Properties

Label 210.4.i.j
Level $210$
Weight $4$
Character orbit 210.i
Analytic conductor $12.390$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [210,4,Mod(121,210)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(210, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("210.121");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 210.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.3904011012\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta_{2} + 2) q^{2} + 3 \beta_{2} q^{3} - 4 \beta_{2} q^{4} + ( - 5 \beta_{2} + 5) q^{5} + 6 q^{6} + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots - 6) q^{7} - 8 q^{8} + (9 \beta_{2} - 9) q^{9} - 10 \beta_{2} q^{10}+ \cdots + ( - 27 \beta_{3} + 54 \beta_1 - 81) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 6 q^{3} - 8 q^{4} + 10 q^{5} + 24 q^{6} - 20 q^{7} - 32 q^{8} - 18 q^{9} - 20 q^{10} + 18 q^{11} + 24 q^{12} + 128 q^{13} - 8 q^{14} + 60 q^{15} - 32 q^{16} - 102 q^{17} + 36 q^{18} + 62 q^{19}+ \cdots - 324 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{3} ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 5\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(-1 + \beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
1.93649 + 1.11803i
−1.93649 1.11803i
1.93649 1.11803i
−1.93649 + 1.11803i
1.00000 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i 2.50000 4.33013i 6.00000 −10.8095 15.0385i −8.00000 −4.50000 + 7.79423i −5.00000 8.66025i
121.2 1.00000 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i 2.50000 4.33013i 6.00000 0.809475 + 18.5026i −8.00000 −4.50000 + 7.79423i −5.00000 8.66025i
151.1 1.00000 + 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i 2.50000 + 4.33013i 6.00000 −10.8095 + 15.0385i −8.00000 −4.50000 7.79423i −5.00000 + 8.66025i
151.2 1.00000 + 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i 2.50000 + 4.33013i 6.00000 0.809475 18.5026i −8.00000 −4.50000 7.79423i −5.00000 + 8.66025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 210.4.i.j 4
3.b odd 2 1 630.4.k.k 4
7.c even 3 1 inner 210.4.i.j 4
7.c even 3 1 1470.4.a.be 2
7.d odd 6 1 1470.4.a.bj 2
21.h odd 6 1 630.4.k.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.4.i.j 4 1.a even 1 1 trivial
210.4.i.j 4 7.c even 3 1 inner
630.4.k.k 4 3.b odd 2 1
630.4.k.k 4 21.h odd 6 1
1470.4.a.be 2 7.c even 3 1
1470.4.a.bj 2 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{4} - 18T_{11}^{3} + 1458T_{11}^{2} + 20412T_{11} + 1285956 \) acting on \(S_{4}^{\mathrm{new}}(210, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5 T + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 20 T^{3} + \cdots + 117649 \) Copy content Toggle raw display
$11$ \( T^{4} - 18 T^{3} + \cdots + 1285956 \) Copy content Toggle raw display
$13$ \( (T^{2} - 64 T - 191)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 102 T^{3} + \cdots + 1920996 \) Copy content Toggle raw display
$19$ \( T^{4} - 62 T^{3} + \cdots + 1437601 \) Copy content Toggle raw display
$23$ \( T^{4} + 42 T^{3} + \cdots + 38118276 \) Copy content Toggle raw display
$29$ \( (T^{2} - 222 T + 5706)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 5949808225 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 5652182761 \) Copy content Toggle raw display
$41$ \( (T^{2} - 54 T - 486)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 248 T + 12001)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 2220671376 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 24343488576 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 65912346756 \) Copy content Toggle raw display
$61$ \( T^{4} + 64 T^{3} + \cdots + 58003456 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 7218031681 \) Copy content Toggle raw display
$71$ \( (T^{2} + 78 T - 271854)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 464 T^{3} + \cdots + 549855601 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 892210595761 \) Copy content Toggle raw display
$83$ \( (T^{2} + 234 T - 961686)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 468176166756 \) Copy content Toggle raw display
$97$ \( (T^{2} - 832 T - 42944)^{2} \) Copy content Toggle raw display
show more
show less