Properties

Label 210.6.a.j.1.1
Level $210$
Weight $6$
Character 210.1
Self dual yes
Analytic conductor $33.681$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [210,6,Mod(1,210)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(210, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("210.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 210.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.6806021607\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 210.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} -25.0000 q^{5} +36.0000 q^{6} -49.0000 q^{7} +64.0000 q^{8} +81.0000 q^{9} -100.000 q^{10} -668.000 q^{11} +144.000 q^{12} -366.000 q^{13} -196.000 q^{14} -225.000 q^{15} +256.000 q^{16} -34.0000 q^{17} +324.000 q^{18} -2016.00 q^{19} -400.000 q^{20} -441.000 q^{21} -2672.00 q^{22} +1908.00 q^{23} +576.000 q^{24} +625.000 q^{25} -1464.00 q^{26} +729.000 q^{27} -784.000 q^{28} -5754.00 q^{29} -900.000 q^{30} -52.0000 q^{31} +1024.00 q^{32} -6012.00 q^{33} -136.000 q^{34} +1225.00 q^{35} +1296.00 q^{36} -10594.0 q^{37} -8064.00 q^{38} -3294.00 q^{39} -1600.00 q^{40} -418.000 q^{41} -1764.00 q^{42} +6676.00 q^{43} -10688.0 q^{44} -2025.00 q^{45} +7632.00 q^{46} +1472.00 q^{47} +2304.00 q^{48} +2401.00 q^{49} +2500.00 q^{50} -306.000 q^{51} -5856.00 q^{52} +19834.0 q^{53} +2916.00 q^{54} +16700.0 q^{55} -3136.00 q^{56} -18144.0 q^{57} -23016.0 q^{58} +10492.0 q^{59} -3600.00 q^{60} -38810.0 q^{61} -208.000 q^{62} -3969.00 q^{63} +4096.00 q^{64} +9150.00 q^{65} -24048.0 q^{66} -61428.0 q^{67} -544.000 q^{68} +17172.0 q^{69} +4900.00 q^{70} -7936.00 q^{71} +5184.00 q^{72} +21134.0 q^{73} -42376.0 q^{74} +5625.00 q^{75} -32256.0 q^{76} +32732.0 q^{77} -13176.0 q^{78} +87088.0 q^{79} -6400.00 q^{80} +6561.00 q^{81} -1672.00 q^{82} -103252. q^{83} -7056.00 q^{84} +850.000 q^{85} +26704.0 q^{86} -51786.0 q^{87} -42752.0 q^{88} -49490.0 q^{89} -8100.00 q^{90} +17934.0 q^{91} +30528.0 q^{92} -468.000 q^{93} +5888.00 q^{94} +50400.0 q^{95} +9216.00 q^{96} +125630. q^{97} +9604.00 q^{98} -54108.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 9.00000 0.577350
\(4\) 16.0000 0.500000
\(5\) −25.0000 −0.447214
\(6\) 36.0000 0.408248
\(7\) −49.0000 −0.377964
\(8\) 64.0000 0.353553
\(9\) 81.0000 0.333333
\(10\) −100.000 −0.316228
\(11\) −668.000 −1.66454 −0.832271 0.554369i \(-0.812960\pi\)
−0.832271 + 0.554369i \(0.812960\pi\)
\(12\) 144.000 0.288675
\(13\) −366.000 −0.600652 −0.300326 0.953837i \(-0.597095\pi\)
−0.300326 + 0.953837i \(0.597095\pi\)
\(14\) −196.000 −0.267261
\(15\) −225.000 −0.258199
\(16\) 256.000 0.250000
\(17\) −34.0000 −0.0285336 −0.0142668 0.999898i \(-0.504541\pi\)
−0.0142668 + 0.999898i \(0.504541\pi\)
\(18\) 324.000 0.235702
\(19\) −2016.00 −1.28117 −0.640585 0.767888i \(-0.721308\pi\)
−0.640585 + 0.767888i \(0.721308\pi\)
\(20\) −400.000 −0.223607
\(21\) −441.000 −0.218218
\(22\) −2672.00 −1.17701
\(23\) 1908.00 0.752071 0.376035 0.926605i \(-0.377287\pi\)
0.376035 + 0.926605i \(0.377287\pi\)
\(24\) 576.000 0.204124
\(25\) 625.000 0.200000
\(26\) −1464.00 −0.424725
\(27\) 729.000 0.192450
\(28\) −784.000 −0.188982
\(29\) −5754.00 −1.27050 −0.635250 0.772306i \(-0.719103\pi\)
−0.635250 + 0.772306i \(0.719103\pi\)
\(30\) −900.000 −0.182574
\(31\) −52.0000 −0.00971850 −0.00485925 0.999988i \(-0.501547\pi\)
−0.00485925 + 0.999988i \(0.501547\pi\)
\(32\) 1024.00 0.176777
\(33\) −6012.00 −0.961024
\(34\) −136.000 −0.0201763
\(35\) 1225.00 0.169031
\(36\) 1296.00 0.166667
\(37\) −10594.0 −1.27220 −0.636100 0.771606i \(-0.719454\pi\)
−0.636100 + 0.771606i \(0.719454\pi\)
\(38\) −8064.00 −0.905924
\(39\) −3294.00 −0.346786
\(40\) −1600.00 −0.158114
\(41\) −418.000 −0.0388344 −0.0194172 0.999811i \(-0.506181\pi\)
−0.0194172 + 0.999811i \(0.506181\pi\)
\(42\) −1764.00 −0.154303
\(43\) 6676.00 0.550611 0.275306 0.961357i \(-0.411221\pi\)
0.275306 + 0.961357i \(0.411221\pi\)
\(44\) −10688.0 −0.832271
\(45\) −2025.00 −0.149071
\(46\) 7632.00 0.531794
\(47\) 1472.00 0.0971993 0.0485997 0.998818i \(-0.484524\pi\)
0.0485997 + 0.998818i \(0.484524\pi\)
\(48\) 2304.00 0.144338
\(49\) 2401.00 0.142857
\(50\) 2500.00 0.141421
\(51\) −306.000 −0.0164739
\(52\) −5856.00 −0.300326
\(53\) 19834.0 0.969886 0.484943 0.874546i \(-0.338840\pi\)
0.484943 + 0.874546i \(0.338840\pi\)
\(54\) 2916.00 0.136083
\(55\) 16700.0 0.744406
\(56\) −3136.00 −0.133631
\(57\) −18144.0 −0.739683
\(58\) −23016.0 −0.898380
\(59\) 10492.0 0.392399 0.196200 0.980564i \(-0.437140\pi\)
0.196200 + 0.980564i \(0.437140\pi\)
\(60\) −3600.00 −0.129099
\(61\) −38810.0 −1.33542 −0.667712 0.744420i \(-0.732726\pi\)
−0.667712 + 0.744420i \(0.732726\pi\)
\(62\) −208.000 −0.00687202
\(63\) −3969.00 −0.125988
\(64\) 4096.00 0.125000
\(65\) 9150.00 0.268620
\(66\) −24048.0 −0.679546
\(67\) −61428.0 −1.67178 −0.835890 0.548896i \(-0.815048\pi\)
−0.835890 + 0.548896i \(0.815048\pi\)
\(68\) −544.000 −0.0142668
\(69\) 17172.0 0.434208
\(70\) 4900.00 0.119523
\(71\) −7936.00 −0.186834 −0.0934170 0.995627i \(-0.529779\pi\)
−0.0934170 + 0.995627i \(0.529779\pi\)
\(72\) 5184.00 0.117851
\(73\) 21134.0 0.464167 0.232084 0.972696i \(-0.425446\pi\)
0.232084 + 0.972696i \(0.425446\pi\)
\(74\) −42376.0 −0.899582
\(75\) 5625.00 0.115470
\(76\) −32256.0 −0.640585
\(77\) 32732.0 0.629138
\(78\) −13176.0 −0.245215
\(79\) 87088.0 1.56997 0.784984 0.619517i \(-0.212671\pi\)
0.784984 + 0.619517i \(0.212671\pi\)
\(80\) −6400.00 −0.111803
\(81\) 6561.00 0.111111
\(82\) −1672.00 −0.0274601
\(83\) −103252. −1.64514 −0.822571 0.568663i \(-0.807461\pi\)
−0.822571 + 0.568663i \(0.807461\pi\)
\(84\) −7056.00 −0.109109
\(85\) 850.000 0.0127606
\(86\) 26704.0 0.389341
\(87\) −51786.0 −0.733524
\(88\) −42752.0 −0.588504
\(89\) −49490.0 −0.662281 −0.331141 0.943581i \(-0.607433\pi\)
−0.331141 + 0.943581i \(0.607433\pi\)
\(90\) −8100.00 −0.105409
\(91\) 17934.0 0.227025
\(92\) 30528.0 0.376035
\(93\) −468.000 −0.00561098
\(94\) 5888.00 0.0687303
\(95\) 50400.0 0.572956
\(96\) 9216.00 0.102062
\(97\) 125630. 1.35570 0.677851 0.735200i \(-0.262912\pi\)
0.677851 + 0.735200i \(0.262912\pi\)
\(98\) 9604.00 0.101015
\(99\) −54108.0 −0.554847
\(100\) 10000.0 0.100000
\(101\) −95550.0 −0.932024 −0.466012 0.884778i \(-0.654310\pi\)
−0.466012 + 0.884778i \(0.654310\pi\)
\(102\) −1224.00 −0.0116488
\(103\) −7088.00 −0.0658310 −0.0329155 0.999458i \(-0.510479\pi\)
−0.0329155 + 0.999458i \(0.510479\pi\)
\(104\) −23424.0 −0.212362
\(105\) 11025.0 0.0975900
\(106\) 79336.0 0.685813
\(107\) 126048. 1.06433 0.532165 0.846641i \(-0.321379\pi\)
0.532165 + 0.846641i \(0.321379\pi\)
\(108\) 11664.0 0.0962250
\(109\) −151554. −1.22180 −0.610901 0.791707i \(-0.709193\pi\)
−0.610901 + 0.791707i \(0.709193\pi\)
\(110\) 66800.0 0.526374
\(111\) −95346.0 −0.734505
\(112\) −12544.0 −0.0944911
\(113\) 83174.0 0.612762 0.306381 0.951909i \(-0.400882\pi\)
0.306381 + 0.951909i \(0.400882\pi\)
\(114\) −72576.0 −0.523035
\(115\) −47700.0 −0.336336
\(116\) −92064.0 −0.635250
\(117\) −29646.0 −0.200217
\(118\) 41968.0 0.277468
\(119\) 1666.00 0.0107847
\(120\) −14400.0 −0.0912871
\(121\) 285173. 1.77070
\(122\) −155240. −0.944287
\(123\) −3762.00 −0.0224211
\(124\) −832.000 −0.00485925
\(125\) −15625.0 −0.0894427
\(126\) −15876.0 −0.0890871
\(127\) 38656.0 0.212671 0.106335 0.994330i \(-0.466088\pi\)
0.106335 + 0.994330i \(0.466088\pi\)
\(128\) 16384.0 0.0883883
\(129\) 60084.0 0.317896
\(130\) 36600.0 0.189943
\(131\) 108788. 0.553864 0.276932 0.960890i \(-0.410682\pi\)
0.276932 + 0.960890i \(0.410682\pi\)
\(132\) −96192.0 −0.480512
\(133\) 98784.0 0.484236
\(134\) −245712. −1.18213
\(135\) −18225.0 −0.0860663
\(136\) −2176.00 −0.0100882
\(137\) 384366. 1.74962 0.874810 0.484467i \(-0.160986\pi\)
0.874810 + 0.484467i \(0.160986\pi\)
\(138\) 68688.0 0.307032
\(139\) 256.000 0.00112384 0.000561918 1.00000i \(-0.499821\pi\)
0.000561918 1.00000i \(0.499821\pi\)
\(140\) 19600.0 0.0845154
\(141\) 13248.0 0.0561180
\(142\) −31744.0 −0.132112
\(143\) 244488. 0.999810
\(144\) 20736.0 0.0833333
\(145\) 143850. 0.568185
\(146\) 84536.0 0.328216
\(147\) 21609.0 0.0824786
\(148\) −169504. −0.636100
\(149\) 207150. 0.764398 0.382199 0.924080i \(-0.375167\pi\)
0.382199 + 0.924080i \(0.375167\pi\)
\(150\) 22500.0 0.0816497
\(151\) −276808. −0.987953 −0.493976 0.869475i \(-0.664457\pi\)
−0.493976 + 0.869475i \(0.664457\pi\)
\(152\) −129024. −0.452962
\(153\) −2754.00 −0.00951120
\(154\) 130928. 0.444868
\(155\) 1300.00 0.00434624
\(156\) −52704.0 −0.173393
\(157\) 71602.0 0.231833 0.115917 0.993259i \(-0.463019\pi\)
0.115917 + 0.993259i \(0.463019\pi\)
\(158\) 348352. 1.11013
\(159\) 178506. 0.559964
\(160\) −25600.0 −0.0790569
\(161\) −93492.0 −0.284256
\(162\) 26244.0 0.0785674
\(163\) −555196. −1.63673 −0.818366 0.574698i \(-0.805119\pi\)
−0.818366 + 0.574698i \(0.805119\pi\)
\(164\) −6688.00 −0.0194172
\(165\) 150300. 0.429783
\(166\) −413008. −1.16329
\(167\) 541152. 1.50151 0.750755 0.660581i \(-0.229690\pi\)
0.750755 + 0.660581i \(0.229690\pi\)
\(168\) −28224.0 −0.0771517
\(169\) −237337. −0.639218
\(170\) 3400.00 0.00902312
\(171\) −163296. −0.427056
\(172\) 106816. 0.275306
\(173\) −81358.0 −0.206674 −0.103337 0.994646i \(-0.532952\pi\)
−0.103337 + 0.994646i \(0.532952\pi\)
\(174\) −207144. −0.518680
\(175\) −30625.0 −0.0755929
\(176\) −171008. −0.416135
\(177\) 94428.0 0.226552
\(178\) −197960. −0.468304
\(179\) 734100. 1.71247 0.856234 0.516588i \(-0.172798\pi\)
0.856234 + 0.516588i \(0.172798\pi\)
\(180\) −32400.0 −0.0745356
\(181\) 128542. 0.291641 0.145821 0.989311i \(-0.453418\pi\)
0.145821 + 0.989311i \(0.453418\pi\)
\(182\) 71736.0 0.160531
\(183\) −349290. −0.771007
\(184\) 122112. 0.265897
\(185\) 264850. 0.568945
\(186\) −1872.00 −0.00396756
\(187\) 22712.0 0.0474954
\(188\) 23552.0 0.0485997
\(189\) −35721.0 −0.0727393
\(190\) 201600. 0.405141
\(191\) 383712. 0.761065 0.380533 0.924767i \(-0.375741\pi\)
0.380533 + 0.924767i \(0.375741\pi\)
\(192\) 36864.0 0.0721688
\(193\) 168818. 0.326231 0.163116 0.986607i \(-0.447846\pi\)
0.163116 + 0.986607i \(0.447846\pi\)
\(194\) 502520. 0.958626
\(195\) 82350.0 0.155088
\(196\) 38416.0 0.0714286
\(197\) 296258. 0.543882 0.271941 0.962314i \(-0.412334\pi\)
0.271941 + 0.962314i \(0.412334\pi\)
\(198\) −216432. −0.392336
\(199\) 199676. 0.357432 0.178716 0.983901i \(-0.442806\pi\)
0.178716 + 0.983901i \(0.442806\pi\)
\(200\) 40000.0 0.0707107
\(201\) −552852. −0.965203
\(202\) −382200. −0.659041
\(203\) 281946. 0.480204
\(204\) −4896.00 −0.00823694
\(205\) 10450.0 0.0173673
\(206\) −28352.0 −0.0465496
\(207\) 154548. 0.250690
\(208\) −93696.0 −0.150163
\(209\) 1.34669e6 2.13256
\(210\) 44100.0 0.0690066
\(211\) 596620. 0.922554 0.461277 0.887256i \(-0.347391\pi\)
0.461277 + 0.887256i \(0.347391\pi\)
\(212\) 317344. 0.484943
\(213\) −71424.0 −0.107869
\(214\) 504192. 0.752595
\(215\) −166900. −0.246241
\(216\) 46656.0 0.0680414
\(217\) 2548.00 0.00367325
\(218\) −606216. −0.863945
\(219\) 190206. 0.267987
\(220\) 267200. 0.372203
\(221\) 12444.0 0.0171388
\(222\) −381384. −0.519374
\(223\) −647432. −0.871830 −0.435915 0.899988i \(-0.643575\pi\)
−0.435915 + 0.899988i \(0.643575\pi\)
\(224\) −50176.0 −0.0668153
\(225\) 50625.0 0.0666667
\(226\) 332696. 0.433288
\(227\) −809932. −1.04324 −0.521620 0.853178i \(-0.674672\pi\)
−0.521620 + 0.853178i \(0.674672\pi\)
\(228\) −290304. −0.369842
\(229\) −1.06347e6 −1.34009 −0.670046 0.742319i \(-0.733726\pi\)
−0.670046 + 0.742319i \(0.733726\pi\)
\(230\) −190800. −0.237826
\(231\) 294588. 0.363233
\(232\) −368256. −0.449190
\(233\) −1.15017e6 −1.38794 −0.693972 0.720002i \(-0.744141\pi\)
−0.693972 + 0.720002i \(0.744141\pi\)
\(234\) −118584. −0.141575
\(235\) −36800.0 −0.0434689
\(236\) 167872. 0.196200
\(237\) 783792. 0.906421
\(238\) 6664.00 0.00762593
\(239\) 1.05722e6 1.19721 0.598603 0.801046i \(-0.295723\pi\)
0.598603 + 0.801046i \(0.295723\pi\)
\(240\) −57600.0 −0.0645497
\(241\) −1.68597e6 −1.86985 −0.934924 0.354849i \(-0.884532\pi\)
−0.934924 + 0.354849i \(0.884532\pi\)
\(242\) 1.14069e6 1.25207
\(243\) 59049.0 0.0641500
\(244\) −620960. −0.667712
\(245\) −60025.0 −0.0638877
\(246\) −15048.0 −0.0158541
\(247\) 737856. 0.769537
\(248\) −3328.00 −0.00343601
\(249\) −929268. −0.949823
\(250\) −62500.0 −0.0632456
\(251\) −1.16730e6 −1.16949 −0.584747 0.811216i \(-0.698806\pi\)
−0.584747 + 0.811216i \(0.698806\pi\)
\(252\) −63504.0 −0.0629941
\(253\) −1.27454e6 −1.25185
\(254\) 154624. 0.150381
\(255\) 7650.00 0.00736734
\(256\) 65536.0 0.0625000
\(257\) −277570. −0.262144 −0.131072 0.991373i \(-0.541842\pi\)
−0.131072 + 0.991373i \(0.541842\pi\)
\(258\) 240336. 0.224786
\(259\) 519106. 0.480847
\(260\) 146400. 0.134310
\(261\) −466074. −0.423500
\(262\) 435152. 0.391641
\(263\) 124124. 0.110654 0.0553269 0.998468i \(-0.482380\pi\)
0.0553269 + 0.998468i \(0.482380\pi\)
\(264\) −384768. −0.339773
\(265\) −495850. −0.433746
\(266\) 395136. 0.342407
\(267\) −445410. −0.382368
\(268\) −982848. −0.835890
\(269\) 138018. 0.116293 0.0581467 0.998308i \(-0.481481\pi\)
0.0581467 + 0.998308i \(0.481481\pi\)
\(270\) −72900.0 −0.0608581
\(271\) −1.32678e6 −1.09743 −0.548714 0.836010i \(-0.684882\pi\)
−0.548714 + 0.836010i \(0.684882\pi\)
\(272\) −8704.00 −0.00713340
\(273\) 161406. 0.131073
\(274\) 1.53746e6 1.23717
\(275\) −417500. −0.332908
\(276\) 274752. 0.217104
\(277\) −1.04114e6 −0.815284 −0.407642 0.913142i \(-0.633649\pi\)
−0.407642 + 0.913142i \(0.633649\pi\)
\(278\) 1024.00 0.000794672 0
\(279\) −4212.00 −0.00323950
\(280\) 78400.0 0.0597614
\(281\) 280490. 0.211910 0.105955 0.994371i \(-0.466210\pi\)
0.105955 + 0.994371i \(0.466210\pi\)
\(282\) 52992.0 0.0396815
\(283\) −1.95382e6 −1.45017 −0.725084 0.688660i \(-0.758199\pi\)
−0.725084 + 0.688660i \(0.758199\pi\)
\(284\) −126976. −0.0934170
\(285\) 453600. 0.330796
\(286\) 977952. 0.706972
\(287\) 20482.0 0.0146780
\(288\) 82944.0 0.0589256
\(289\) −1.41870e6 −0.999186
\(290\) 575400. 0.401768
\(291\) 1.13067e6 0.782715
\(292\) 338144. 0.232084
\(293\) −775910. −0.528010 −0.264005 0.964521i \(-0.585044\pi\)
−0.264005 + 0.964521i \(0.585044\pi\)
\(294\) 86436.0 0.0583212
\(295\) −262300. −0.175486
\(296\) −678016. −0.449791
\(297\) −486972. −0.320341
\(298\) 828600. 0.540511
\(299\) −698328. −0.451733
\(300\) 90000.0 0.0577350
\(301\) −327124. −0.208112
\(302\) −1.10723e6 −0.698588
\(303\) −859950. −0.538105
\(304\) −516096. −0.320292
\(305\) 970250. 0.597220
\(306\) −11016.0 −0.00672543
\(307\) −1.69219e6 −1.02471 −0.512357 0.858773i \(-0.671228\pi\)
−0.512357 + 0.858773i \(0.671228\pi\)
\(308\) 523712. 0.314569
\(309\) −63792.0 −0.0380076
\(310\) 5200.00 0.00307326
\(311\) −904416. −0.530234 −0.265117 0.964216i \(-0.585411\pi\)
−0.265117 + 0.964216i \(0.585411\pi\)
\(312\) −210816. −0.122608
\(313\) −3.09618e6 −1.78634 −0.893172 0.449715i \(-0.851525\pi\)
−0.893172 + 0.449715i \(0.851525\pi\)
\(314\) 286408. 0.163931
\(315\) 99225.0 0.0563436
\(316\) 1.39341e6 0.784984
\(317\) 1.40432e6 0.784908 0.392454 0.919772i \(-0.371626\pi\)
0.392454 + 0.919772i \(0.371626\pi\)
\(318\) 714024. 0.395954
\(319\) 3.84367e6 2.11480
\(320\) −102400. −0.0559017
\(321\) 1.13443e6 0.614492
\(322\) −373968. −0.200999
\(323\) 68544.0 0.0365564
\(324\) 104976. 0.0555556
\(325\) −228750. −0.120130
\(326\) −2.22078e6 −1.15734
\(327\) −1.36399e6 −0.705408
\(328\) −26752.0 −0.0137300
\(329\) −72128.0 −0.0367379
\(330\) 601200. 0.303902
\(331\) 794932. 0.398804 0.199402 0.979918i \(-0.436100\pi\)
0.199402 + 0.979918i \(0.436100\pi\)
\(332\) −1.65203e6 −0.822571
\(333\) −858114. −0.424067
\(334\) 2.16461e6 1.06173
\(335\) 1.53570e6 0.747643
\(336\) −112896. −0.0545545
\(337\) −1.78206e6 −0.854768 −0.427384 0.904070i \(-0.640565\pi\)
−0.427384 + 0.904070i \(0.640565\pi\)
\(338\) −949348. −0.451995
\(339\) 748566. 0.353778
\(340\) 13600.0 0.00638031
\(341\) 34736.0 0.0161768
\(342\) −653184. −0.301975
\(343\) −117649. −0.0539949
\(344\) 427264. 0.194671
\(345\) −429300. −0.194184
\(346\) −325432. −0.146140
\(347\) −1.54578e6 −0.689164 −0.344582 0.938756i \(-0.611979\pi\)
−0.344582 + 0.938756i \(0.611979\pi\)
\(348\) −828576. −0.366762
\(349\) 1.90197e6 0.835874 0.417937 0.908476i \(-0.362753\pi\)
0.417937 + 0.908476i \(0.362753\pi\)
\(350\) −122500. −0.0534522
\(351\) −266814. −0.115595
\(352\) −684032. −0.294252
\(353\) −1.74813e6 −0.746684 −0.373342 0.927694i \(-0.621788\pi\)
−0.373342 + 0.927694i \(0.621788\pi\)
\(354\) 377712. 0.160196
\(355\) 198400. 0.0835547
\(356\) −791840. −0.331141
\(357\) 14994.0 0.00622654
\(358\) 2.93640e6 1.21090
\(359\) 462536. 0.189413 0.0947064 0.995505i \(-0.469809\pi\)
0.0947064 + 0.995505i \(0.469809\pi\)
\(360\) −129600. −0.0527046
\(361\) 1.58816e6 0.641395
\(362\) 514168. 0.206221
\(363\) 2.56656e6 1.02231
\(364\) 286944. 0.113513
\(365\) −528350. −0.207582
\(366\) −1.39716e6 −0.545184
\(367\) −383768. −0.148732 −0.0743659 0.997231i \(-0.523693\pi\)
−0.0743659 + 0.997231i \(0.523693\pi\)
\(368\) 488448. 0.188018
\(369\) −33858.0 −0.0129448
\(370\) 1.05940e6 0.402305
\(371\) −971866. −0.366582
\(372\) −7488.00 −0.00280549
\(373\) −3.40835e6 −1.26844 −0.634222 0.773151i \(-0.718680\pi\)
−0.634222 + 0.773151i \(0.718680\pi\)
\(374\) 90848.0 0.0335843
\(375\) −140625. −0.0516398
\(376\) 94208.0 0.0343651
\(377\) 2.10596e6 0.763128
\(378\) −142884. −0.0514344
\(379\) 4.02918e6 1.44085 0.720425 0.693533i \(-0.243947\pi\)
0.720425 + 0.693533i \(0.243947\pi\)
\(380\) 806400. 0.286478
\(381\) 347904. 0.122785
\(382\) 1.53485e6 0.538154
\(383\) −4.25208e6 −1.48117 −0.740584 0.671963i \(-0.765451\pi\)
−0.740584 + 0.671963i \(0.765451\pi\)
\(384\) 147456. 0.0510310
\(385\) −818300. −0.281359
\(386\) 675272. 0.230680
\(387\) 540756. 0.183537
\(388\) 2.01008e6 0.677851
\(389\) 4.60602e6 1.54331 0.771653 0.636044i \(-0.219430\pi\)
0.771653 + 0.636044i \(0.219430\pi\)
\(390\) 329400. 0.109663
\(391\) −64872.0 −0.0214593
\(392\) 153664. 0.0505076
\(393\) 979092. 0.319773
\(394\) 1.18503e6 0.384583
\(395\) −2.17720e6 −0.702111
\(396\) −865728. −0.277424
\(397\) −4.02580e6 −1.28196 −0.640982 0.767556i \(-0.721473\pi\)
−0.640982 + 0.767556i \(0.721473\pi\)
\(398\) 798704. 0.252742
\(399\) 889056. 0.279574
\(400\) 160000. 0.0500000
\(401\) −3.37261e6 −1.04738 −0.523692 0.851908i \(-0.675446\pi\)
−0.523692 + 0.851908i \(0.675446\pi\)
\(402\) −2.21141e6 −0.682502
\(403\) 19032.0 0.00583743
\(404\) −1.52880e6 −0.466012
\(405\) −164025. −0.0496904
\(406\) 1.12778e6 0.339556
\(407\) 7.07679e6 2.11763
\(408\) −19584.0 −0.00582440
\(409\) 735666. 0.217457 0.108728 0.994072i \(-0.465322\pi\)
0.108728 + 0.994072i \(0.465322\pi\)
\(410\) 41800.0 0.0122805
\(411\) 3.45929e6 1.01014
\(412\) −113408. −0.0329155
\(413\) −514108. −0.148313
\(414\) 618192. 0.177265
\(415\) 2.58130e6 0.735730
\(416\) −374784. −0.106181
\(417\) 2304.00 0.000648847 0
\(418\) 5.38675e6 1.50795
\(419\) 4.23222e6 1.17770 0.588848 0.808244i \(-0.299582\pi\)
0.588848 + 0.808244i \(0.299582\pi\)
\(420\) 176400. 0.0487950
\(421\) 5.51413e6 1.51625 0.758127 0.652107i \(-0.226115\pi\)
0.758127 + 0.652107i \(0.226115\pi\)
\(422\) 2.38648e6 0.652344
\(423\) 119232. 0.0323998
\(424\) 1.26938e6 0.342906
\(425\) −21250.0 −0.00570672
\(426\) −285696. −0.0762746
\(427\) 1.90169e6 0.504743
\(428\) 2.01677e6 0.532165
\(429\) 2.20039e6 0.577241
\(430\) −667600. −0.174119
\(431\) 4.12711e6 1.07017 0.535085 0.844798i \(-0.320279\pi\)
0.535085 + 0.844798i \(0.320279\pi\)
\(432\) 186624. 0.0481125
\(433\) 3.11505e6 0.798444 0.399222 0.916854i \(-0.369280\pi\)
0.399222 + 0.916854i \(0.369280\pi\)
\(434\) 10192.0 0.00259738
\(435\) 1.29465e6 0.328042
\(436\) −2.42486e6 −0.610901
\(437\) −3.84653e6 −0.963530
\(438\) 760824. 0.189496
\(439\) 4.23065e6 1.04772 0.523861 0.851804i \(-0.324491\pi\)
0.523861 + 0.851804i \(0.324491\pi\)
\(440\) 1.06880e6 0.263187
\(441\) 194481. 0.0476190
\(442\) 49776.0 0.0121189
\(443\) 5.15771e6 1.24867 0.624335 0.781157i \(-0.285370\pi\)
0.624335 + 0.781157i \(0.285370\pi\)
\(444\) −1.52554e6 −0.367253
\(445\) 1.23725e6 0.296181
\(446\) −2.58973e6 −0.616477
\(447\) 1.86435e6 0.441325
\(448\) −200704. −0.0472456
\(449\) −4.88653e6 −1.14389 −0.571945 0.820292i \(-0.693811\pi\)
−0.571945 + 0.820292i \(0.693811\pi\)
\(450\) 202500. 0.0471405
\(451\) 279224. 0.0646415
\(452\) 1.33078e6 0.306381
\(453\) −2.49127e6 −0.570395
\(454\) −3.23973e6 −0.737682
\(455\) −448350. −0.101529
\(456\) −1.16122e6 −0.261518
\(457\) −8.14264e6 −1.82379 −0.911895 0.410425i \(-0.865381\pi\)
−0.911895 + 0.410425i \(0.865381\pi\)
\(458\) −4.25386e6 −0.947589
\(459\) −24786.0 −0.00549129
\(460\) −763200. −0.168168
\(461\) −3.95476e6 −0.866698 −0.433349 0.901226i \(-0.642668\pi\)
−0.433349 + 0.901226i \(0.642668\pi\)
\(462\) 1.17835e6 0.256844
\(463\) 5.91742e6 1.28286 0.641431 0.767180i \(-0.278341\pi\)
0.641431 + 0.767180i \(0.278341\pi\)
\(464\) −1.47302e6 −0.317625
\(465\) 11700.0 0.00250931
\(466\) −4.60068e6 −0.981425
\(467\) −2.20904e6 −0.468717 −0.234358 0.972150i \(-0.575299\pi\)
−0.234358 + 0.972150i \(0.575299\pi\)
\(468\) −474336. −0.100109
\(469\) 3.00997e6 0.631874
\(470\) −147200. −0.0307371
\(471\) 644418. 0.133849
\(472\) 671488. 0.138734
\(473\) −4.45957e6 −0.916516
\(474\) 3.13517e6 0.640936
\(475\) −1.26000e6 −0.256234
\(476\) 26656.0 0.00539234
\(477\) 1.60655e6 0.323295
\(478\) 4.22886e6 0.846553
\(479\) −3.92527e6 −0.781684 −0.390842 0.920458i \(-0.627816\pi\)
−0.390842 + 0.920458i \(0.627816\pi\)
\(480\) −230400. −0.0456435
\(481\) 3.87740e6 0.764150
\(482\) −6.74386e6 −1.32218
\(483\) −841428. −0.164115
\(484\) 4.56277e6 0.885350
\(485\) −3.14075e6 −0.606288
\(486\) 236196. 0.0453609
\(487\) −236992. −0.0452805 −0.0226403 0.999744i \(-0.507207\pi\)
−0.0226403 + 0.999744i \(0.507207\pi\)
\(488\) −2.48384e6 −0.472144
\(489\) −4.99676e6 −0.944967
\(490\) −240100. −0.0451754
\(491\) −4.25346e6 −0.796230 −0.398115 0.917335i \(-0.630336\pi\)
−0.398115 + 0.917335i \(0.630336\pi\)
\(492\) −60192.0 −0.0112105
\(493\) 195636. 0.0362520
\(494\) 2.95142e6 0.544144
\(495\) 1.35270e6 0.248135
\(496\) −13312.0 −0.00242962
\(497\) 388864. 0.0706166
\(498\) −3.71707e6 −0.671626
\(499\) 1.39319e6 0.250472 0.125236 0.992127i \(-0.460031\pi\)
0.125236 + 0.992127i \(0.460031\pi\)
\(500\) −250000. −0.0447214
\(501\) 4.87037e6 0.866897
\(502\) −4.66920e6 −0.826957
\(503\) −2.67065e6 −0.470649 −0.235324 0.971917i \(-0.575615\pi\)
−0.235324 + 0.971917i \(0.575615\pi\)
\(504\) −254016. −0.0445435
\(505\) 2.38875e6 0.416814
\(506\) −5.09818e6 −0.885194
\(507\) −2.13603e6 −0.369052
\(508\) 618496. 0.106335
\(509\) 8.23813e6 1.40940 0.704700 0.709506i \(-0.251082\pi\)
0.704700 + 0.709506i \(0.251082\pi\)
\(510\) 30600.0 0.00520950
\(511\) −1.03557e6 −0.175439
\(512\) 262144. 0.0441942
\(513\) −1.46966e6 −0.246561
\(514\) −1.11028e6 −0.185364
\(515\) 177200. 0.0294405
\(516\) 961344. 0.158948
\(517\) −983296. −0.161792
\(518\) 2.07642e6 0.340010
\(519\) −732222. −0.119323
\(520\) 585600. 0.0949714
\(521\) −1.14135e7 −1.84216 −0.921078 0.389379i \(-0.872690\pi\)
−0.921078 + 0.389379i \(0.872690\pi\)
\(522\) −1.86430e6 −0.299460
\(523\) −4.15665e6 −0.664492 −0.332246 0.943193i \(-0.607806\pi\)
−0.332246 + 0.943193i \(0.607806\pi\)
\(524\) 1.74061e6 0.276932
\(525\) −275625. −0.0436436
\(526\) 496496. 0.0782441
\(527\) 1768.00 0.000277304 0
\(528\) −1.53907e6 −0.240256
\(529\) −2.79588e6 −0.434389
\(530\) −1.98340e6 −0.306705
\(531\) 849852. 0.130800
\(532\) 1.58054e6 0.242118
\(533\) 152988. 0.0233260
\(534\) −1.78164e6 −0.270375
\(535\) −3.15120e6 −0.475983
\(536\) −3.93139e6 −0.591064
\(537\) 6.60690e6 0.988694
\(538\) 552072. 0.0822318
\(539\) −1.60387e6 −0.237792
\(540\) −291600. −0.0430331
\(541\) −1.06683e7 −1.56711 −0.783557 0.621320i \(-0.786597\pi\)
−0.783557 + 0.621320i \(0.786597\pi\)
\(542\) −5.30712e6 −0.775998
\(543\) 1.15688e6 0.168379
\(544\) −34816.0 −0.00504408
\(545\) 3.78885e6 0.546407
\(546\) 645624. 0.0926826
\(547\) 1.13950e7 1.62835 0.814173 0.580622i \(-0.197191\pi\)
0.814173 + 0.580622i \(0.197191\pi\)
\(548\) 6.14986e6 0.874810
\(549\) −3.14361e6 −0.445141
\(550\) −1.67000e6 −0.235402
\(551\) 1.16001e7 1.62773
\(552\) 1.09901e6 0.153516
\(553\) −4.26731e6 −0.593392
\(554\) −4.16455e6 −0.576493
\(555\) 2.38365e6 0.328481
\(556\) 4096.00 0.000561918 0
\(557\) 2.41328e6 0.329587 0.164794 0.986328i \(-0.447304\pi\)
0.164794 + 0.986328i \(0.447304\pi\)
\(558\) −16848.0 −0.00229067
\(559\) −2.44342e6 −0.330726
\(560\) 313600. 0.0422577
\(561\) 204408. 0.0274215
\(562\) 1.12196e6 0.149843
\(563\) −1.24262e7 −1.65222 −0.826109 0.563511i \(-0.809450\pi\)
−0.826109 + 0.563511i \(0.809450\pi\)
\(564\) 211968. 0.0280590
\(565\) −2.07935e6 −0.274035
\(566\) −7.81528e6 −1.02542
\(567\) −321489. −0.0419961
\(568\) −507904. −0.0660558
\(569\) −9.41797e6 −1.21948 −0.609742 0.792600i \(-0.708727\pi\)
−0.609742 + 0.792600i \(0.708727\pi\)
\(570\) 1.81440e6 0.233908
\(571\) −2.59936e6 −0.333638 −0.166819 0.985988i \(-0.553350\pi\)
−0.166819 + 0.985988i \(0.553350\pi\)
\(572\) 3.91181e6 0.499905
\(573\) 3.45341e6 0.439401
\(574\) 81928.0 0.0103789
\(575\) 1.19250e6 0.150414
\(576\) 331776. 0.0416667
\(577\) −1.04806e7 −1.31053 −0.655267 0.755398i \(-0.727444\pi\)
−0.655267 + 0.755398i \(0.727444\pi\)
\(578\) −5.67480e6 −0.706531
\(579\) 1.51936e6 0.188350
\(580\) 2.30160e6 0.284093
\(581\) 5.05935e6 0.621805
\(582\) 4.52268e6 0.553463
\(583\) −1.32491e7 −1.61442
\(584\) 1.35258e6 0.164108
\(585\) 741150. 0.0895399
\(586\) −3.10364e6 −0.373360
\(587\) 1.50698e7 1.80515 0.902574 0.430536i \(-0.141675\pi\)
0.902574 + 0.430536i \(0.141675\pi\)
\(588\) 345744. 0.0412393
\(589\) 104832. 0.0124510
\(590\) −1.04920e6 −0.124088
\(591\) 2.66632e6 0.314010
\(592\) −2.71206e6 −0.318050
\(593\) 8.35160e6 0.975288 0.487644 0.873043i \(-0.337856\pi\)
0.487644 + 0.873043i \(0.337856\pi\)
\(594\) −1.94789e6 −0.226515
\(595\) −41650.0 −0.00482306
\(596\) 3.31440e6 0.382199
\(597\) 1.79708e6 0.206363
\(598\) −2.79331e6 −0.319423
\(599\) 4.78980e6 0.545444 0.272722 0.962093i \(-0.412076\pi\)
0.272722 + 0.962093i \(0.412076\pi\)
\(600\) 360000. 0.0408248
\(601\) 1.54853e7 1.74877 0.874386 0.485230i \(-0.161264\pi\)
0.874386 + 0.485230i \(0.161264\pi\)
\(602\) −1.30850e6 −0.147157
\(603\) −4.97567e6 −0.557260
\(604\) −4.42893e6 −0.493976
\(605\) −7.12932e6 −0.791881
\(606\) −3.43980e6 −0.380497
\(607\) −8.86825e6 −0.976936 −0.488468 0.872582i \(-0.662444\pi\)
−0.488468 + 0.872582i \(0.662444\pi\)
\(608\) −2.06438e6 −0.226481
\(609\) 2.53751e6 0.277246
\(610\) 3.88100e6 0.422298
\(611\) −538752. −0.0583829
\(612\) −44064.0 −0.00475560
\(613\) 1.16930e7 1.25683 0.628414 0.777879i \(-0.283705\pi\)
0.628414 + 0.777879i \(0.283705\pi\)
\(614\) −6.76875e6 −0.724582
\(615\) 94050.0 0.0100270
\(616\) 2.09485e6 0.222434
\(617\) −1.14604e7 −1.21196 −0.605978 0.795482i \(-0.707218\pi\)
−0.605978 + 0.795482i \(0.707218\pi\)
\(618\) −255168. −0.0268754
\(619\) 237488. 0.0249124 0.0124562 0.999922i \(-0.496035\pi\)
0.0124562 + 0.999922i \(0.496035\pi\)
\(620\) 20800.0 0.00217312
\(621\) 1.39093e6 0.144736
\(622\) −3.61766e6 −0.374932
\(623\) 2.42501e6 0.250319
\(624\) −843264. −0.0866966
\(625\) 390625. 0.0400000
\(626\) −1.23847e7 −1.26314
\(627\) 1.21202e7 1.23123
\(628\) 1.14563e6 0.115917
\(629\) 360196. 0.0363005
\(630\) 396900. 0.0398410
\(631\) −14344.0 −0.00143416 −0.000717079 1.00000i \(-0.500228\pi\)
−0.000717079 1.00000i \(0.500228\pi\)
\(632\) 5.57363e6 0.555067
\(633\) 5.36958e6 0.532637
\(634\) 5.61729e6 0.555013
\(635\) −966400. −0.0951092
\(636\) 2.85610e6 0.279982
\(637\) −878766. −0.0858074
\(638\) 1.53747e7 1.49539
\(639\) −642816. −0.0622780
\(640\) −409600. −0.0395285
\(641\) −8.98925e6 −0.864128 −0.432064 0.901843i \(-0.642215\pi\)
−0.432064 + 0.901843i \(0.642215\pi\)
\(642\) 4.53773e6 0.434511
\(643\) 1.28790e7 1.22844 0.614222 0.789133i \(-0.289470\pi\)
0.614222 + 0.789133i \(0.289470\pi\)
\(644\) −1.49587e6 −0.142128
\(645\) −1.50210e6 −0.142167
\(646\) 274176. 0.0258493
\(647\) 2.06233e7 1.93685 0.968427 0.249299i \(-0.0802002\pi\)
0.968427 + 0.249299i \(0.0802002\pi\)
\(648\) 419904. 0.0392837
\(649\) −7.00866e6 −0.653165
\(650\) −915000. −0.0849450
\(651\) 22932.0 0.00212075
\(652\) −8.88314e6 −0.818366
\(653\) −6.76833e6 −0.621153 −0.310577 0.950548i \(-0.600522\pi\)
−0.310577 + 0.950548i \(0.600522\pi\)
\(654\) −5.45594e6 −0.498799
\(655\) −2.71970e6 −0.247695
\(656\) −107008. −0.00970860
\(657\) 1.71185e6 0.154722
\(658\) −288512. −0.0259776
\(659\) −6.58008e6 −0.590225 −0.295112 0.955463i \(-0.595357\pi\)
−0.295112 + 0.955463i \(0.595357\pi\)
\(660\) 2.40480e6 0.214891
\(661\) 1.30970e7 1.16592 0.582961 0.812500i \(-0.301894\pi\)
0.582961 + 0.812500i \(0.301894\pi\)
\(662\) 3.17973e6 0.281997
\(663\) 111996. 0.00989507
\(664\) −6.60813e6 −0.581645
\(665\) −2.46960e6 −0.216557
\(666\) −3.43246e6 −0.299861
\(667\) −1.09786e7 −0.955506
\(668\) 8.65843e6 0.750755
\(669\) −5.82689e6 −0.503352
\(670\) 6.14280e6 0.528664
\(671\) 2.59251e7 2.22287
\(672\) −451584. −0.0385758
\(673\) −1.13071e7 −0.962304 −0.481152 0.876637i \(-0.659781\pi\)
−0.481152 + 0.876637i \(0.659781\pi\)
\(674\) −7.12825e6 −0.604412
\(675\) 455625. 0.0384900
\(676\) −3.79739e6 −0.319609
\(677\) −3.55455e6 −0.298066 −0.149033 0.988832i \(-0.547616\pi\)
−0.149033 + 0.988832i \(0.547616\pi\)
\(678\) 2.99426e6 0.250159
\(679\) −6.15587e6 −0.512407
\(680\) 54400.0 0.00451156
\(681\) −7.28939e6 −0.602314
\(682\) 138944. 0.0114388
\(683\) −1.46799e7 −1.20412 −0.602062 0.798449i \(-0.705654\pi\)
−0.602062 + 0.798449i \(0.705654\pi\)
\(684\) −2.61274e6 −0.213528
\(685\) −9.60915e6 −0.782454
\(686\) −470596. −0.0381802
\(687\) −9.57119e6 −0.773703
\(688\) 1.70906e6 0.137653
\(689\) −7.25924e6 −0.582564
\(690\) −1.71720e6 −0.137309
\(691\) 1.94548e7 1.55000 0.775002 0.631959i \(-0.217749\pi\)
0.775002 + 0.631959i \(0.217749\pi\)
\(692\) −1.30173e6 −0.103337
\(693\) 2.65129e6 0.209713
\(694\) −6.18310e6 −0.487313
\(695\) −6400.00 −0.000502595 0
\(696\) −3.31430e6 −0.259340
\(697\) 14212.0 0.00110809
\(698\) 7.60790e6 0.591052
\(699\) −1.03515e7 −0.801330
\(700\) −490000. −0.0377964
\(701\) 1.04704e7 0.804764 0.402382 0.915472i \(-0.368182\pi\)
0.402382 + 0.915472i \(0.368182\pi\)
\(702\) −1.06726e6 −0.0817383
\(703\) 2.13575e7 1.62990
\(704\) −2.73613e6 −0.208068
\(705\) −331200. −0.0250968
\(706\) −6.99252e6 −0.527985
\(707\) 4.68195e6 0.352272
\(708\) 1.51085e6 0.113276
\(709\) −1.45289e7 −1.08547 −0.542734 0.839904i \(-0.682611\pi\)
−0.542734 + 0.839904i \(0.682611\pi\)
\(710\) 793600. 0.0590821
\(711\) 7.05413e6 0.523322
\(712\) −3.16736e6 −0.234152
\(713\) −99216.0 −0.00730900
\(714\) 59976.0 0.00440283
\(715\) −6.11220e6 −0.447129
\(716\) 1.17456e7 0.856234
\(717\) 9.51494e6 0.691207
\(718\) 1.85014e6 0.133935
\(719\) −1.75805e7 −1.26826 −0.634131 0.773225i \(-0.718642\pi\)
−0.634131 + 0.773225i \(0.718642\pi\)
\(720\) −518400. −0.0372678
\(721\) 347312. 0.0248818
\(722\) 6.35263e6 0.453535
\(723\) −1.51737e7 −1.07956
\(724\) 2.05667e6 0.145821
\(725\) −3.59625e6 −0.254100
\(726\) 1.02662e7 0.722885
\(727\) 1.63370e7 1.14640 0.573201 0.819415i \(-0.305702\pi\)
0.573201 + 0.819415i \(0.305702\pi\)
\(728\) 1.14778e6 0.0802655
\(729\) 531441. 0.0370370
\(730\) −2.11340e6 −0.146783
\(731\) −226984. −0.0157109
\(732\) −5.58864e6 −0.385504
\(733\) −1.80106e7 −1.23813 −0.619067 0.785338i \(-0.712489\pi\)
−0.619067 + 0.785338i \(0.712489\pi\)
\(734\) −1.53507e6 −0.105169
\(735\) −540225. −0.0368856
\(736\) 1.95379e6 0.132949
\(737\) 4.10339e7 2.78275
\(738\) −135432. −0.00915336
\(739\) 2.32873e7 1.56858 0.784292 0.620392i \(-0.213027\pi\)
0.784292 + 0.620392i \(0.213027\pi\)
\(740\) 4.23760e6 0.284473
\(741\) 6.64070e6 0.444292
\(742\) −3.88746e6 −0.259213
\(743\) 1.61253e7 1.07161 0.535805 0.844342i \(-0.320008\pi\)
0.535805 + 0.844342i \(0.320008\pi\)
\(744\) −29952.0 −0.00198378
\(745\) −5.17875e6 −0.341849
\(746\) −1.36334e7 −0.896926
\(747\) −8.36341e6 −0.548380
\(748\) 363392. 0.0237477
\(749\) −6.17635e6 −0.402279
\(750\) −562500. −0.0365148
\(751\) −4.61740e6 −0.298743 −0.149371 0.988781i \(-0.547725\pi\)
−0.149371 + 0.988781i \(0.547725\pi\)
\(752\) 376832. 0.0242998
\(753\) −1.05057e7 −0.675208
\(754\) 8.42386e6 0.539613
\(755\) 6.92020e6 0.441826
\(756\) −571536. −0.0363696
\(757\) −7.09630e6 −0.450083 −0.225041 0.974349i \(-0.572252\pi\)
−0.225041 + 0.974349i \(0.572252\pi\)
\(758\) 1.61167e7 1.01883
\(759\) −1.14709e7 −0.722758
\(760\) 3.22560e6 0.202571
\(761\) 2.59097e6 0.162182 0.0810908 0.996707i \(-0.474160\pi\)
0.0810908 + 0.996707i \(0.474160\pi\)
\(762\) 1.39162e6 0.0868224
\(763\) 7.42615e6 0.461798
\(764\) 6.13939e6 0.380533
\(765\) 68850.0 0.00425354
\(766\) −1.70083e7 −1.04734
\(767\) −3.84007e6 −0.235695
\(768\) 589824. 0.0360844
\(769\) −2.18633e7 −1.33321 −0.666606 0.745410i \(-0.732254\pi\)
−0.666606 + 0.745410i \(0.732254\pi\)
\(770\) −3.27320e6 −0.198951
\(771\) −2.49813e6 −0.151349
\(772\) 2.70109e6 0.163116
\(773\) −1.37603e7 −0.828284 −0.414142 0.910212i \(-0.635918\pi\)
−0.414142 + 0.910212i \(0.635918\pi\)
\(774\) 2.16302e6 0.129780
\(775\) −32500.0 −0.00194370
\(776\) 8.04032e6 0.479313
\(777\) 4.67195e6 0.277617
\(778\) 1.84241e7 1.09128
\(779\) 842688. 0.0497534
\(780\) 1.31760e6 0.0775438
\(781\) 5.30125e6 0.310993
\(782\) −259488. −0.0151740
\(783\) −4.19467e6 −0.244508
\(784\) 614656. 0.0357143
\(785\) −1.79005e6 −0.103679
\(786\) 3.91637e6 0.226114
\(787\) −1.85194e7 −1.06584 −0.532918 0.846167i \(-0.678905\pi\)
−0.532918 + 0.846167i \(0.678905\pi\)
\(788\) 4.74013e6 0.271941
\(789\) 1.11712e6 0.0638860
\(790\) −8.70880e6 −0.496467
\(791\) −4.07553e6 −0.231602
\(792\) −3.46291e6 −0.196168
\(793\) 1.42045e7 0.802124
\(794\) −1.61032e7 −0.906485
\(795\) −4.46265e6 −0.250423
\(796\) 3.19482e6 0.178716
\(797\) 2.01727e7 1.12491 0.562457 0.826827i \(-0.309856\pi\)
0.562457 + 0.826827i \(0.309856\pi\)
\(798\) 3.55622e6 0.197689
\(799\) −50048.0 −0.00277345
\(800\) 640000. 0.0353553
\(801\) −4.00869e6 −0.220760
\(802\) −1.34905e7 −0.740612
\(803\) −1.41175e7 −0.772626
\(804\) −8.84563e6 −0.482602
\(805\) 2.33730e6 0.127123
\(806\) 76128.0 0.00412769
\(807\) 1.24216e6 0.0671420
\(808\) −6.11520e6 −0.329520
\(809\) 2.31331e7 1.24269 0.621344 0.783538i \(-0.286587\pi\)
0.621344 + 0.783538i \(0.286587\pi\)
\(810\) −656100. −0.0351364
\(811\) −4.43094e6 −0.236562 −0.118281 0.992980i \(-0.537738\pi\)
−0.118281 + 0.992980i \(0.537738\pi\)
\(812\) 4.51114e6 0.240102
\(813\) −1.19410e7 −0.633600
\(814\) 2.83072e7 1.49739
\(815\) 1.38799e7 0.731968
\(816\) −78336.0 −0.00411847
\(817\) −1.34588e7 −0.705426
\(818\) 2.94266e6 0.153765
\(819\) 1.45265e6 0.0756750
\(820\) 167200. 0.00868364
\(821\) 3.68300e7 1.90697 0.953485 0.301439i \(-0.0974669\pi\)
0.953485 + 0.301439i \(0.0974669\pi\)
\(822\) 1.38372e7 0.714279
\(823\) 2.16829e7 1.11588 0.557940 0.829881i \(-0.311592\pi\)
0.557940 + 0.829881i \(0.311592\pi\)
\(824\) −453632. −0.0232748
\(825\) −3.75750e6 −0.192205
\(826\) −2.05643e6 −0.104873
\(827\) 1.10996e7 0.564344 0.282172 0.959364i \(-0.408945\pi\)
0.282172 + 0.959364i \(0.408945\pi\)
\(828\) 2.47277e6 0.125345
\(829\) 9.57052e6 0.483670 0.241835 0.970317i \(-0.422251\pi\)
0.241835 + 0.970317i \(0.422251\pi\)
\(830\) 1.03252e7 0.520239
\(831\) −9.37024e6 −0.470704
\(832\) −1.49914e6 −0.0750815
\(833\) −81634.0 −0.00407623
\(834\) 9216.00 0.000458804 0
\(835\) −1.35288e7 −0.671495
\(836\) 2.15470e7 1.06628
\(837\) −37908.0 −0.00187033
\(838\) 1.69289e7 0.832757
\(839\) 2.40996e7 1.18196 0.590982 0.806685i \(-0.298740\pi\)
0.590982 + 0.806685i \(0.298740\pi\)
\(840\) 705600. 0.0345033
\(841\) 1.25974e7 0.614172
\(842\) 2.20565e7 1.07215
\(843\) 2.52441e6 0.122346
\(844\) 9.54592e6 0.461277
\(845\) 5.93342e6 0.285867
\(846\) 476928. 0.0229101
\(847\) −1.39735e7 −0.669262
\(848\) 5.07750e6 0.242471
\(849\) −1.75844e7 −0.837255
\(850\) −85000.0 −0.00403526
\(851\) −2.02134e7 −0.956785
\(852\) −1.14278e6 −0.0539343
\(853\) −1.62218e7 −0.763357 −0.381678 0.924295i \(-0.624654\pi\)
−0.381678 + 0.924295i \(0.624654\pi\)
\(854\) 7.60676e6 0.356907
\(855\) 4.08240e6 0.190985
\(856\) 8.06707e6 0.376298
\(857\) 1.82957e7 0.850936 0.425468 0.904974i \(-0.360110\pi\)
0.425468 + 0.904974i \(0.360110\pi\)
\(858\) 8.80157e6 0.408171
\(859\) 3.49800e6 0.161747 0.0808736 0.996724i \(-0.474229\pi\)
0.0808736 + 0.996724i \(0.474229\pi\)
\(860\) −2.67040e6 −0.123120
\(861\) 184338. 0.00847436
\(862\) 1.65084e7 0.756725
\(863\) −3.70241e7 −1.69222 −0.846110 0.533008i \(-0.821062\pi\)
−0.846110 + 0.533008i \(0.821062\pi\)
\(864\) 746496. 0.0340207
\(865\) 2.03395e6 0.0924272
\(866\) 1.24602e7 0.564586
\(867\) −1.27683e7 −0.576880
\(868\) 40768.0 0.00183662
\(869\) −5.81748e7 −2.61328
\(870\) 5.17860e6 0.231961
\(871\) 2.24826e7 1.00416
\(872\) −9.69946e6 −0.431973
\(873\) 1.01760e7 0.451900
\(874\) −1.53861e7 −0.681319
\(875\) 765625. 0.0338062
\(876\) 3.04330e6 0.133994
\(877\) 186038. 0.00816775 0.00408388 0.999992i \(-0.498700\pi\)
0.00408388 + 0.999992i \(0.498700\pi\)
\(878\) 1.69226e7 0.740851
\(879\) −6.98319e6 −0.304847
\(880\) 4.27520e6 0.186101
\(881\) 3.33731e6 0.144863 0.0724314 0.997373i \(-0.476924\pi\)
0.0724314 + 0.997373i \(0.476924\pi\)
\(882\) 777924. 0.0336718
\(883\) 1.62975e7 0.703426 0.351713 0.936108i \(-0.385599\pi\)
0.351713 + 0.936108i \(0.385599\pi\)
\(884\) 199104. 0.00856938
\(885\) −2.36070e6 −0.101317
\(886\) 2.06308e7 0.882943
\(887\) −2.32942e7 −0.994120 −0.497060 0.867716i \(-0.665587\pi\)
−0.497060 + 0.867716i \(0.665587\pi\)
\(888\) −6.10214e6 −0.259687
\(889\) −1.89414e6 −0.0803820
\(890\) 4.94900e6 0.209432
\(891\) −4.38275e6 −0.184949
\(892\) −1.03589e7 −0.435915
\(893\) −2.96755e6 −0.124529
\(894\) 7.45740e6 0.312064
\(895\) −1.83525e7 −0.765839
\(896\) −802816. −0.0334077
\(897\) −6.28495e6 −0.260808
\(898\) −1.95461e7 −0.808853
\(899\) 299208. 0.0123474
\(900\) 810000. 0.0333333
\(901\) −674356. −0.0276743
\(902\) 1.11690e6 0.0457084
\(903\) −2.94412e6 −0.120153
\(904\) 5.32314e6 0.216644
\(905\) −3.21355e6 −0.130426
\(906\) −9.96509e6 −0.403330
\(907\) 3.13298e7 1.26456 0.632281 0.774739i \(-0.282119\pi\)
0.632281 + 0.774739i \(0.282119\pi\)
\(908\) −1.29589e7 −0.521620
\(909\) −7.73955e6 −0.310675
\(910\) −1.79340e6 −0.0717916
\(911\) −3.63983e7 −1.45307 −0.726533 0.687132i \(-0.758869\pi\)
−0.726533 + 0.687132i \(0.758869\pi\)
\(912\) −4.64486e6 −0.184921
\(913\) 6.89723e7 2.73841
\(914\) −3.25706e7 −1.28961
\(915\) 8.73225e6 0.344805
\(916\) −1.70155e7 −0.670046
\(917\) −5.33061e6 −0.209341
\(918\) −99144.0 −0.00388293
\(919\) 2.86227e7 1.11795 0.558975 0.829185i \(-0.311195\pi\)
0.558975 + 0.829185i \(0.311195\pi\)
\(920\) −3.05280e6 −0.118913
\(921\) −1.52297e7 −0.591619
\(922\) −1.58190e7 −0.612848
\(923\) 2.90458e6 0.112222
\(924\) 4.71341e6 0.181616
\(925\) −6.62125e6 −0.254440
\(926\) 2.36697e7 0.907121
\(927\) −574128. −0.0219437
\(928\) −5.89210e6 −0.224595
\(929\) −4.13345e6 −0.157135 −0.0785676 0.996909i \(-0.525035\pi\)
−0.0785676 + 0.996909i \(0.525035\pi\)
\(930\) 46800.0 0.00177435
\(931\) −4.84042e6 −0.183024
\(932\) −1.84027e7 −0.693972
\(933\) −8.13974e6 −0.306131
\(934\) −8.83614e6 −0.331433
\(935\) −567800. −0.0212406
\(936\) −1.89734e6 −0.0707875
\(937\) −4.16051e6 −0.154809 −0.0774047 0.997000i \(-0.524663\pi\)
−0.0774047 + 0.997000i \(0.524663\pi\)
\(938\) 1.20399e7 0.446802
\(939\) −2.78656e7 −1.03135
\(940\) −588800. −0.0217344
\(941\) −5.42587e6 −0.199754 −0.0998770 0.995000i \(-0.531845\pi\)
−0.0998770 + 0.995000i \(0.531845\pi\)
\(942\) 2.57767e6 0.0946456
\(943\) −797544. −0.0292062
\(944\) 2.68595e6 0.0980998
\(945\) 893025. 0.0325300
\(946\) −1.78383e7 −0.648075
\(947\) −8.32317e6 −0.301588 −0.150794 0.988565i \(-0.548183\pi\)
−0.150794 + 0.988565i \(0.548183\pi\)
\(948\) 1.25407e7 0.453211
\(949\) −7.73504e6 −0.278803
\(950\) −5.04000e6 −0.181185
\(951\) 1.26389e7 0.453167
\(952\) 106624. 0.00381296
\(953\) 4.27085e7 1.52329 0.761644 0.647995i \(-0.224392\pi\)
0.761644 + 0.647995i \(0.224392\pi\)
\(954\) 6.42622e6 0.228604
\(955\) −9.59280e6 −0.340359
\(956\) 1.69155e7 0.598603
\(957\) 3.45930e7 1.22098
\(958\) −1.57011e7 −0.552734
\(959\) −1.88339e7 −0.661294
\(960\) −921600. −0.0322749
\(961\) −2.86264e7 −0.999906
\(962\) 1.55096e7 0.540335
\(963\) 1.02099e7 0.354777
\(964\) −2.69755e7 −0.934924
\(965\) −4.22045e6 −0.145895
\(966\) −3.36571e6 −0.116047
\(967\) −3.75367e7 −1.29089 −0.645445 0.763807i \(-0.723328\pi\)
−0.645445 + 0.763807i \(0.723328\pi\)
\(968\) 1.82511e7 0.626037
\(969\) 616896. 0.0211058
\(970\) −1.25630e7 −0.428710
\(971\) −4.06557e7 −1.38380 −0.691900 0.721993i \(-0.743226\pi\)
−0.691900 + 0.721993i \(0.743226\pi\)
\(972\) 944784. 0.0320750
\(973\) −12544.0 −0.000424770 0
\(974\) −947968. −0.0320182
\(975\) −2.05875e6 −0.0693573
\(976\) −9.93536e6 −0.333856
\(977\) 2.37522e7 0.796098 0.398049 0.917364i \(-0.369687\pi\)
0.398049 + 0.917364i \(0.369687\pi\)
\(978\) −1.99871e7 −0.668193
\(979\) 3.30593e7 1.10239
\(980\) −960400. −0.0319438
\(981\) −1.22759e7 −0.407268
\(982\) −1.70138e7 −0.563020
\(983\) 4.51922e7 1.49169 0.745847 0.666118i \(-0.232045\pi\)
0.745847 + 0.666118i \(0.232045\pi\)
\(984\) −240768. −0.00792704
\(985\) −7.40645e6 −0.243231
\(986\) 782544. 0.0256340
\(987\) −649152. −0.0212106
\(988\) 1.18057e7 0.384768
\(989\) 1.27378e7 0.414099
\(990\) 5.41080e6 0.175458
\(991\) −3.84745e7 −1.24448 −0.622241 0.782826i \(-0.713777\pi\)
−0.622241 + 0.782826i \(0.713777\pi\)
\(992\) −53248.0 −0.00171800
\(993\) 7.15439e6 0.230250
\(994\) 1.55546e6 0.0499335
\(995\) −4.99190e6 −0.159848
\(996\) −1.48683e7 −0.474911
\(997\) 1.95602e7 0.623213 0.311606 0.950211i \(-0.399133\pi\)
0.311606 + 0.950211i \(0.399133\pi\)
\(998\) 5.57275e6 0.177110
\(999\) −7.72303e6 −0.244835
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 210.6.a.j.1.1 1
3.2 odd 2 630.6.a.d.1.1 1
5.2 odd 4 1050.6.g.j.799.2 2
5.3 odd 4 1050.6.g.j.799.1 2
5.4 even 2 1050.6.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.6.a.j.1.1 1 1.1 even 1 trivial
630.6.a.d.1.1 1 3.2 odd 2
1050.6.a.b.1.1 1 5.4 even 2
1050.6.g.j.799.1 2 5.3 odd 4
1050.6.g.j.799.2 2 5.2 odd 4