Properties

Label 2100.3.j.a.601.1
Level $2100$
Weight $3$
Character 2100.601
Analytic conductor $57.221$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,3,Mod(601,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.601");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.j (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.2208555157\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 601.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2100.601
Dual form 2100.3.j.a.601.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} -7.00000 q^{7} -3.00000 q^{9} +3.00000 q^{11} +13.8564i q^{13} -20.7846i q^{17} +20.7846i q^{19} +12.1244i q^{21} +3.00000 q^{23} +5.19615i q^{27} +3.00000 q^{29} +6.92820i q^{31} -5.19615i q^{33} +55.0000 q^{37} +24.0000 q^{39} -20.7846i q^{41} +7.00000 q^{43} -62.3538i q^{47} +49.0000 q^{49} -36.0000 q^{51} -102.000 q^{53} +36.0000 q^{57} +41.5692i q^{59} -20.7846i q^{61} +21.0000 q^{63} -49.0000 q^{67} -5.19615i q^{69} +123.000 q^{71} -27.7128i q^{73} -21.0000 q^{77} +47.0000 q^{79} +9.00000 q^{81} -103.923i q^{83} -5.19615i q^{87} -96.9948i q^{91} +12.0000 q^{93} -145.492i q^{97} -9.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{7} - 6 q^{9} + 6 q^{11} + 6 q^{23} + 6 q^{29} + 110 q^{37} + 48 q^{39} + 14 q^{43} + 98 q^{49} - 72 q^{51} - 204 q^{53} + 72 q^{57} + 42 q^{63} - 98 q^{67} + 246 q^{71} - 42 q^{77} + 94 q^{79}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −1.00000
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 3.00000 0.272727 0.136364 0.990659i \(-0.456458\pi\)
0.136364 + 0.990659i \(0.456458\pi\)
\(12\) 0 0
\(13\) 13.8564i 1.06588i 0.846154 + 0.532939i \(0.178912\pi\)
−0.846154 + 0.532939i \(0.821088\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 20.7846i − 1.22262i −0.791390 0.611312i \(-0.790642\pi\)
0.791390 0.611312i \(-0.209358\pi\)
\(18\) 0 0
\(19\) 20.7846i 1.09393i 0.837157 + 0.546963i \(0.184216\pi\)
−0.837157 + 0.546963i \(0.815784\pi\)
\(20\) 0 0
\(21\) 12.1244i 0.577350i
\(22\) 0 0
\(23\) 3.00000 0.130435 0.0652174 0.997871i \(-0.479226\pi\)
0.0652174 + 0.997871i \(0.479226\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 3.00000 0.103448 0.0517241 0.998661i \(-0.483528\pi\)
0.0517241 + 0.998661i \(0.483528\pi\)
\(30\) 0 0
\(31\) 6.92820i 0.223490i 0.993737 + 0.111745i \(0.0356441\pi\)
−0.993737 + 0.111745i \(0.964356\pi\)
\(32\) 0 0
\(33\) − 5.19615i − 0.157459i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 55.0000 1.48649 0.743243 0.669021i \(-0.233287\pi\)
0.743243 + 0.669021i \(0.233287\pi\)
\(38\) 0 0
\(39\) 24.0000 0.615385
\(40\) 0 0
\(41\) − 20.7846i − 0.506942i −0.967343 0.253471i \(-0.918428\pi\)
0.967343 0.253471i \(-0.0815722\pi\)
\(42\) 0 0
\(43\) 7.00000 0.162791 0.0813953 0.996682i \(-0.474062\pi\)
0.0813953 + 0.996682i \(0.474062\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 62.3538i − 1.32668i −0.748319 0.663339i \(-0.769139\pi\)
0.748319 0.663339i \(-0.230861\pi\)
\(48\) 0 0
\(49\) 49.0000 1.00000
\(50\) 0 0
\(51\) −36.0000 −0.705882
\(52\) 0 0
\(53\) −102.000 −1.92453 −0.962264 0.272117i \(-0.912276\pi\)
−0.962264 + 0.272117i \(0.912276\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 36.0000 0.631579
\(58\) 0 0
\(59\) 41.5692i 0.704563i 0.935894 + 0.352282i \(0.114594\pi\)
−0.935894 + 0.352282i \(0.885406\pi\)
\(60\) 0 0
\(61\) − 20.7846i − 0.340731i −0.985381 0.170366i \(-0.945505\pi\)
0.985381 0.170366i \(-0.0544949\pi\)
\(62\) 0 0
\(63\) 21.0000 0.333333
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −49.0000 −0.731343 −0.365672 0.930744i \(-0.619161\pi\)
−0.365672 + 0.930744i \(0.619161\pi\)
\(68\) 0 0
\(69\) − 5.19615i − 0.0753066i
\(70\) 0 0
\(71\) 123.000 1.73239 0.866197 0.499702i \(-0.166557\pi\)
0.866197 + 0.499702i \(0.166557\pi\)
\(72\) 0 0
\(73\) − 27.7128i − 0.379628i −0.981820 0.189814i \(-0.939212\pi\)
0.981820 0.189814i \(-0.0607884\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −21.0000 −0.272727
\(78\) 0 0
\(79\) 47.0000 0.594937 0.297468 0.954732i \(-0.403858\pi\)
0.297468 + 0.954732i \(0.403858\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) − 103.923i − 1.25208i −0.779789 0.626042i \(-0.784674\pi\)
0.779789 0.626042i \(-0.215326\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 5.19615i − 0.0597259i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) − 96.9948i − 1.06588i
\(92\) 0 0
\(93\) 12.0000 0.129032
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 145.492i − 1.49992i −0.661483 0.749960i \(-0.730073\pi\)
0.661483 0.749960i \(-0.269927\pi\)
\(98\) 0 0
\(99\) −9.00000 −0.0909091
\(100\) 0 0
\(101\) − 124.708i − 1.23473i −0.786677 0.617365i \(-0.788200\pi\)
0.786677 0.617365i \(-0.211800\pi\)
\(102\) 0 0
\(103\) − 48.4974i − 0.470849i −0.971893 0.235424i \(-0.924352\pi\)
0.971893 0.235424i \(-0.0756480\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 −0.0560748 −0.0280374 0.999607i \(-0.508926\pi\)
−0.0280374 + 0.999607i \(0.508926\pi\)
\(108\) 0 0
\(109\) −89.0000 −0.816514 −0.408257 0.912867i \(-0.633863\pi\)
−0.408257 + 0.912867i \(0.633863\pi\)
\(110\) 0 0
\(111\) − 95.2628i − 0.858223i
\(112\) 0 0
\(113\) 99.0000 0.876106 0.438053 0.898949i \(-0.355668\pi\)
0.438053 + 0.898949i \(0.355668\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 41.5692i − 0.355292i
\(118\) 0 0
\(119\) 145.492i 1.22262i
\(120\) 0 0
\(121\) −112.000 −0.925620
\(122\) 0 0
\(123\) −36.0000 −0.292683
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 119.000 0.937008 0.468504 0.883461i \(-0.344793\pi\)
0.468504 + 0.883461i \(0.344793\pi\)
\(128\) 0 0
\(129\) − 12.1244i − 0.0939873i
\(130\) 0 0
\(131\) − 20.7846i − 0.158661i −0.996848 0.0793306i \(-0.974722\pi\)
0.996848 0.0793306i \(-0.0252783\pi\)
\(132\) 0 0
\(133\) − 145.492i − 1.09393i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −78.0000 −0.569343 −0.284672 0.958625i \(-0.591885\pi\)
−0.284672 + 0.958625i \(0.591885\pi\)
\(138\) 0 0
\(139\) 96.9948i 0.697805i 0.937159 + 0.348902i \(0.113446\pi\)
−0.937159 + 0.348902i \(0.886554\pi\)
\(140\) 0 0
\(141\) −108.000 −0.765957
\(142\) 0 0
\(143\) 41.5692i 0.290694i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 84.8705i − 0.577350i
\(148\) 0 0
\(149\) 27.0000 0.181208 0.0906040 0.995887i \(-0.471120\pi\)
0.0906040 + 0.995887i \(0.471120\pi\)
\(150\) 0 0
\(151\) 31.0000 0.205298 0.102649 0.994718i \(-0.467268\pi\)
0.102649 + 0.994718i \(0.467268\pi\)
\(152\) 0 0
\(153\) 62.3538i 0.407541i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 297.913i − 1.89753i −0.315977 0.948767i \(-0.602332\pi\)
0.315977 0.948767i \(-0.397668\pi\)
\(158\) 0 0
\(159\) 176.669i 1.11113i
\(160\) 0 0
\(161\) −21.0000 −0.130435
\(162\) 0 0
\(163\) 26.0000 0.159509 0.0797546 0.996815i \(-0.474586\pi\)
0.0797546 + 0.996815i \(0.474586\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 166.277i − 0.995670i −0.867272 0.497835i \(-0.834129\pi\)
0.867272 0.497835i \(-0.165871\pi\)
\(168\) 0 0
\(169\) −23.0000 −0.136095
\(170\) 0 0
\(171\) − 62.3538i − 0.364642i
\(172\) 0 0
\(173\) 20.7846i 0.120142i 0.998194 + 0.0600711i \(0.0191328\pi\)
−0.998194 + 0.0600711i \(0.980867\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 72.0000 0.406780
\(178\) 0 0
\(179\) −54.0000 −0.301676 −0.150838 0.988558i \(-0.548197\pi\)
−0.150838 + 0.988558i \(0.548197\pi\)
\(180\) 0 0
\(181\) − 193.990i − 1.07177i −0.844292 0.535883i \(-0.819979\pi\)
0.844292 0.535883i \(-0.180021\pi\)
\(182\) 0 0
\(183\) −36.0000 −0.196721
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 62.3538i − 0.333443i
\(188\) 0 0
\(189\) − 36.3731i − 0.192450i
\(190\) 0 0
\(191\) 210.000 1.09948 0.549738 0.835337i \(-0.314727\pi\)
0.549738 + 0.835337i \(0.314727\pi\)
\(192\) 0 0
\(193\) −161.000 −0.834197 −0.417098 0.908861i \(-0.636953\pi\)
−0.417098 + 0.908861i \(0.636953\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −213.000 −1.08122 −0.540609 0.841274i \(-0.681806\pi\)
−0.540609 + 0.841274i \(0.681806\pi\)
\(198\) 0 0
\(199\) 159.349i 0.800747i 0.916352 + 0.400374i \(0.131120\pi\)
−0.916352 + 0.400374i \(0.868880\pi\)
\(200\) 0 0
\(201\) 84.8705i 0.422241i
\(202\) 0 0
\(203\) −21.0000 −0.103448
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −9.00000 −0.0434783
\(208\) 0 0
\(209\) 62.3538i 0.298344i
\(210\) 0 0
\(211\) −230.000 −1.09005 −0.545024 0.838421i \(-0.683479\pi\)
−0.545024 + 0.838421i \(0.683479\pi\)
\(212\) 0 0
\(213\) − 213.042i − 1.00020i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 48.4974i − 0.223490i
\(218\) 0 0
\(219\) −48.0000 −0.219178
\(220\) 0 0
\(221\) 288.000 1.30317
\(222\) 0 0
\(223\) 96.9948i 0.434954i 0.976065 + 0.217477i \(0.0697828\pi\)
−0.976065 + 0.217477i \(0.930217\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 228.631i − 1.00718i −0.863942 0.503592i \(-0.832012\pi\)
0.863942 0.503592i \(-0.167988\pi\)
\(228\) 0 0
\(229\) 304.841i 1.33118i 0.746316 + 0.665592i \(0.231821\pi\)
−0.746316 + 0.665592i \(0.768179\pi\)
\(230\) 0 0
\(231\) 36.3731i 0.157459i
\(232\) 0 0
\(233\) 339.000 1.45494 0.727468 0.686142i \(-0.240697\pi\)
0.727468 + 0.686142i \(0.240697\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 81.4064i − 0.343487i
\(238\) 0 0
\(239\) 258.000 1.07950 0.539749 0.841826i \(-0.318519\pi\)
0.539749 + 0.841826i \(0.318519\pi\)
\(240\) 0 0
\(241\) 173.205i 0.718693i 0.933204 + 0.359347i \(0.117000\pi\)
−0.933204 + 0.359347i \(0.883000\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −288.000 −1.16599
\(248\) 0 0
\(249\) −180.000 −0.722892
\(250\) 0 0
\(251\) 20.7846i 0.0828072i 0.999143 + 0.0414036i \(0.0131829\pi\)
−0.999143 + 0.0414036i \(0.986817\pi\)
\(252\) 0 0
\(253\) 9.00000 0.0355731
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 478.046i − 1.86010i −0.367431 0.930051i \(-0.619763\pi\)
0.367431 0.930051i \(-0.380237\pi\)
\(258\) 0 0
\(259\) −385.000 −1.48649
\(260\) 0 0
\(261\) −9.00000 −0.0344828
\(262\) 0 0
\(263\) 435.000 1.65399 0.826996 0.562208i \(-0.190048\pi\)
0.826996 + 0.562208i \(0.190048\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 145.492i − 0.540863i −0.962739 0.270432i \(-0.912834\pi\)
0.962739 0.270432i \(-0.0871664\pi\)
\(270\) 0 0
\(271\) − 346.410i − 1.27827i −0.769096 0.639133i \(-0.779293\pi\)
0.769096 0.639133i \(-0.220707\pi\)
\(272\) 0 0
\(273\) −168.000 −0.615385
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 362.000 1.30686 0.653430 0.756987i \(-0.273330\pi\)
0.653430 + 0.756987i \(0.273330\pi\)
\(278\) 0 0
\(279\) − 20.7846i − 0.0744968i
\(280\) 0 0
\(281\) −309.000 −1.09964 −0.549822 0.835282i \(-0.685304\pi\)
−0.549822 + 0.835282i \(0.685304\pi\)
\(282\) 0 0
\(283\) 318.697i 1.12614i 0.826410 + 0.563070i \(0.190380\pi\)
−0.826410 + 0.563070i \(0.809620\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 145.492i 0.506942i
\(288\) 0 0
\(289\) −143.000 −0.494810
\(290\) 0 0
\(291\) −252.000 −0.865979
\(292\) 0 0
\(293\) − 498.831i − 1.70249i −0.524766 0.851247i \(-0.675847\pi\)
0.524766 0.851247i \(-0.324153\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 15.5885i 0.0524864i
\(298\) 0 0
\(299\) 41.5692i 0.139027i
\(300\) 0 0
\(301\) −49.0000 −0.162791
\(302\) 0 0
\(303\) −216.000 −0.712871
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6.92820i 0.0225674i 0.999936 + 0.0112837i \(0.00359180\pi\)
−0.999936 + 0.0112837i \(0.996408\pi\)
\(308\) 0 0
\(309\) −84.0000 −0.271845
\(310\) 0 0
\(311\) − 561.184i − 1.80445i −0.431264 0.902226i \(-0.641932\pi\)
0.431264 0.902226i \(-0.358068\pi\)
\(312\) 0 0
\(313\) − 547.328i − 1.74865i −0.485339 0.874326i \(-0.661304\pi\)
0.485339 0.874326i \(-0.338696\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −165.000 −0.520505 −0.260252 0.965541i \(-0.583806\pi\)
−0.260252 + 0.965541i \(0.583806\pi\)
\(318\) 0 0
\(319\) 9.00000 0.0282132
\(320\) 0 0
\(321\) 10.3923i 0.0323748i
\(322\) 0 0
\(323\) 432.000 1.33746
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 154.153i 0.471414i
\(328\) 0 0
\(329\) 436.477i 1.32668i
\(330\) 0 0
\(331\) −65.0000 −0.196375 −0.0981873 0.995168i \(-0.531304\pi\)
−0.0981873 + 0.995168i \(0.531304\pi\)
\(332\) 0 0
\(333\) −165.000 −0.495495
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −14.0000 −0.0415430 −0.0207715 0.999784i \(-0.506612\pi\)
−0.0207715 + 0.999784i \(0.506612\pi\)
\(338\) 0 0
\(339\) − 171.473i − 0.505820i
\(340\) 0 0
\(341\) 20.7846i 0.0609519i
\(342\) 0 0
\(343\) −343.000 −1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −309.000 −0.890490 −0.445245 0.895409i \(-0.646883\pi\)
−0.445245 + 0.895409i \(0.646883\pi\)
\(348\) 0 0
\(349\) − 297.913i − 0.853618i −0.904342 0.426809i \(-0.859638\pi\)
0.904342 0.426809i \(-0.140362\pi\)
\(350\) 0 0
\(351\) −72.0000 −0.205128
\(352\) 0 0
\(353\) 145.492i 0.412159i 0.978535 + 0.206080i \(0.0660706\pi\)
−0.978535 + 0.206080i \(0.933929\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 252.000 0.705882
\(358\) 0 0
\(359\) 243.000 0.676880 0.338440 0.940988i \(-0.390101\pi\)
0.338440 + 0.940988i \(0.390101\pi\)
\(360\) 0 0
\(361\) −71.0000 −0.196676
\(362\) 0 0
\(363\) 193.990i 0.534407i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 339.482i − 0.925019i −0.886614 0.462509i \(-0.846949\pi\)
0.886614 0.462509i \(-0.153051\pi\)
\(368\) 0 0
\(369\) 62.3538i 0.168981i
\(370\) 0 0
\(371\) 714.000 1.92453
\(372\) 0 0
\(373\) −289.000 −0.774799 −0.387399 0.921912i \(-0.626627\pi\)
−0.387399 + 0.921912i \(0.626627\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 41.5692i 0.110263i
\(378\) 0 0
\(379\) 271.000 0.715040 0.357520 0.933906i \(-0.383622\pi\)
0.357520 + 0.933906i \(0.383622\pi\)
\(380\) 0 0
\(381\) − 206.114i − 0.540982i
\(382\) 0 0
\(383\) 124.708i 0.325607i 0.986658 + 0.162804i \(0.0520537\pi\)
−0.986658 + 0.162804i \(0.947946\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −21.0000 −0.0542636
\(388\) 0 0
\(389\) 339.000 0.871465 0.435733 0.900076i \(-0.356489\pi\)
0.435733 + 0.900076i \(0.356489\pi\)
\(390\) 0 0
\(391\) − 62.3538i − 0.159473i
\(392\) 0 0
\(393\) −36.0000 −0.0916031
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 512.687i 1.29140i 0.763590 + 0.645702i \(0.223435\pi\)
−0.763590 + 0.645702i \(0.776565\pi\)
\(398\) 0 0
\(399\) −252.000 −0.631579
\(400\) 0 0
\(401\) 387.000 0.965087 0.482544 0.875872i \(-0.339713\pi\)
0.482544 + 0.875872i \(0.339713\pi\)
\(402\) 0 0
\(403\) −96.0000 −0.238213
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 165.000 0.405405
\(408\) 0 0
\(409\) − 533.472i − 1.30433i −0.758076 0.652166i \(-0.773861\pi\)
0.758076 0.652166i \(-0.226139\pi\)
\(410\) 0 0
\(411\) 135.100i 0.328710i
\(412\) 0 0
\(413\) − 290.985i − 0.704563i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 168.000 0.402878
\(418\) 0 0
\(419\) 394.908i 0.942500i 0.882000 + 0.471250i \(0.156197\pi\)
−0.882000 + 0.471250i \(0.843803\pi\)
\(420\) 0 0
\(421\) −169.000 −0.401425 −0.200713 0.979650i \(-0.564326\pi\)
−0.200713 + 0.979650i \(0.564326\pi\)
\(422\) 0 0
\(423\) 187.061i 0.442226i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 145.492i 0.340731i
\(428\) 0 0
\(429\) 72.0000 0.167832
\(430\) 0 0
\(431\) 450.000 1.04408 0.522042 0.852920i \(-0.325171\pi\)
0.522042 + 0.852920i \(0.325171\pi\)
\(432\) 0 0
\(433\) 96.9948i 0.224007i 0.993708 + 0.112003i \(0.0357267\pi\)
−0.993708 + 0.112003i \(0.964273\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 62.3538i 0.142686i
\(438\) 0 0
\(439\) 263.272i 0.599708i 0.953985 + 0.299854i \(0.0969379\pi\)
−0.953985 + 0.299854i \(0.903062\pi\)
\(440\) 0 0
\(441\) −147.000 −0.333333
\(442\) 0 0
\(443\) −54.0000 −0.121896 −0.0609481 0.998141i \(-0.519412\pi\)
−0.0609481 + 0.998141i \(0.519412\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 46.7654i − 0.104621i
\(448\) 0 0
\(449\) 387.000 0.861915 0.430958 0.902372i \(-0.358176\pi\)
0.430958 + 0.902372i \(0.358176\pi\)
\(450\) 0 0
\(451\) − 62.3538i − 0.138257i
\(452\) 0 0
\(453\) − 53.6936i − 0.118529i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 607.000 1.32823 0.664114 0.747632i \(-0.268809\pi\)
0.664114 + 0.747632i \(0.268809\pi\)
\(458\) 0 0
\(459\) 108.000 0.235294
\(460\) 0 0
\(461\) 249.415i 0.541031i 0.962716 + 0.270516i \(0.0871941\pi\)
−0.962716 + 0.270516i \(0.912806\pi\)
\(462\) 0 0
\(463\) 338.000 0.730022 0.365011 0.931003i \(-0.381065\pi\)
0.365011 + 0.931003i \(0.381065\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 789.815i 1.69125i 0.533775 + 0.845627i \(0.320773\pi\)
−0.533775 + 0.845627i \(0.679227\pi\)
\(468\) 0 0
\(469\) 343.000 0.731343
\(470\) 0 0
\(471\) −516.000 −1.09554
\(472\) 0 0
\(473\) 21.0000 0.0443975
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 306.000 0.641509
\(478\) 0 0
\(479\) − 748.246i − 1.56210i −0.624468 0.781050i \(-0.714684\pi\)
0.624468 0.781050i \(-0.285316\pi\)
\(480\) 0 0
\(481\) 762.102i 1.58441i
\(482\) 0 0
\(483\) 36.3731i 0.0753066i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −17.0000 −0.0349076 −0.0174538 0.999848i \(-0.505556\pi\)
−0.0174538 + 0.999848i \(0.505556\pi\)
\(488\) 0 0
\(489\) − 45.0333i − 0.0920927i
\(490\) 0 0
\(491\) 579.000 1.17923 0.589613 0.807686i \(-0.299280\pi\)
0.589613 + 0.807686i \(0.299280\pi\)
\(492\) 0 0
\(493\) − 62.3538i − 0.126478i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −861.000 −1.73239
\(498\) 0 0
\(499\) 58.0000 0.116232 0.0581162 0.998310i \(-0.481491\pi\)
0.0581162 + 0.998310i \(0.481491\pi\)
\(500\) 0 0
\(501\) −288.000 −0.574850
\(502\) 0 0
\(503\) 956.092i 1.90078i 0.311062 + 0.950390i \(0.399315\pi\)
−0.311062 + 0.950390i \(0.600685\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 39.8372i 0.0785743i
\(508\) 0 0
\(509\) − 332.554i − 0.653347i −0.945137 0.326674i \(-0.894072\pi\)
0.945137 0.326674i \(-0.105928\pi\)
\(510\) 0 0
\(511\) 193.990i 0.379628i
\(512\) 0 0
\(513\) −108.000 −0.210526
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 187.061i − 0.361821i
\(518\) 0 0
\(519\) 36.0000 0.0693642
\(520\) 0 0
\(521\) 706.677i 1.35639i 0.734884 + 0.678193i \(0.237237\pi\)
−0.734884 + 0.678193i \(0.762763\pi\)
\(522\) 0 0
\(523\) 332.554i 0.635858i 0.948115 + 0.317929i \(0.102987\pi\)
−0.948115 + 0.317929i \(0.897013\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 144.000 0.273245
\(528\) 0 0
\(529\) −520.000 −0.982987
\(530\) 0 0
\(531\) − 124.708i − 0.234854i
\(532\) 0 0
\(533\) 288.000 0.540338
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 93.5307i 0.174173i
\(538\) 0 0
\(539\) 147.000 0.272727
\(540\) 0 0
\(541\) −457.000 −0.844732 −0.422366 0.906425i \(-0.638800\pi\)
−0.422366 + 0.906425i \(0.638800\pi\)
\(542\) 0 0
\(543\) −336.000 −0.618785
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 551.000 1.00731 0.503656 0.863904i \(-0.331988\pi\)
0.503656 + 0.863904i \(0.331988\pi\)
\(548\) 0 0
\(549\) 62.3538i 0.113577i
\(550\) 0 0
\(551\) 62.3538i 0.113165i
\(552\) 0 0
\(553\) −329.000 −0.594937
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −333.000 −0.597846 −0.298923 0.954277i \(-0.596627\pi\)
−0.298923 + 0.954277i \(0.596627\pi\)
\(558\) 0 0
\(559\) 96.9948i 0.173515i
\(560\) 0 0
\(561\) −108.000 −0.192513
\(562\) 0 0
\(563\) 706.677i 1.25520i 0.778537 + 0.627599i \(0.215962\pi\)
−0.778537 + 0.627599i \(0.784038\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −63.0000 −0.111111
\(568\) 0 0
\(569\) −477.000 −0.838313 −0.419156 0.907914i \(-0.637674\pi\)
−0.419156 + 0.907914i \(0.637674\pi\)
\(570\) 0 0
\(571\) −649.000 −1.13660 −0.568301 0.822821i \(-0.692399\pi\)
−0.568301 + 0.822821i \(0.692399\pi\)
\(572\) 0 0
\(573\) − 363.731i − 0.634783i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 228.631i 0.396240i 0.980178 + 0.198120i \(0.0634836\pi\)
−0.980178 + 0.198120i \(0.936516\pi\)
\(578\) 0 0
\(579\) 278.860i 0.481624i
\(580\) 0 0
\(581\) 727.461i 1.25208i
\(582\) 0 0
\(583\) −306.000 −0.524871
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 665.108i 1.13306i 0.824040 + 0.566531i \(0.191715\pi\)
−0.824040 + 0.566531i \(0.808285\pi\)
\(588\) 0 0
\(589\) −144.000 −0.244482
\(590\) 0 0
\(591\) 368.927i 0.624242i
\(592\) 0 0
\(593\) − 540.400i − 0.911298i −0.890159 0.455649i \(-0.849407\pi\)
0.890159 0.455649i \(-0.150593\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 276.000 0.462312
\(598\) 0 0
\(599\) 243.000 0.405676 0.202838 0.979212i \(-0.434983\pi\)
0.202838 + 0.979212i \(0.434983\pi\)
\(600\) 0 0
\(601\) 803.672i 1.33722i 0.743611 + 0.668612i \(0.233111\pi\)
−0.743611 + 0.668612i \(0.766889\pi\)
\(602\) 0 0
\(603\) 147.000 0.243781
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 526.543i 0.867452i 0.901045 + 0.433726i \(0.142801\pi\)
−0.901045 + 0.433726i \(0.857199\pi\)
\(608\) 0 0
\(609\) 36.3731i 0.0597259i
\(610\) 0 0
\(611\) 864.000 1.41408
\(612\) 0 0
\(613\) −361.000 −0.588907 −0.294454 0.955666i \(-0.595138\pi\)
−0.294454 + 0.955666i \(0.595138\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −717.000 −1.16207 −0.581037 0.813877i \(-0.697353\pi\)
−0.581037 + 0.813877i \(0.697353\pi\)
\(618\) 0 0
\(619\) − 1039.23i − 1.67889i −0.543448 0.839443i \(-0.682881\pi\)
0.543448 0.839443i \(-0.317119\pi\)
\(620\) 0 0
\(621\) 15.5885i 0.0251022i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 108.000 0.172249
\(628\) 0 0
\(629\) − 1143.15i − 1.81741i
\(630\) 0 0
\(631\) −145.000 −0.229794 −0.114897 0.993377i \(-0.536654\pi\)
−0.114897 + 0.993377i \(0.536654\pi\)
\(632\) 0 0
\(633\) 398.372i 0.629339i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 678.964i 1.06588i
\(638\) 0 0
\(639\) −369.000 −0.577465
\(640\) 0 0
\(641\) 1035.00 1.61466 0.807332 0.590097i \(-0.200911\pi\)
0.807332 + 0.590097i \(0.200911\pi\)
\(642\) 0 0
\(643\) 124.708i 0.193947i 0.995287 + 0.0969733i \(0.0309161\pi\)
−0.995287 + 0.0969733i \(0.969084\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 249.415i − 0.385495i −0.981248 0.192748i \(-0.938260\pi\)
0.981248 0.192748i \(-0.0617398\pi\)
\(648\) 0 0
\(649\) 124.708i 0.192154i
\(650\) 0 0
\(651\) −84.0000 −0.129032
\(652\) 0 0
\(653\) 858.000 1.31394 0.656968 0.753919i \(-0.271839\pi\)
0.656968 + 0.753919i \(0.271839\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 83.1384i 0.126543i
\(658\) 0 0
\(659\) 282.000 0.427921 0.213961 0.976842i \(-0.431364\pi\)
0.213961 + 0.976842i \(0.431364\pi\)
\(660\) 0 0
\(661\) − 949.164i − 1.43595i −0.696068 0.717976i \(-0.745069\pi\)
0.696068 0.717976i \(-0.254931\pi\)
\(662\) 0 0
\(663\) − 498.831i − 0.752384i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.00000 0.0134933
\(668\) 0 0
\(669\) 168.000 0.251121
\(670\) 0 0
\(671\) − 62.3538i − 0.0929267i
\(672\) 0 0
\(673\) 466.000 0.692422 0.346211 0.938157i \(-0.387468\pi\)
0.346211 + 0.938157i \(0.387468\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 706.677i 1.04384i 0.852996 + 0.521918i \(0.174783\pi\)
−0.852996 + 0.521918i \(0.825217\pi\)
\(678\) 0 0
\(679\) 1018.45i 1.49992i
\(680\) 0 0
\(681\) −396.000 −0.581498
\(682\) 0 0
\(683\) −813.000 −1.19034 −0.595168 0.803601i \(-0.702915\pi\)
−0.595168 + 0.803601i \(0.702915\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 528.000 0.768559
\(688\) 0 0
\(689\) − 1413.35i − 2.05131i
\(690\) 0 0
\(691\) − 20.7846i − 0.0300790i −0.999887 0.0150395i \(-0.995213\pi\)
0.999887 0.0150395i \(-0.00478741\pi\)
\(692\) 0 0
\(693\) 63.0000 0.0909091
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −432.000 −0.619799
\(698\) 0 0
\(699\) − 587.165i − 0.840007i
\(700\) 0 0
\(701\) 1146.00 1.63481 0.817404 0.576065i \(-0.195413\pi\)
0.817404 + 0.576065i \(0.195413\pi\)
\(702\) 0 0
\(703\) 1143.15i 1.62611i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 872.954i 1.23473i
\(708\) 0 0
\(709\) 778.000 1.09732 0.548660 0.836046i \(-0.315138\pi\)
0.548660 + 0.836046i \(0.315138\pi\)
\(710\) 0 0
\(711\) −141.000 −0.198312
\(712\) 0 0
\(713\) 20.7846i 0.0291509i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 446.869i − 0.623248i
\(718\) 0 0
\(719\) 1184.72i 1.64774i 0.566781 + 0.823868i \(0.308189\pi\)
−0.566781 + 0.823868i \(0.691811\pi\)
\(720\) 0 0
\(721\) 339.482i 0.470849i
\(722\) 0 0
\(723\) 300.000 0.414938
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 796.743i 1.09593i 0.836500 + 0.547967i \(0.184598\pi\)
−0.836500 + 0.547967i \(0.815402\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) − 145.492i − 0.199032i
\(732\) 0 0
\(733\) − 166.277i − 0.226844i −0.993547 0.113422i \(-0.963819\pi\)
0.993547 0.113422i \(-0.0361813\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −147.000 −0.199457
\(738\) 0 0
\(739\) −97.0000 −0.131258 −0.0656292 0.997844i \(-0.520905\pi\)
−0.0656292 + 0.997844i \(0.520905\pi\)
\(740\) 0 0
\(741\) 498.831i 0.673186i
\(742\) 0 0
\(743\) 210.000 0.282638 0.141319 0.989964i \(-0.454866\pi\)
0.141319 + 0.989964i \(0.454866\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 311.769i 0.417362i
\(748\) 0 0
\(749\) 42.0000 0.0560748
\(750\) 0 0
\(751\) −1166.00 −1.55260 −0.776298 0.630366i \(-0.782905\pi\)
−0.776298 + 0.630366i \(0.782905\pi\)
\(752\) 0 0
\(753\) 36.0000 0.0478088
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1087.00 1.43593 0.717966 0.696079i \(-0.245073\pi\)
0.717966 + 0.696079i \(0.245073\pi\)
\(758\) 0 0
\(759\) − 15.5885i − 0.0205382i
\(760\) 0 0
\(761\) 415.692i 0.546245i 0.961979 + 0.273122i \(0.0880564\pi\)
−0.961979 + 0.273122i \(0.911944\pi\)
\(762\) 0 0
\(763\) 623.000 0.816514
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −576.000 −0.750978
\(768\) 0 0
\(769\) − 1198.58i − 1.55862i −0.626638 0.779310i \(-0.715570\pi\)
0.626638 0.779310i \(-0.284430\pi\)
\(770\) 0 0
\(771\) −828.000 −1.07393
\(772\) 0 0
\(773\) 145.492i 0.188218i 0.995562 + 0.0941088i \(0.0300002\pi\)
−0.995562 + 0.0941088i \(0.970000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 666.840i 0.858223i
\(778\) 0 0
\(779\) 432.000 0.554557
\(780\) 0 0
\(781\) 369.000 0.472471
\(782\) 0 0
\(783\) 15.5885i 0.0199086i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1080.80i 1.37332i 0.726981 + 0.686658i \(0.240923\pi\)
−0.726981 + 0.686658i \(0.759077\pi\)
\(788\) 0 0
\(789\) − 753.442i − 0.954933i
\(790\) 0 0
\(791\) −693.000 −0.876106
\(792\) 0 0
\(793\) 288.000 0.363178
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 436.477i 0.547650i 0.961780 + 0.273825i \(0.0882889\pi\)
−0.961780 + 0.273825i \(0.911711\pi\)
\(798\) 0 0
\(799\) −1296.00 −1.62203
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 83.1384i − 0.103535i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −252.000 −0.312268
\(808\) 0 0
\(809\) −1245.00 −1.53894 −0.769468 0.638685i \(-0.779479\pi\)
−0.769468 + 0.638685i \(0.779479\pi\)
\(810\) 0 0
\(811\) 13.8564i 0.0170856i 0.999964 + 0.00854279i \(0.00271929\pi\)
−0.999964 + 0.00854279i \(0.997281\pi\)
\(812\) 0 0
\(813\) −600.000 −0.738007
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 145.492i 0.178081i
\(818\) 0 0
\(819\) 290.985i 0.355292i
\(820\) 0 0
\(821\) 474.000 0.577345 0.288672 0.957428i \(-0.406786\pi\)
0.288672 + 0.957428i \(0.406786\pi\)
\(822\) 0 0
\(823\) −625.000 −0.759417 −0.379708 0.925106i \(-0.623976\pi\)
−0.379708 + 0.925106i \(0.623976\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1221.00 −1.47642 −0.738210 0.674571i \(-0.764329\pi\)
−0.738210 + 0.674571i \(0.764329\pi\)
\(828\) 0 0
\(829\) − 1323.29i − 1.59624i −0.602495 0.798122i \(-0.705827\pi\)
0.602495 0.798122i \(-0.294173\pi\)
\(830\) 0 0
\(831\) − 627.002i − 0.754516i
\(832\) 0 0
\(833\) − 1018.45i − 1.22262i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −36.0000 −0.0430108
\(838\) 0 0
\(839\) 415.692i 0.495461i 0.968829 + 0.247731i \(0.0796848\pi\)
−0.968829 + 0.247731i \(0.920315\pi\)
\(840\) 0 0
\(841\) −832.000 −0.989298
\(842\) 0 0
\(843\) 535.204i 0.634880i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 784.000 0.925620
\(848\) 0 0
\(849\) 552.000 0.650177
\(850\) 0 0
\(851\) 165.000 0.193890
\(852\) 0 0
\(853\) 96.9948i 0.113710i 0.998382 + 0.0568551i \(0.0181073\pi\)
−0.998382 + 0.0568551i \(0.981893\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1018.45i − 1.18838i −0.804323 0.594192i \(-0.797472\pi\)
0.804323 0.594192i \(-0.202528\pi\)
\(858\) 0 0
\(859\) 27.7128i 0.0322617i 0.999870 + 0.0161309i \(0.00513483\pi\)
−0.999870 + 0.0161309i \(0.994865\pi\)
\(860\) 0 0
\(861\) 252.000 0.292683
\(862\) 0 0
\(863\) 867.000 1.00463 0.502317 0.864683i \(-0.332481\pi\)
0.502317 + 0.864683i \(0.332481\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 247.683i 0.285679i
\(868\) 0 0
\(869\) 141.000 0.162255
\(870\) 0 0
\(871\) − 678.964i − 0.779522i
\(872\) 0 0
\(873\) 436.477i 0.499973i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1414.00 −1.61231 −0.806157 0.591701i \(-0.798457\pi\)
−0.806157 + 0.591701i \(0.798457\pi\)
\(878\) 0 0
\(879\) −864.000 −0.982935
\(880\) 0 0
\(881\) − 1018.45i − 1.15601i −0.816033 0.578006i \(-0.803831\pi\)
0.816033 0.578006i \(-0.196169\pi\)
\(882\) 0 0
\(883\) −1145.00 −1.29672 −0.648358 0.761336i \(-0.724544\pi\)
−0.648358 + 0.761336i \(0.724544\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1351.00i 1.52311i 0.648100 + 0.761556i \(0.275564\pi\)
−0.648100 + 0.761556i \(0.724436\pi\)
\(888\) 0 0
\(889\) −833.000 −0.937008
\(890\) 0 0
\(891\) 27.0000 0.0303030
\(892\) 0 0
\(893\) 1296.00 1.45129
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 72.0000 0.0802676
\(898\) 0 0
\(899\) 20.7846i 0.0231197i
\(900\) 0 0
\(901\) 2120.03i 2.35297i
\(902\) 0 0
\(903\) 84.8705i 0.0939873i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 106.000 0.116869 0.0584344 0.998291i \(-0.481389\pi\)
0.0584344 + 0.998291i \(0.481389\pi\)
\(908\) 0 0
\(909\) 374.123i 0.411576i
\(910\) 0 0
\(911\) −741.000 −0.813392 −0.406696 0.913564i \(-0.633319\pi\)
−0.406696 + 0.913564i \(0.633319\pi\)
\(912\) 0 0
\(913\) − 311.769i − 0.341478i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 145.492i 0.158661i
\(918\) 0 0
\(919\) −953.000 −1.03700 −0.518498 0.855079i \(-0.673509\pi\)
−0.518498 + 0.855079i \(0.673509\pi\)
\(920\) 0 0
\(921\) 12.0000 0.0130293
\(922\) 0 0
\(923\) 1704.34i 1.84652i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 145.492i 0.156950i
\(928\) 0 0
\(929\) 1122.37i 1.20815i 0.796928 + 0.604074i \(0.206457\pi\)
−0.796928 + 0.604074i \(0.793543\pi\)
\(930\) 0 0
\(931\) 1018.45i 1.09393i
\(932\) 0 0
\(933\) −972.000 −1.04180
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 685.892i − 0.732009i −0.930613 0.366004i \(-0.880726\pi\)
0.930613 0.366004i \(-0.119274\pi\)
\(938\) 0 0
\(939\) −948.000 −1.00958
\(940\) 0 0
\(941\) 893.738i 0.949775i 0.880047 + 0.474887i \(0.157511\pi\)
−0.880047 + 0.474887i \(0.842489\pi\)
\(942\) 0 0
\(943\) − 62.3538i − 0.0661228i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 810.000 0.855333 0.427666 0.903937i \(-0.359336\pi\)
0.427666 + 0.903937i \(0.359336\pi\)
\(948\) 0 0
\(949\) 384.000 0.404636
\(950\) 0 0
\(951\) 285.788i 0.300514i
\(952\) 0 0
\(953\) 939.000 0.985310 0.492655 0.870225i \(-0.336027\pi\)
0.492655 + 0.870225i \(0.336027\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 15.5885i − 0.0162889i
\(958\) 0 0
\(959\) 546.000 0.569343
\(960\) 0 0
\(961\) 913.000 0.950052
\(962\) 0 0
\(963\) 18.0000 0.0186916
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1246.00 −1.28852 −0.644261 0.764806i \(-0.722835\pi\)
−0.644261 + 0.764806i \(0.722835\pi\)
\(968\) 0 0
\(969\) − 748.246i − 0.772184i
\(970\) 0 0
\(971\) 436.477i 0.449513i 0.974415 + 0.224756i \(0.0721586\pi\)
−0.974415 + 0.224756i \(0.927841\pi\)
\(972\) 0 0
\(973\) − 678.964i − 0.697805i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 627.000 0.641760 0.320880 0.947120i \(-0.396021\pi\)
0.320880 + 0.947120i \(0.396021\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 267.000 0.272171
\(982\) 0 0
\(983\) 436.477i 0.444025i 0.975044 + 0.222013i \(0.0712626\pi\)
−0.975044 + 0.222013i \(0.928737\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 756.000 0.765957
\(988\) 0 0
\(989\) 21.0000 0.0212336
\(990\) 0 0
\(991\) 583.000 0.588295 0.294147 0.955760i \(-0.404964\pi\)
0.294147 + 0.955760i \(0.404964\pi\)
\(992\) 0 0
\(993\) 112.583i 0.113377i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1309.43i − 1.31337i −0.754165 0.656685i \(-0.771958\pi\)
0.754165 0.656685i \(-0.228042\pi\)
\(998\) 0 0
\(999\) 285.788i 0.286074i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.3.j.a.601.1 2
5.2 odd 4 2100.3.p.a.349.1 4
5.3 odd 4 2100.3.p.a.349.4 4
5.4 even 2 2100.3.j.b.601.2 yes 2
7.6 odd 2 inner 2100.3.j.a.601.2 yes 2
35.13 even 4 2100.3.p.a.349.2 4
35.27 even 4 2100.3.p.a.349.3 4
35.34 odd 2 2100.3.j.b.601.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2100.3.j.a.601.1 2 1.1 even 1 trivial
2100.3.j.a.601.2 yes 2 7.6 odd 2 inner
2100.3.j.b.601.1 yes 2 35.34 odd 2
2100.3.j.b.601.2 yes 2 5.4 even 2
2100.3.p.a.349.1 4 5.2 odd 4
2100.3.p.a.349.2 4 35.13 even 4
2100.3.p.a.349.3 4 35.27 even 4
2100.3.p.a.349.4 4 5.3 odd 4