Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2100,2,Mod(1301,2100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2100.1301");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2100.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(16.7685844245\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{6})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
Embedding invariants
Embedding label | 1301.1 | ||
Root | \(0.500000 + 0.866025i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 2100.1301 |
Dual form | 2100.2.d.d.1301.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).
\(n\) | \(701\) | \(1051\) | \(1177\) | \(1501\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | − | 1.73205i | − | 1.00000i | ||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0.500000 | + | 2.59808i | 0.188982 | + | 0.981981i | ||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −3.00000 | −1.00000 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − | 1.73205i | − | 0.480384i | −0.970725 | − | 0.240192i | \(-0.922790\pi\) | ||
0.970725 | − | 0.240192i | \(-0.0772105\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 5.19615i | 1.19208i | 0.802955 | + | 0.596040i | \(0.203260\pi\) | ||||
−0.802955 | + | 0.596040i | \(0.796740\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 4.50000 | − | 0.866025i | 0.981981 | − | 0.188982i | ||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 5.19615i | 1.00000i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 1.73205i | 0.311086i | 0.987829 | + | 0.155543i | \(0.0497126\pi\) | ||||
−0.987829 | + | 0.155543i | \(0.950287\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 10.0000 | 1.64399 | 0.821995 | − | 0.569495i | \(-0.192861\pi\) | ||||
0.821995 | + | 0.569495i | \(0.192861\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | −3.00000 | −0.480384 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 13.0000 | 1.98248 | 0.991241 | − | 0.132068i | \(-0.0421616\pi\) | ||||
0.991241 | + | 0.132068i | \(0.0421616\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −6.50000 | + | 2.59808i | −0.928571 | + | 0.371154i | ||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 9.00000 | 1.19208 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 15.5885i | 1.99590i | 0.0640184 | + | 0.997949i | \(0.479608\pi\) | ||||
−0.0640184 | + | 0.997949i | \(0.520392\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | −1.50000 | − | 7.79423i | −0.188982 | − | 0.981981i | ||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 11.0000 | 1.34386 | 0.671932 | − | 0.740613i | \(-0.265465\pi\) | ||||
0.671932 | + | 0.740613i | \(0.265465\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 13.8564i | 1.62177i | 0.585206 | + | 0.810885i | \(0.301014\pi\) | ||||
−0.585206 | + | 0.810885i | \(0.698986\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −4.00000 | −0.450035 | −0.225018 | − | 0.974355i | \(-0.572244\pi\) | ||||
−0.225018 | + | 0.974355i | \(0.572244\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 9.00000 | 1.00000 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 4.50000 | − | 0.866025i | 0.471728 | − | 0.0907841i | ||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 3.00000 | 0.311086 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − | 5.19615i | − | 0.527589i | −0.964579 | − | 0.263795i | \(-0.915026\pi\) | ||
0.964579 | − | 0.263795i | \(-0.0849741\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 3.46410i | 0.341328i | 0.985329 | + | 0.170664i | \(0.0545913\pi\) | ||||
−0.985329 | + | 0.170664i | \(0.945409\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −17.0000 | −1.62830 | −0.814152 | − | 0.580651i | \(-0.802798\pi\) | ||||
−0.814152 | + | 0.580651i | \(0.802798\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | − | 17.3205i | − | 1.64399i | ||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 5.19615i | 0.480384i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 11.0000 | 1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 20.0000 | 1.77471 | 0.887357 | − | 0.461084i | \(-0.152539\pi\) | ||||
0.887357 | + | 0.461084i | \(0.152539\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | − | 22.5167i | − | 1.98248i | ||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −13.5000 | + | 2.59808i | −1.17060 | + | 0.225282i | ||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | − | 17.3205i | − | 1.46911i | −0.678551 | − | 0.734553i | \(-0.737392\pi\) | ||
0.678551 | − | 0.734553i | \(-0.262608\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 4.50000 | + | 11.2583i | 0.371154 | + | 0.928571i | ||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 19.0000 | 1.54620 | 0.773099 | − | 0.634285i | \(-0.218706\pi\) | ||||
0.773099 | + | 0.634285i | \(0.218706\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − | 22.5167i | − | 1.79703i | −0.438948 | − | 0.898513i | \(-0.644649\pi\) | ||
0.438948 | − | 0.898513i | \(-0.355351\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 17.0000 | 1.33154 | 0.665771 | − | 0.746156i | \(-0.268103\pi\) | ||||
0.665771 | + | 0.746156i | \(0.268103\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 10.0000 | 0.769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | − | 15.5885i | − | 1.19208i | ||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 19.0526i | 1.41617i | 0.706129 | + | 0.708083i | \(0.250440\pi\) | ||||
−0.706129 | + | 0.708083i | \(0.749560\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 27.0000 | 1.99590 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | −13.5000 | + | 2.59808i | −0.981981 | + | 0.188982i | ||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −23.0000 | −1.65558 | −0.827788 | − | 0.561041i | \(-0.810401\pi\) | ||||
−0.827788 | + | 0.561041i | \(0.810401\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | − | 22.5167i | − | 1.59616i | −0.602549 | − | 0.798082i | \(-0.705848\pi\) | ||
0.602549 | − | 0.798082i | \(-0.294152\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | − | 19.0526i | − | 1.34386i | ||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −29.0000 | −1.99644 | −0.998221 | − | 0.0596196i | \(-0.981011\pi\) | ||||
−0.998221 | + | 0.0596196i | \(0.981011\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −4.50000 | + | 0.866025i | −0.305480 | + | 0.0587896i | ||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 24.0000 | 1.62177 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 19.0526i | 1.27585i | 0.770097 | + | 0.637927i | \(0.220208\pi\) | ||||
−0.770097 | + | 0.637927i | \(0.779792\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 29.4449i | 1.94577i | 0.231287 | + | 0.972886i | \(0.425707\pi\) | ||||
−0.231287 | + | 0.972886i | \(0.574293\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 6.92820i | 0.450035i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 1.73205i | 0.111571i | 0.998443 | + | 0.0557856i | \(0.0177663\pi\) | ||||
−0.998443 | + | 0.0557856i | \(0.982234\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | − | 15.5885i | − | 1.00000i | ||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 9.00000 | 0.572656 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 5.00000 | + | 25.9808i | 0.310685 | + | 1.61437i | ||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 17.3205i | 1.05215i | 0.850439 | + | 0.526073i | \(0.176336\pi\) | ||||
−0.850439 | + | 0.526073i | \(0.823664\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | −1.50000 | − | 7.79423i | −0.0907841 | − | 0.471728i | ||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −31.0000 | −1.86261 | −0.931305 | − | 0.364241i | \(-0.881328\pi\) | ||||
−0.931305 | + | 0.364241i | \(0.881328\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | − | 5.19615i | − | 0.311086i | ||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 32.9090i | 1.95623i | 0.208053 | + | 0.978117i | \(0.433287\pi\) | ||||
−0.208053 | + | 0.978117i | \(0.566713\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | −9.00000 | −0.527589 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 6.50000 | + | 33.7750i | 0.374654 | + | 1.94676i | ||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − | 29.4449i | − | 1.68051i | −0.542194 | − | 0.840254i | \(-0.682406\pi\) | ||
0.542194 | − | 0.840254i | \(-0.317594\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 6.00000 | 0.341328 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − | 32.9090i | − | 1.86012i | −0.367402 | − | 0.930062i | \(-0.619753\pi\) | ||
0.367402 | − | 0.930062i | \(-0.380247\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 29.4449i | 1.62830i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −32.0000 | −1.75888 | −0.879440 | − | 0.476011i | \(-0.842082\pi\) | ||||
−0.879440 | + | 0.476011i | \(0.842082\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | −30.0000 | −1.64399 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −29.0000 | −1.57973 | −0.789865 | − | 0.613280i | \(-0.789850\pi\) | ||||
−0.789865 | + | 0.613280i | \(0.789850\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −10.0000 | − | 15.5885i | −0.539949 | − | 0.841698i | ||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 34.6410i | 1.85429i | 0.374701 | + | 0.927146i | \(0.377745\pi\) | ||||
−0.374701 | + | 0.927146i | \(0.622255\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 9.00000 | 0.480384 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −8.00000 | −0.421053 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | − | 19.0526i | − | 1.00000i | ||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − | 22.5167i | − | 1.17536i | −0.809093 | − | 0.587680i | \(-0.800041\pi\) | ||
0.809093 | − | 0.587680i | \(-0.199959\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −13.0000 | −0.673114 | −0.336557 | − | 0.941663i | \(-0.609263\pi\) | ||||
−0.336557 | + | 0.941663i | \(0.609263\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 37.0000 | 1.90056 | 0.950281 | − | 0.311393i | \(-0.100796\pi\) | ||||
0.950281 | + | 0.311393i | \(0.100796\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | − | 34.6410i | − | 1.77471i | ||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | −39.0000 | −1.98248 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 39.8372i | 1.99937i | 0.0250943 | + | 0.999685i | \(0.492011\pi\) | ||||
−0.0250943 | + | 0.999685i | \(0.507989\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 4.50000 | + | 23.3827i | 0.225282 | + | 1.17060i | ||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 3.00000 | 0.149441 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | − | 39.8372i | − | 1.96982i | −0.173064 | − | 0.984911i | \(-0.555367\pi\) | ||
0.173064 | − | 0.984911i | \(-0.444633\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | −30.0000 | −1.46911 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −22.0000 | −1.07221 | −0.536107 | − | 0.844150i | \(-0.680106\pi\) | ||||
−0.536107 | + | 0.844150i | \(0.680106\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −40.5000 | + | 7.79423i | −1.95993 | + | 0.377189i | ||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 19.0526i | 0.915608i | 0.889053 | + | 0.457804i | \(0.151364\pi\) | ||||
−0.889053 | + | 0.457804i | \(0.848636\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 39.8372i | 1.90132i | 0.310228 | + | 0.950662i | \(0.399595\pi\) | ||||
−0.310228 | + | 0.950662i | \(0.600405\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 19.5000 | − | 7.79423i | 0.928571 | − | 0.371154i | ||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | − | 32.9090i | − | 1.54620i | ||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 10.0000 | 0.467780 | 0.233890 | − | 0.972263i | \(-0.424854\pi\) | ||||
0.233890 | + | 0.972263i | \(0.424854\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 20.0000 | 0.929479 | 0.464739 | − | 0.885448i | \(-0.346148\pi\) | ||||
0.464739 | + | 0.885448i | \(0.346148\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 5.50000 | + | 28.5788i | 0.253966 | + | 1.31965i | ||||
\(470\) | 0 | 0 | ||||||||
\(471\) | −39.0000 | −1.79703 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | − | 17.3205i | − | 0.789747i | ||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 19.0000 | 0.860972 | 0.430486 | − | 0.902597i | \(-0.358342\pi\) | ||||
0.430486 | + | 0.902597i | \(0.358342\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | − | 29.4449i | − | 1.33154i | ||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 43.0000 | 1.92494 | 0.962472 | − | 0.271380i | \(-0.0874801\pi\) | ||||
0.962472 | + | 0.271380i | \(0.0874801\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | − | 17.3205i | − | 0.769231i | ||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −36.0000 | + | 6.92820i | −1.59255 | + | 0.306486i | ||||
\(512\) | 0 | 0 | ||||||||
\(513\) | −27.0000 | −1.19208 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 15.5885i | 0.681636i | 0.940129 | + | 0.340818i | \(0.110704\pi\) | ||||
−0.940129 | + | 0.340818i | \(0.889296\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 23.0000 | 1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 29.0000 | 1.24681 | 0.623404 | − | 0.781900i | \(-0.285749\pi\) | ||||
0.623404 | + | 0.781900i | \(0.285749\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 33.0000 | 1.41617 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −40.0000 | −1.71028 | −0.855138 | − | 0.518400i | \(-0.826528\pi\) | ||||
−0.855138 | + | 0.518400i | \(0.826528\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | − | 46.7654i | − | 1.99590i | ||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −2.00000 | − | 10.3923i | −0.0850487 | − | 0.441926i | ||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | − | 22.5167i | − | 0.952353i | ||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 4.50000 | + | 23.3827i | 0.188982 | + | 0.981981i | ||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −31.0000 | −1.29731 | −0.648655 | − | 0.761083i | \(-0.724668\pi\) | ||||
−0.648655 | + | 0.761083i | \(0.724668\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − | 46.7654i | − | 1.94687i | −0.228968 | − | 0.973434i | \(-0.573535\pi\) | ||
0.228968 | − | 0.973434i | \(-0.426465\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 39.8372i | 1.65558i | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −9.00000 | −0.370839 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | −39.0000 | −1.59616 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | − | 1.73205i | − | 0.0706518i | −0.999376 | − | 0.0353259i | \(-0.988753\pi\) | ||
0.999376 | − | 0.0353259i | \(-0.0112469\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | −33.0000 | −1.34386 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − | 45.0333i | − | 1.82785i | −0.405887 | − | 0.913923i | \(-0.633038\pi\) | ||
0.405887 | − | 0.913923i | \(-0.366962\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −10.0000 | −0.403896 | −0.201948 | − | 0.979396i | \(-0.564727\pi\) | ||||
−0.201948 | + | 0.979396i | \(0.564727\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − | 46.7654i | − | 1.87966i | −0.341644 | − | 0.939829i | \(-0.610984\pi\) | ||
0.341644 | − | 0.939829i | \(-0.389016\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −1.00000 | −0.0398094 | −0.0199047 | − | 0.999802i | \(-0.506336\pi\) | ||||
−0.0199047 | + | 0.999802i | \(0.506336\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 50.2295i | 1.99644i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 4.50000 | + | 11.2583i | 0.178296 | + | 0.446071i | ||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 31.1769i | 1.22950i | 0.788723 | + | 0.614749i | \(0.210743\pi\) | ||||
−0.788723 | + | 0.614749i | \(0.789257\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 1.50000 | + | 7.79423i | 0.0587896 | + | 0.305480i | ||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | − | 41.5692i | − | 1.62177i | ||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | − | 34.6410i | − | 1.34738i | −0.739014 | − | 0.673690i | \(-0.764708\pi\) | ||
0.739014 | − | 0.673690i | \(-0.235292\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 33.0000 | 1.27585 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −50.0000 | −1.92736 | −0.963679 | − | 0.267063i | \(-0.913947\pi\) | ||||
−0.963679 | + | 0.267063i | \(0.913947\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 13.5000 | − | 2.59808i | 0.518082 | − | 0.0997050i | ||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 51.0000 | 1.94577 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 51.9615i | 1.97671i | 0.152167 | + | 0.988355i | \(0.451375\pi\) | ||||
−0.152167 | + | 0.988355i | \(0.548625\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 51.9615i | 1.95977i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −53.0000 | −1.99046 | −0.995228 | − | 0.0975728i | \(-0.968892\pi\) | ||||
−0.995228 | + | 0.0975728i | \(0.968892\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 12.0000 | 0.450035 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −9.00000 | + | 1.73205i | −0.335178 | + | 0.0645049i | ||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 3.00000 | 0.111571 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 22.5167i | 0.835097i | 0.908655 | + | 0.417548i | \(0.137111\pi\) | ||||
−0.908655 | + | 0.417548i | \(0.862889\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −27.0000 | −1.00000 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − | 20.7846i | − | 0.767697i | −0.923396 | − | 0.383849i | \(-0.874598\pi\) | ||
0.923396 | − | 0.383849i | \(-0.125402\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −16.0000 | −0.588570 | −0.294285 | − | 0.955718i | \(-0.595081\pi\) | ||||
−0.294285 | + | 0.955718i | \(0.595081\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | − | 15.5885i | − | 0.572656i | ||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 52.0000 | 1.89751 | 0.948753 | − | 0.316017i | \(-0.102346\pi\) | ||||
0.948753 | + | 0.316017i | \(0.102346\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −29.0000 | −1.05402 | −0.527011 | − | 0.849858i | \(-0.676688\pi\) | ||||
−0.527011 | + | 0.849858i | \(0.676688\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −8.50000 | − | 44.1673i | −0.307721 | − | 1.59896i | ||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | − | 29.4449i | − | 1.06181i | −0.847432 | − | 0.530904i | \(-0.821852\pi\) | ||
0.847432 | − | 0.530904i | \(-0.178148\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 45.0000 | − | 8.66025i | 1.61437 | − | 0.310685i | ||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − | 46.7654i | − | 1.66701i | −0.552515 | − | 0.833503i | \(-0.686332\pi\) | ||
0.552515 | − | 0.833503i | \(-0.313668\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 27.0000 | 0.958798 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − | 53.6936i | − | 1.88544i | −0.333590 | − | 0.942718i | \(-0.608260\pi\) | ||
0.333590 | − | 0.942718i | \(-0.391740\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 30.0000 | 1.05215 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 67.5500i | 2.36327i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | −13.5000 | + | 2.59808i | −0.471728 | + | 0.0907841i | ||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 47.0000 | 1.63832 | 0.819159 | − | 0.573567i | \(-0.194441\pi\) | ||||
0.819159 | + | 0.573567i | \(0.194441\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | − | 34.6410i | − | 1.20313i | −0.798823 | − | 0.601566i | \(-0.794544\pi\) | ||
0.798823 | − | 0.601566i | \(-0.205456\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 53.6936i | 1.86261i | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | −9.00000 | −0.311086 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 29.0000 | 1.00000 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 5.50000 | + | 28.5788i | 0.188982 | + | 0.981981i | ||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 57.0000 | 1.95623 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − | 53.6936i | − | 1.83843i | −0.393753 | − | 0.919216i | \(-0.628823\pi\) | ||
0.393753 | − | 0.919216i | \(-0.371177\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 17.3205i | 0.590968i | 0.955348 | + | 0.295484i | \(0.0954809\pi\) | ||||
−0.955348 | + | 0.295484i | \(0.904519\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 29.4449i | 1.00000i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | − | 19.0526i | − | 0.645571i | ||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 15.5885i | 0.527589i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 59.0000 | 1.99229 | 0.996144 | − | 0.0877308i | \(-0.0279615\pi\) | ||||
0.996144 | + | 0.0877308i | \(0.0279615\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −47.0000 | −1.58168 | −0.790838 | − | 0.612026i | \(-0.790355\pi\) | ||||
−0.790838 | + | 0.612026i | \(0.790355\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 10.0000 | + | 51.9615i | 0.335389 | + | 1.74273i | ||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 58.5000 | − | 11.2583i | 1.94676 | − | 0.374654i | ||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 40.0000 | 1.32818 | 0.664089 | − | 0.747653i | \(-0.268820\pi\) | ||||
0.664089 | + | 0.747653i | \(0.268820\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −53.0000 | −1.74831 | −0.874154 | − | 0.485648i | \(-0.838584\pi\) | ||||
−0.874154 | + | 0.485648i | \(0.838584\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | −51.0000 | −1.68051 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | − | 10.3923i | − | 0.341328i | ||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −13.5000 | − | 33.7750i | −0.442445 | − | 1.10693i | ||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − | 5.19615i | − | 0.169751i | −0.996392 | − | 0.0848755i | \(-0.972951\pi\) | ||
0.996392 | − | 0.0848755i | \(-0.0270492\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | −57.0000 | −1.86012 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 24.0000 | 0.779073 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 28.0000 | 0.903226 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 20.0000 | 0.643157 | 0.321578 | − | 0.946883i | \(-0.395787\pi\) | ||||
0.321578 | + | 0.946883i | \(0.395787\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 45.0000 | − | 8.66025i | 1.44263 | − | 0.277635i | ||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 51.0000 | 1.62830 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 61.0000 | 1.93773 | 0.968864 | − | 0.247592i | \(-0.0796392\pi\) | ||||
0.968864 | + | 0.247592i | \(0.0796392\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 55.4256i | 1.75888i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 62.3538i | 1.97477i | 0.158352 | + | 0.987383i | \(0.449382\pi\) | ||||
−0.158352 | + | 0.987383i | \(0.550618\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 51.9615i | 1.64399i |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 2100.2.d.d.1301.1 | yes | 2 | |
3.2 | odd | 2 | CM | 2100.2.d.d.1301.1 | yes | 2 | |
5.2 | odd | 4 | 2100.2.f.f.1049.2 | 4 | |||
5.3 | odd | 4 | 2100.2.f.f.1049.3 | 4 | |||
5.4 | even | 2 | 2100.2.d.c.1301.2 | yes | 2 | ||
7.6 | odd | 2 | inner | 2100.2.d.d.1301.2 | yes | 2 | |
15.2 | even | 4 | 2100.2.f.f.1049.2 | 4 | |||
15.8 | even | 4 | 2100.2.f.f.1049.3 | 4 | |||
15.14 | odd | 2 | 2100.2.d.c.1301.2 | yes | 2 | ||
21.20 | even | 2 | inner | 2100.2.d.d.1301.2 | yes | 2 | |
35.13 | even | 4 | 2100.2.f.f.1049.1 | 4 | |||
35.27 | even | 4 | 2100.2.f.f.1049.4 | 4 | |||
35.34 | odd | 2 | 2100.2.d.c.1301.1 | ✓ | 2 | ||
105.62 | odd | 4 | 2100.2.f.f.1049.4 | 4 | |||
105.83 | odd | 4 | 2100.2.f.f.1049.1 | 4 | |||
105.104 | even | 2 | 2100.2.d.c.1301.1 | ✓ | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
2100.2.d.c.1301.1 | ✓ | 2 | 35.34 | odd | 2 | ||
2100.2.d.c.1301.1 | ✓ | 2 | 105.104 | even | 2 | ||
2100.2.d.c.1301.2 | yes | 2 | 5.4 | even | 2 | ||
2100.2.d.c.1301.2 | yes | 2 | 15.14 | odd | 2 | ||
2100.2.d.d.1301.1 | yes | 2 | 1.1 | even | 1 | trivial | |
2100.2.d.d.1301.1 | yes | 2 | 3.2 | odd | 2 | CM | |
2100.2.d.d.1301.2 | yes | 2 | 7.6 | odd | 2 | inner | |
2100.2.d.d.1301.2 | yes | 2 | 21.20 | even | 2 | inner | |
2100.2.f.f.1049.1 | 4 | 35.13 | even | 4 | |||
2100.2.f.f.1049.1 | 4 | 105.83 | odd | 4 | |||
2100.2.f.f.1049.2 | 4 | 5.2 | odd | 4 | |||
2100.2.f.f.1049.2 | 4 | 15.2 | even | 4 | |||
2100.2.f.f.1049.3 | 4 | 5.3 | odd | 4 | |||
2100.2.f.f.1049.3 | 4 | 15.8 | even | 4 | |||
2100.2.f.f.1049.4 | 4 | 35.27 | even | 4 | |||
2100.2.f.f.1049.4 | 4 | 105.62 | odd | 4 |