Properties

Label 21.10.e.a
Level $21$
Weight $10$
Character orbit 21.e
Analytic conductor $10.816$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [21,10,Mod(4,21)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(21, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("21.4");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 21.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8157525594\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2 x^{9} + 1600 x^{8} - 7420 x^{7} + 2144441 x^{6} - 9353044 x^{5} + 682842856 x^{4} + \cdots + 6442540462656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{3}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + 7 \beta_{2} + \beta_1) q^{2} + ( - 81 \beta_{2} + 81) q^{3} + ( - \beta_{7} + 177 \beta_{2} + \cdots - 177) q^{4} + ( - \beta_{9} + \beta_{8} + \cdots - 9 \beta_1) q^{5} + (81 \beta_{3} + 567) q^{6}+ \cdots + (118098 \beta_{6} + 137781 \beta_{5} + \cdots + 53564004) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 33 q^{2} + 405 q^{3} - 853 q^{4} - 165 q^{5} + 5346 q^{6} - 1981 q^{7} - 82158 q^{8} - 32805 q^{9} + 28697 q^{10} - 40227 q^{11} + 69093 q^{12} + 462460 q^{13} - 331968 q^{14} - 26730 q^{15} - 618577 q^{16}+ \cdots + 527858694 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 2 x^{9} + 1600 x^{8} - 7420 x^{7} + 2144441 x^{6} - 9353044 x^{5} + 682842856 x^{4} + \cdots + 6442540462656 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 33\!\cdots\!15 \nu^{9} + \cdots + 32\!\cdots\!48 ) / 34\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 35\!\cdots\!89 \nu^{9} + \cdots - 22\!\cdots\!80 ) / 36\!\cdots\!07 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 67\!\cdots\!40 \nu^{9} + \cdots - 20\!\cdots\!64 ) / 33\!\cdots\!37 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 21\!\cdots\!71 \nu^{9} + \cdots + 14\!\cdots\!40 ) / 13\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 24\!\cdots\!03 \nu^{9} + \cdots - 51\!\cdots\!80 ) / 10\!\cdots\!96 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 25\!\cdots\!38 \nu^{9} + \cdots - 16\!\cdots\!24 ) / 42\!\cdots\!57 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 49\!\cdots\!27 \nu^{9} + \cdots + 56\!\cdots\!72 ) / 47\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 13\!\cdots\!04 \nu^{9} + \cdots + 49\!\cdots\!64 ) / 11\!\cdots\!96 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} - \beta_{4} - 2\beta_{3} - 640\beta_{2} - 2\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 10\beta_{6} + 8\beta_{5} - 2\beta_{4} + 1067\beta_{3} + 1696 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -34\beta_{9} - 184\beta_{8} - 1367\beta_{7} - 34\beta_{6} + 685752\beta_{2} + 2444\beta _1 - 685752 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 15892 \beta_{9} + 12400 \beta_{8} - 620 \beta_{7} - 12400 \beta_{5} + 620 \beta_{4} + \cdots - 1295269 \beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 75540\beta_{6} + 311312\beta_{5} + 1758973\beta_{4} + 3606598\beta_{3} + 834505616 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 21259086 \beta_{9} - 16836984 \beta_{8} - 1034394 \beta_{7} - 21259086 \beta_{6} + 3143952144 \beta_{2} + \cdots - 3143952144 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 122929302 \beta_{9} + 432605448 \beta_{8} + 2241938803 \beta_{7} - 432605448 \beta_{5} + \cdots - 5656546160 \beta_1 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 27428612344\beta_{6} + 22065406496\beta_{5} + 3286684624\beta_{4} + 2062615185737\beta_{3} + 4699650485848 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).

\(n\) \(8\) \(10\)
\(\chi(n)\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1
17.6118 30.5045i
7.71783 13.3677i
3.35159 5.80513i
−9.66321 + 16.7372i
−18.0180 + 31.2081i
17.6118 + 30.5045i
7.71783 + 13.3677i
3.35159 + 5.80513i
−9.66321 16.7372i
−18.0180 31.2081i
−14.1118 24.4423i 40.5000 70.1481i −142.286 + 246.446i −101.336 175.518i −2286.11 −4617.22 4362.90i −6418.86 −3280.50 5681.99i −2860.06 + 4953.76i
4.2 −4.21783 7.30550i 40.5000 70.1481i 220.420 381.778i 1069.58 + 1852.56i −683.289 6190.35 + 1425.89i −8037.83 −3280.50 5681.99i 9022.59 15627.6i
4.3 0.148406 + 0.257047i 40.5000 70.1481i 255.956 443.329i −734.607 1272.38i 24.0418 −2964.10 + 5618.52i 303.910 −3280.50 5681.99i 218.040 377.657i
4.4 13.1632 + 22.7993i 40.5000 70.1481i −90.5399 + 156.820i −337.364 584.331i 2132.44 5108.86 3775.33i 8711.94 −3280.50 5681.99i 8881.57 15383.3i
4.5 21.5180 + 37.2703i 40.5000 70.1481i −670.050 + 1160.56i 21.2298 + 36.7711i 3485.92 −4708.39 + 4264.34i −35638.2 −3280.50 5681.99i −913.647 + 1582.48i
16.1 −14.1118 + 24.4423i 40.5000 + 70.1481i −142.286 246.446i −101.336 + 175.518i −2286.11 −4617.22 + 4362.90i −6418.86 −3280.50 + 5681.99i −2860.06 4953.76i
16.2 −4.21783 + 7.30550i 40.5000 + 70.1481i 220.420 + 381.778i 1069.58 1852.56i −683.289 6190.35 1425.89i −8037.83 −3280.50 + 5681.99i 9022.59 + 15627.6i
16.3 0.148406 0.257047i 40.5000 + 70.1481i 255.956 + 443.329i −734.607 + 1272.38i 24.0418 −2964.10 5618.52i 303.910 −3280.50 + 5681.99i 218.040 + 377.657i
16.4 13.1632 22.7993i 40.5000 + 70.1481i −90.5399 156.820i −337.364 + 584.331i 2132.44 5108.86 + 3775.33i 8711.94 −3280.50 + 5681.99i 8881.57 + 15383.3i
16.5 21.5180 37.2703i 40.5000 + 70.1481i −670.050 1160.56i 21.2298 36.7711i 3485.92 −4708.39 4264.34i −35638.2 −3280.50 + 5681.99i −913.647 1582.48i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 21.10.e.a 10
3.b odd 2 1 63.10.e.a 10
7.c even 3 1 inner 21.10.e.a 10
7.c even 3 1 147.10.a.i 5
7.d odd 6 1 147.10.a.j 5
21.h odd 6 1 63.10.e.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.10.e.a 10 1.a even 1 1 trivial
21.10.e.a 10 7.c even 3 1 inner
63.10.e.a 10 3.b odd 2 1
63.10.e.a 10 21.h odd 6 1
147.10.a.i 5 7.c even 3 1
147.10.a.j 5 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{10} - 33 T_{2}^{9} + 2251 T_{2}^{8} - 12390 T_{2}^{7} + 1925068 T_{2}^{6} - 12244560 T_{2}^{5} + \cdots + 6410244096 \) acting on \(S_{10}^{\mathrm{new}}(21, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} + \cdots + 6410244096 \) Copy content Toggle raw display
$3$ \( (T^{2} - 81 T + 6561)^{5} \) Copy content Toggle raw display
$5$ \( T^{10} + \cdots + 33\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{10} + \cdots + 10\!\cdots\!07 \) Copy content Toggle raw display
$11$ \( T^{10} + \cdots + 36\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T^{5} + \cdots + 34\!\cdots\!32)^{2} \) Copy content Toggle raw display
$17$ \( T^{10} + \cdots + 26\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{10} + \cdots + 21\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots + 10\!\cdots\!04 \) Copy content Toggle raw display
$29$ \( (T^{5} + \cdots + 13\!\cdots\!16)^{2} \) Copy content Toggle raw display
$31$ \( T^{10} + \cdots + 12\!\cdots\!41 \) Copy content Toggle raw display
$37$ \( T^{10} + \cdots + 76\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( (T^{5} + \cdots - 31\!\cdots\!00)^{2} \) Copy content Toggle raw display
$43$ \( (T^{5} + \cdots + 94\!\cdots\!76)^{2} \) Copy content Toggle raw display
$47$ \( T^{10} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots + 61\!\cdots\!64 \) Copy content Toggle raw display
$59$ \( T^{10} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{10} + \cdots + 16\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( (T^{5} + \cdots - 12\!\cdots\!64)^{2} \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots + 62\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots + 70\!\cdots\!89 \) Copy content Toggle raw display
$83$ \( (T^{5} + \cdots - 25\!\cdots\!08)^{2} \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots + 26\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( (T^{5} + \cdots - 37\!\cdots\!36)^{2} \) Copy content Toggle raw display
show more
show less