Properties

Label 21.10.e.a
Level 2121
Weight 1010
Character orbit 21.e
Analytic conductor 10.81610.816
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [21,10,Mod(4,21)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(21, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("21.4");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 21=37 21 = 3 \cdot 7
Weight: k k == 10 10
Character orbit: [χ][\chi] == 21.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.815752559410.8157525594
Analytic rank: 00
Dimension: 1010
Relative dimension: 55 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x102x9+1600x87420x7+2144441x69353044x5+682842856x4++6442540462656 x^{10} - 2 x^{9} + 1600 x^{8} - 7420 x^{7} + 2144441 x^{6} - 9353044 x^{5} + 682842856 x^{4} + \cdots + 6442540462656 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 243374 2^{4}\cdot 3^{3}\cdot 7^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β91,\beta_1,\ldots,\beta_{9} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3+7β2+β1)q2+(81β2+81)q3+(β7+177β2+177)q4+(β9+β8+9β1)q5+(81β3+567)q6++(118098β6+137781β5++53564004)q99+O(q100) q + (\beta_{3} + 7 \beta_{2} + \beta_1) q^{2} + ( - 81 \beta_{2} + 81) q^{3} + ( - \beta_{7} + 177 \beta_{2} + \cdots - 177) q^{4} + ( - \beta_{9} + \beta_{8} + \cdots - 9 \beta_1) q^{5} + (81 \beta_{3} + 567) q^{6}+ \cdots + (118098 \beta_{6} + 137781 \beta_{5} + \cdots + 53564004) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+33q2+405q3853q4165q5+5346q61981q782158q832805q9+28697q1040227q11+69093q12+462460q13331968q1426730q15618577q16++527858694q99+O(q100) 10 q + 33 q^{2} + 405 q^{3} - 853 q^{4} - 165 q^{5} + 5346 q^{6} - 1981 q^{7} - 82158 q^{8} - 32805 q^{9} + 28697 q^{10} - 40227 q^{11} + 69093 q^{12} + 462460 q^{13} - 331968 q^{14} - 26730 q^{15} - 618577 q^{16}+ \cdots + 527858694 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x102x9+1600x87420x7+2144441x69353044x5+682842856x4++6442540462656 x^{10} - 2 x^{9} + 1600 x^{8} - 7420 x^{7} + 2144441 x^{6} - 9353044 x^{5} + 682842856 x^{4} + \cdots + 6442540462656 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (33 ⁣ ⁣15ν9++32 ⁣ ⁣48)/34 ⁣ ⁣56 ( - 33\!\cdots\!15 \nu^{9} + \cdots + 32\!\cdots\!48 ) / 34\!\cdots\!56 Copy content Toggle raw display
β3\beta_{3}== (35 ⁣ ⁣89ν9+22 ⁣ ⁣80)/36 ⁣ ⁣07 ( - 35\!\cdots\!89 \nu^{9} + \cdots - 22\!\cdots\!80 ) / 36\!\cdots\!07 Copy content Toggle raw display
β4\beta_{4}== (67 ⁣ ⁣40ν9+20 ⁣ ⁣64)/33 ⁣ ⁣37 ( 67\!\cdots\!40 \nu^{9} + \cdots - 20\!\cdots\!64 ) / 33\!\cdots\!37 Copy content Toggle raw display
β5\beta_{5}== (21 ⁣ ⁣71ν9++14 ⁣ ⁣40)/13 ⁣ ⁣28 ( - 21\!\cdots\!71 \nu^{9} + \cdots + 14\!\cdots\!40 ) / 13\!\cdots\!28 Copy content Toggle raw display
β6\beta_{6}== (24 ⁣ ⁣03ν9+51 ⁣ ⁣80)/10 ⁣ ⁣96 ( 24\!\cdots\!03 \nu^{9} + \cdots - 51\!\cdots\!80 ) / 10\!\cdots\!96 Copy content Toggle raw display
β7\beta_{7}== (25 ⁣ ⁣38ν9+16 ⁣ ⁣24)/42 ⁣ ⁣57 ( - 25\!\cdots\!38 \nu^{9} + \cdots - 16\!\cdots\!24 ) / 42\!\cdots\!57 Copy content Toggle raw display
β8\beta_{8}== (49 ⁣ ⁣27ν9++56 ⁣ ⁣72)/47 ⁣ ⁣84 ( 49\!\cdots\!27 \nu^{9} + \cdots + 56\!\cdots\!72 ) / 47\!\cdots\!84 Copy content Toggle raw display
β9\beta_{9}== (13 ⁣ ⁣04ν9++49 ⁣ ⁣64)/11 ⁣ ⁣96 ( - 13\!\cdots\!04 \nu^{9} + \cdots + 49\!\cdots\!64 ) / 11\!\cdots\!96 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β7β42β3640β22β1 \beta_{7} - \beta_{4} - 2\beta_{3} - 640\beta_{2} - 2\beta_1 Copy content Toggle raw display
ν3\nu^{3}== 10β6+8β52β4+1067β3+1696 10\beta_{6} + 8\beta_{5} - 2\beta_{4} + 1067\beta_{3} + 1696 Copy content Toggle raw display
ν4\nu^{4}== 34β9184β81367β734β6+685752β2+2444β1685752 -34\beta_{9} - 184\beta_{8} - 1367\beta_{7} - 34\beta_{6} + 685752\beta_{2} + 2444\beta _1 - 685752 Copy content Toggle raw display
ν5\nu^{5}== 15892β9+12400β8620β712400β5+620β4+1295269β1 15892 \beta_{9} + 12400 \beta_{8} - 620 \beta_{7} - 12400 \beta_{5} + 620 \beta_{4} + \cdots - 1295269 \beta_1 Copy content Toggle raw display
ν6\nu^{6}== 75540β6+311312β5+1758973β4+3606598β3+834505616 75540\beta_{6} + 311312\beta_{5} + 1758973\beta_{4} + 3606598\beta_{3} + 834505616 Copy content Toggle raw display
ν7\nu^{7}== 21259086β916836984β81034394β721259086β6+3143952144β2+3143952144 - 21259086 \beta_{9} - 16836984 \beta_{8} - 1034394 \beta_{7} - 21259086 \beta_{6} + 3143952144 \beta_{2} + \cdots - 3143952144 Copy content Toggle raw display
ν8\nu^{8}== 122929302β9+432605448β8+2241938803β7432605448β5+5656546160β1 122929302 \beta_{9} + 432605448 \beta_{8} + 2241938803 \beta_{7} - 432605448 \beta_{5} + \cdots - 5656546160 \beta_1 Copy content Toggle raw display
ν9\nu^{9}== 27428612344β6+22065406496β5+3286684624β4+2062615185737β3+4699650485848 27428612344\beta_{6} + 22065406496\beta_{5} + 3286684624\beta_{4} + 2062615185737\beta_{3} + 4699650485848 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/21Z)×\left(\mathbb{Z}/21\mathbb{Z}\right)^\times.

nn 88 1010
χ(n)\chi(n) 11 β2-\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
4.1
17.6118 30.5045i
7.71783 13.3677i
3.35159 5.80513i
−9.66321 + 16.7372i
−18.0180 + 31.2081i
17.6118 + 30.5045i
7.71783 + 13.3677i
3.35159 + 5.80513i
−9.66321 16.7372i
−18.0180 31.2081i
−14.1118 24.4423i 40.5000 70.1481i −142.286 + 246.446i −101.336 175.518i −2286.11 −4617.22 4362.90i −6418.86 −3280.50 5681.99i −2860.06 + 4953.76i
4.2 −4.21783 7.30550i 40.5000 70.1481i 220.420 381.778i 1069.58 + 1852.56i −683.289 6190.35 + 1425.89i −8037.83 −3280.50 5681.99i 9022.59 15627.6i
4.3 0.148406 + 0.257047i 40.5000 70.1481i 255.956 443.329i −734.607 1272.38i 24.0418 −2964.10 + 5618.52i 303.910 −3280.50 5681.99i 218.040 377.657i
4.4 13.1632 + 22.7993i 40.5000 70.1481i −90.5399 + 156.820i −337.364 584.331i 2132.44 5108.86 3775.33i 8711.94 −3280.50 5681.99i 8881.57 15383.3i
4.5 21.5180 + 37.2703i 40.5000 70.1481i −670.050 + 1160.56i 21.2298 + 36.7711i 3485.92 −4708.39 + 4264.34i −35638.2 −3280.50 5681.99i −913.647 + 1582.48i
16.1 −14.1118 + 24.4423i 40.5000 + 70.1481i −142.286 246.446i −101.336 + 175.518i −2286.11 −4617.22 + 4362.90i −6418.86 −3280.50 + 5681.99i −2860.06 4953.76i
16.2 −4.21783 + 7.30550i 40.5000 + 70.1481i 220.420 + 381.778i 1069.58 1852.56i −683.289 6190.35 1425.89i −8037.83 −3280.50 + 5681.99i 9022.59 + 15627.6i
16.3 0.148406 0.257047i 40.5000 + 70.1481i 255.956 + 443.329i −734.607 + 1272.38i 24.0418 −2964.10 5618.52i 303.910 −3280.50 + 5681.99i 218.040 + 377.657i
16.4 13.1632 22.7993i 40.5000 + 70.1481i −90.5399 156.820i −337.364 + 584.331i 2132.44 5108.86 + 3775.33i 8711.94 −3280.50 + 5681.99i 8881.57 + 15383.3i
16.5 21.5180 37.2703i 40.5000 + 70.1481i −670.050 1160.56i 21.2298 36.7711i 3485.92 −4708.39 4264.34i −35638.2 −3280.50 + 5681.99i −913.647 1582.48i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 21.10.e.a 10
3.b odd 2 1 63.10.e.a 10
7.c even 3 1 inner 21.10.e.a 10
7.c even 3 1 147.10.a.i 5
7.d odd 6 1 147.10.a.j 5
21.h odd 6 1 63.10.e.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.10.e.a 10 1.a even 1 1 trivial
21.10.e.a 10 7.c even 3 1 inner
63.10.e.a 10 3.b odd 2 1
63.10.e.a 10 21.h odd 6 1
147.10.a.i 5 7.c even 3 1
147.10.a.j 5 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T21033T29+2251T2812390T27+1925068T2612244560T25++6410244096 T_{2}^{10} - 33 T_{2}^{9} + 2251 T_{2}^{8} - 12390 T_{2}^{7} + 1925068 T_{2}^{6} - 12244560 T_{2}^{5} + \cdots + 6410244096 acting on S10new(21,[χ])S_{10}^{\mathrm{new}}(21, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10++6410244096 T^{10} + \cdots + 6410244096 Copy content Toggle raw display
33 (T281T+6561)5 (T^{2} - 81 T + 6561)^{5} Copy content Toggle raw display
55 T10++33 ⁣ ⁣00 T^{10} + \cdots + 33\!\cdots\!00 Copy content Toggle raw display
77 T10++10 ⁣ ⁣07 T^{10} + \cdots + 10\!\cdots\!07 Copy content Toggle raw display
1111 T10++36 ⁣ ⁣00 T^{10} + \cdots + 36\!\cdots\!00 Copy content Toggle raw display
1313 (T5++34 ⁣ ⁣32)2 (T^{5} + \cdots + 34\!\cdots\!32)^{2} Copy content Toggle raw display
1717 T10++26 ⁣ ⁣76 T^{10} + \cdots + 26\!\cdots\!76 Copy content Toggle raw display
1919 T10++21 ⁣ ⁣36 T^{10} + \cdots + 21\!\cdots\!36 Copy content Toggle raw display
2323 T10++10 ⁣ ⁣04 T^{10} + \cdots + 10\!\cdots\!04 Copy content Toggle raw display
2929 (T5++13 ⁣ ⁣16)2 (T^{5} + \cdots + 13\!\cdots\!16)^{2} Copy content Toggle raw display
3131 T10++12 ⁣ ⁣41 T^{10} + \cdots + 12\!\cdots\!41 Copy content Toggle raw display
3737 T10++76 ⁣ ⁣44 T^{10} + \cdots + 76\!\cdots\!44 Copy content Toggle raw display
4141 (T5+31 ⁣ ⁣00)2 (T^{5} + \cdots - 31\!\cdots\!00)^{2} Copy content Toggle raw display
4343 (T5++94 ⁣ ⁣76)2 (T^{5} + \cdots + 94\!\cdots\!76)^{2} Copy content Toggle raw display
4747 T10++12 ⁣ ⁣00 T^{10} + \cdots + 12\!\cdots\!00 Copy content Toggle raw display
5353 T10++61 ⁣ ⁣64 T^{10} + \cdots + 61\!\cdots\!64 Copy content Toggle raw display
5959 T10++25 ⁣ ⁣00 T^{10} + \cdots + 25\!\cdots\!00 Copy content Toggle raw display
6161 T10++16 ⁣ ⁣84 T^{10} + \cdots + 16\!\cdots\!84 Copy content Toggle raw display
6767 T10++43 ⁣ ⁣00 T^{10} + \cdots + 43\!\cdots\!00 Copy content Toggle raw display
7171 (T5+12 ⁣ ⁣64)2 (T^{5} + \cdots - 12\!\cdots\!64)^{2} Copy content Toggle raw display
7373 T10++62 ⁣ ⁣00 T^{10} + \cdots + 62\!\cdots\!00 Copy content Toggle raw display
7979 T10++70 ⁣ ⁣89 T^{10} + \cdots + 70\!\cdots\!89 Copy content Toggle raw display
8383 (T5+25 ⁣ ⁣08)2 (T^{5} + \cdots - 25\!\cdots\!08)^{2} Copy content Toggle raw display
8989 T10++26 ⁣ ⁣04 T^{10} + \cdots + 26\!\cdots\!04 Copy content Toggle raw display
9797 (T5+37 ⁣ ⁣36)2 (T^{5} + \cdots - 37\!\cdots\!36)^{2} Copy content Toggle raw display
show more
show less