −0.359737
\(944\) 51459.9 1.77423
\(945\) 56031.8 1.92880
\(946\) 1947.13 0.0669203
\(947\) −42599.6 −1.46177 −0.730887 0.682498i \(-0.760894\pi\)
−0.730887 + 0.682498i \(0.760894\pi\)
\(948\) −9278.46 −0.317880
\(949\) 59251.4 2.02675
\(950\) −16034.8 −0.547618
\(951\) 11918.3 0.406390
\(952\) −19235.8 −0.654870
\(953\) −45286.7 −1.53933 −0.769664 0.638449i \(-0.779576\pi\)
−0.769664 + 0.638449i \(0.779576\pi\)
\(954\) 54202.4 1.83948
\(955\) 79956.0 2.70923
\(956\) 4945.35 0.167306
\(957\) 7304.48 0.246730
\(958\) 22101.9 0.745386
\(959\) 39382.5 1.32610
\(960\) 67987.0 2.28570
\(961\) −29669.5 −0.995922
\(962\) 10272.9 0.344294
\(963\) 13562.5 0.453838
\(964\) −494.440 −0.0165196
\(965\) −55544.3 −1.85289
\(966\) −83736.2 −2.78899
\(967\) −45539.7 −1.51444 −0.757218 0.653163i \(-0.773442\pi\)
−0.757218 + 0.653163i \(0.773442\pi\)
\(968\) −2512.71 −0.0834313
\(969\) 4260.72 0.141253
\(970\) −20437.5 −0.676505
\(971\) −29550.6 −0.976647 −0.488324 0.872663i \(-0.662391\pi\)
−0.488324 + 0.872663i \(0.662391\pi\)
\(972\) 5599.80 0.184788
\(973\) −52321.1 −1.72388
\(974\) 5423.74 0.178427
\(975\) −120528. −3.95897
\(976\) 42936.6 1.40816
\(977\) 15818.9 0.518007 0.259003 0.965876i \(-0.416606\pi\)
0.259003 + 0.965876i \(0.416606\pi\)
\(978\) 9363.81 0.306157
\(979\) −56.9929 −0.00186057
\(980\) −17136.3 −0.558572
\(981\) −4549.47 −0.148067
\(982\) −41981.8 −1.36425
\(983\) −27453.5 −0.890774 −0.445387 0.895338i \(-0.646934\pi\)
−0.445387 + 0.895338i \(0.646934\pi\)
\(984\) −16685.3 −0.540557
\(985\) −35506.8 −1.14857
\(986\) 6978.21 0.225387
\(987\) 85921.9 2.77095
\(988\) −1149.42 −0.0370122
\(989\) −6099.58 −0.196113
\(990\) 25034.1 0.803673
\(991\) −33079.6 −1.06035 −0.530176 0.847888i \(-0.677874\pi\)
−0.530176 + 0.847888i \(0.677874\pi\)
\(992\) 557.559 0.0178453
\(993\) 54871.5 1.75357
\(994\) 57817.1 1.84492
\(995\) −54640.6 −1.74093
\(996\) −11822.5 −0.376113
\(997\) −5119.53 −0.162625 −0.0813124 0.996689i \(-0.525911\pi\)
−0.0813124 + 0.996689i \(0.525911\pi\)
\(998\) −35998.7 −1.14180
\(999\) −5316.97 −0.168390
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 209.4.a.c.1.10 13
3.2 odd 2 1881.4.a.k.1.4 13
11.10 odd 2 2299.4.a.k.1.4 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.4.a.c.1.10 13 1.1 even 1 trivial
1881.4.a.k.1.4 13 3.2 odd 2
2299.4.a.k.1.4 13 11.10 odd 2