Properties

Label 2100.2.d.b
Level $2100$
Weight $2$
Character orbit 2100.d
Analytic conductor $16.769$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,2,Mod(1301,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1301");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.7685844245\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} + ( - \beta - 2) q^{7} - 3 q^{9} + 4 \beta q^{13} - 2 \beta q^{19} + (2 \beta - 3) q^{21} + 3 \beta q^{27} + 6 \beta q^{31} - 10 q^{37} + 12 q^{39} + 8 q^{43} + (4 \beta + 1) q^{49} - 6 q^{57} + \cdots - 8 \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{7} - 6 q^{9} - 6 q^{21} - 20 q^{37} + 24 q^{39} + 16 q^{43} + 2 q^{49} - 12 q^{57} + 12 q^{63} + 32 q^{67} - 8 q^{79} + 18 q^{81} + 24 q^{91} + 36 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1301.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.73205i 0 0 0 −2.00000 1.73205i 0 −3.00000 0
1301.2 0 1.73205i 0 0 0 −2.00000 + 1.73205i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.2.d.b 2
3.b odd 2 1 CM 2100.2.d.b 2
5.b even 2 1 84.2.f.a 2
5.c odd 4 2 2100.2.f.e 4
7.b odd 2 1 inner 2100.2.d.b 2
15.d odd 2 1 84.2.f.a 2
15.e even 4 2 2100.2.f.e 4
20.d odd 2 1 336.2.k.a 2
21.c even 2 1 inner 2100.2.d.b 2
35.c odd 2 1 84.2.f.a 2
35.f even 4 2 2100.2.f.e 4
35.i odd 6 1 588.2.k.a 2
35.i odd 6 1 588.2.k.e 2
35.j even 6 1 588.2.k.a 2
35.j even 6 1 588.2.k.e 2
40.e odd 2 1 1344.2.k.a 2
40.f even 2 1 1344.2.k.b 2
45.h odd 6 1 2268.2.x.c 2
45.h odd 6 1 2268.2.x.e 2
45.j even 6 1 2268.2.x.c 2
45.j even 6 1 2268.2.x.e 2
60.h even 2 1 336.2.k.a 2
105.g even 2 1 84.2.f.a 2
105.k odd 4 2 2100.2.f.e 4
105.o odd 6 1 588.2.k.a 2
105.o odd 6 1 588.2.k.e 2
105.p even 6 1 588.2.k.a 2
105.p even 6 1 588.2.k.e 2
120.i odd 2 1 1344.2.k.b 2
120.m even 2 1 1344.2.k.a 2
140.c even 2 1 336.2.k.a 2
280.c odd 2 1 1344.2.k.b 2
280.n even 2 1 1344.2.k.a 2
315.z even 6 1 2268.2.x.c 2
315.z even 6 1 2268.2.x.e 2
315.bg odd 6 1 2268.2.x.c 2
315.bg odd 6 1 2268.2.x.e 2
420.o odd 2 1 336.2.k.a 2
840.b odd 2 1 1344.2.k.a 2
840.u even 2 1 1344.2.k.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.2.f.a 2 5.b even 2 1
84.2.f.a 2 15.d odd 2 1
84.2.f.a 2 35.c odd 2 1
84.2.f.a 2 105.g even 2 1
336.2.k.a 2 20.d odd 2 1
336.2.k.a 2 60.h even 2 1
336.2.k.a 2 140.c even 2 1
336.2.k.a 2 420.o odd 2 1
588.2.k.a 2 35.i odd 6 1
588.2.k.a 2 35.j even 6 1
588.2.k.a 2 105.o odd 6 1
588.2.k.a 2 105.p even 6 1
588.2.k.e 2 35.i odd 6 1
588.2.k.e 2 35.j even 6 1
588.2.k.e 2 105.o odd 6 1
588.2.k.e 2 105.p even 6 1
1344.2.k.a 2 40.e odd 2 1
1344.2.k.a 2 120.m even 2 1
1344.2.k.a 2 280.n even 2 1
1344.2.k.a 2 840.b odd 2 1
1344.2.k.b 2 40.f even 2 1
1344.2.k.b 2 120.i odd 2 1
1344.2.k.b 2 280.c odd 2 1
1344.2.k.b 2 840.u even 2 1
2100.2.d.b 2 1.a even 1 1 trivial
2100.2.d.b 2 3.b odd 2 1 CM
2100.2.d.b 2 7.b odd 2 1 inner
2100.2.d.b 2 21.c even 2 1 inner
2100.2.f.e 4 5.c odd 4 2
2100.2.f.e 4 15.e even 4 2
2100.2.f.e 4 35.f even 4 2
2100.2.f.e 4 105.k odd 4 2
2268.2.x.c 2 45.h odd 6 1
2268.2.x.c 2 45.j even 6 1
2268.2.x.c 2 315.z even 6 1
2268.2.x.c 2 315.bg odd 6 1
2268.2.x.e 2 45.h odd 6 1
2268.2.x.e 2 45.j even 6 1
2268.2.x.e 2 315.z even 6 1
2268.2.x.e 2 315.bg odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2100, [\chi])\):

\( T_{11} \) Copy content Toggle raw display
\( T_{13}^{2} + 48 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{37} + 10 \) Copy content Toggle raw display
\( T_{41} \) Copy content Toggle raw display
\( T_{43} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 48 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 12 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 108 \) Copy content Toggle raw display
$37$ \( (T + 10)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T - 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 48 \) Copy content Toggle raw display
$67$ \( (T - 16)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 192 \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 192 \) Copy content Toggle raw display
show more
show less