Properties

Label 2100.3.bd.e
Level $2100$
Weight $3$
Character orbit 2100.bd
Analytic conductor $57.221$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,3,Mod(901,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.901");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.bd (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.2208555157\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} + 1) q^{3} + (3 \zeta_{6} + 5) q^{7} + 3 \zeta_{6} q^{9} + (12 \zeta_{6} - 12) q^{11} + ( - 2 \zeta_{6} + 1) q^{13} + (9 \zeta_{6} - 18) q^{19} + (11 \zeta_{6} + 2) q^{21} + 24 \zeta_{6} q^{23}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} + 13 q^{7} + 3 q^{9} - 12 q^{11} - 27 q^{19} + 15 q^{21} + 24 q^{23} - 12 q^{29} - 36 q^{31} - 36 q^{33} - 7 q^{37} + 3 q^{39} - 100 q^{43} - 54 q^{47} + 71 q^{49} + 84 q^{53} - 54 q^{57}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
901.1
0.500000 0.866025i
0.500000 + 0.866025i
0 1.50000 0.866025i 0 0 0 6.50000 2.59808i 0 1.50000 2.59808i 0
1501.1 0 1.50000 + 0.866025i 0 0 0 6.50000 + 2.59808i 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.3.bd.e yes 2
5.b even 2 1 2100.3.bd.a 2
5.c odd 4 2 2100.3.be.b 4
7.d odd 6 1 inner 2100.3.bd.e yes 2
35.i odd 6 1 2100.3.bd.a 2
35.k even 12 2 2100.3.be.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.3.bd.a 2 5.b even 2 1
2100.3.bd.a 2 35.i odd 6 1
2100.3.bd.e yes 2 1.a even 1 1 trivial
2100.3.bd.e yes 2 7.d odd 6 1 inner
2100.3.be.b 4 5.c odd 4 2
2100.3.be.b 4 35.k even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2100, [\chi])\):

\( T_{11}^{2} + 12T_{11} + 144 \) Copy content Toggle raw display
\( T_{13}^{2} + 3 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{23}^{2} - 24T_{23} + 576 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 13T + 49 \) Copy content Toggle raw display
$11$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$13$ \( T^{2} + 3 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 27T + 243 \) Copy content Toggle raw display
$23$ \( T^{2} - 24T + 576 \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 36T + 432 \) Copy content Toggle raw display
$37$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$41$ \( T^{2} + 1728 \) Copy content Toggle raw display
$43$ \( (T + 50)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 54T + 972 \) Copy content Toggle raw display
$53$ \( T^{2} - 84T + 7056 \) Copy content Toggle raw display
$59$ \( T^{2} - 54T + 972 \) Copy content Toggle raw display
$61$ \( T^{2} + 105T + 3675 \) Copy content Toggle raw display
$67$ \( T^{2} + 113T + 12769 \) Copy content Toggle raw display
$71$ \( (T + 30)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 21T + 147 \) Copy content Toggle raw display
$79$ \( T^{2} + 95T + 9025 \) Copy content Toggle raw display
$83$ \( T^{2} + 108 \) Copy content Toggle raw display
$89$ \( T^{2} - 306T + 31212 \) Copy content Toggle raw display
$97$ \( T^{2} + 12675 \) Copy content Toggle raw display
show more
show less