Properties

Label 2100.4.a.y.1.3
Level $2100$
Weight $4$
Character 2100.1
Self dual yes
Analytic conductor $123.904$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(123.904011012\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.4281.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 12x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 420)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.29027\) of defining polynomial
Character \(\chi\) \(=\) 2100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -7.00000 q^{7} +9.00000 q^{9} +1.01865 q^{11} -63.5205 q^{13} +33.8576 q^{17} +30.4646 q^{19} -21.0000 q^{21} +147.169 q^{23} +27.0000 q^{27} -275.745 q^{29} +39.5205 q^{31} +3.05596 q^{33} +289.101 q^{37} -190.562 q^{39} +173.476 q^{41} -132.981 q^{43} -202.360 q^{47} +49.0000 q^{49} +101.573 q^{51} +76.1889 q^{53} +91.3938 q^{57} -799.100 q^{59} +780.418 q^{61} -63.0000 q^{63} -465.687 q^{67} +441.506 q^{69} -280.728 q^{71} -840.569 q^{73} -7.13057 q^{77} -303.041 q^{79} +81.0000 q^{81} -785.695 q^{83} -827.235 q^{87} -706.075 q^{89} +444.644 q^{91} +118.562 q^{93} +1075.31 q^{97} +9.16787 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} - 21 q^{7} + 27 q^{9} - 54 q^{11} - 42 q^{13} + 56 q^{17} + 114 q^{19} - 63 q^{21} + 64 q^{23} + 81 q^{27} - 130 q^{29} - 30 q^{31} - 162 q^{33} + 216 q^{37} - 126 q^{39} - 6 q^{41} - 456 q^{43}+ \cdots - 486 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 1.01865 0.0279214 0.0139607 0.999903i \(-0.495556\pi\)
0.0139607 + 0.999903i \(0.495556\pi\)
\(12\) 0 0
\(13\) −63.5205 −1.35519 −0.677593 0.735437i \(-0.736977\pi\)
−0.677593 + 0.735437i \(0.736977\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 33.8576 0.483039 0.241520 0.970396i \(-0.422354\pi\)
0.241520 + 0.970396i \(0.422354\pi\)
\(18\) 0 0
\(19\) 30.4646 0.367845 0.183923 0.982941i \(-0.441120\pi\)
0.183923 + 0.982941i \(0.441120\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) 147.169 1.33421 0.667104 0.744965i \(-0.267534\pi\)
0.667104 + 0.744965i \(0.267534\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −275.745 −1.76568 −0.882838 0.469678i \(-0.844370\pi\)
−0.882838 + 0.469678i \(0.844370\pi\)
\(30\) 0 0
\(31\) 39.5205 0.228971 0.114485 0.993425i \(-0.463478\pi\)
0.114485 + 0.993425i \(0.463478\pi\)
\(32\) 0 0
\(33\) 3.05596 0.0161204
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 289.101 1.28454 0.642269 0.766480i \(-0.277993\pi\)
0.642269 + 0.766480i \(0.277993\pi\)
\(38\) 0 0
\(39\) −190.562 −0.782418
\(40\) 0 0
\(41\) 173.476 0.660790 0.330395 0.943843i \(-0.392818\pi\)
0.330395 + 0.943843i \(0.392818\pi\)
\(42\) 0 0
\(43\) −132.981 −0.471615 −0.235808 0.971800i \(-0.575774\pi\)
−0.235808 + 0.971800i \(0.575774\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −202.360 −0.628026 −0.314013 0.949419i \(-0.601673\pi\)
−0.314013 + 0.949419i \(0.601673\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 101.573 0.278883
\(52\) 0 0
\(53\) 76.1889 0.197459 0.0987297 0.995114i \(-0.468522\pi\)
0.0987297 + 0.995114i \(0.468522\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 91.3938 0.212375
\(58\) 0 0
\(59\) −799.100 −1.76329 −0.881643 0.471917i \(-0.843562\pi\)
−0.881643 + 0.471917i \(0.843562\pi\)
\(60\) 0 0
\(61\) 780.418 1.63807 0.819035 0.573743i \(-0.194509\pi\)
0.819035 + 0.573743i \(0.194509\pi\)
\(62\) 0 0
\(63\) −63.0000 −0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −465.687 −0.849146 −0.424573 0.905394i \(-0.639576\pi\)
−0.424573 + 0.905394i \(0.639576\pi\)
\(68\) 0 0
\(69\) 441.506 0.770305
\(70\) 0 0
\(71\) −280.728 −0.469244 −0.234622 0.972087i \(-0.575385\pi\)
−0.234622 + 0.972087i \(0.575385\pi\)
\(72\) 0 0
\(73\) −840.569 −1.34769 −0.673844 0.738874i \(-0.735358\pi\)
−0.673844 + 0.738874i \(0.735358\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.13057 −0.0105533
\(78\) 0 0
\(79\) −303.041 −0.431580 −0.215790 0.976440i \(-0.569233\pi\)
−0.215790 + 0.976440i \(0.569233\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −785.695 −1.03905 −0.519525 0.854455i \(-0.673891\pi\)
−0.519525 + 0.854455i \(0.673891\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −827.235 −1.01941
\(88\) 0 0
\(89\) −706.075 −0.840942 −0.420471 0.907306i \(-0.638135\pi\)
−0.420471 + 0.907306i \(0.638135\pi\)
\(90\) 0 0
\(91\) 444.644 0.512212
\(92\) 0 0
\(93\) 118.562 0.132196
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1075.31 1.12558 0.562789 0.826601i \(-0.309728\pi\)
0.562789 + 0.826601i \(0.309728\pi\)
\(98\) 0 0
\(99\) 9.16787 0.00930713
\(100\) 0 0
\(101\) −1370.39 −1.35009 −0.675044 0.737777i \(-0.735876\pi\)
−0.675044 + 0.737777i \(0.735876\pi\)
\(102\) 0 0
\(103\) −346.003 −0.330997 −0.165498 0.986210i \(-0.552923\pi\)
−0.165498 + 0.986210i \(0.552923\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −163.450 −0.147676 −0.0738381 0.997270i \(-0.523525\pi\)
−0.0738381 + 0.997270i \(0.523525\pi\)
\(108\) 0 0
\(109\) −1069.81 −0.940082 −0.470041 0.882645i \(-0.655761\pi\)
−0.470041 + 0.882645i \(0.655761\pi\)
\(110\) 0 0
\(111\) 867.302 0.741628
\(112\) 0 0
\(113\) −273.537 −0.227719 −0.113859 0.993497i \(-0.536321\pi\)
−0.113859 + 0.993497i \(0.536321\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −571.685 −0.451729
\(118\) 0 0
\(119\) −237.003 −0.182572
\(120\) 0 0
\(121\) −1329.96 −0.999220
\(122\) 0 0
\(123\) 520.428 0.381507
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 125.154 0.0874455 0.0437228 0.999044i \(-0.486078\pi\)
0.0437228 + 0.999044i \(0.486078\pi\)
\(128\) 0 0
\(129\) −398.944 −0.272287
\(130\) 0 0
\(131\) 2425.29 1.61755 0.808773 0.588121i \(-0.200132\pi\)
0.808773 + 0.588121i \(0.200132\pi\)
\(132\) 0 0
\(133\) −213.252 −0.139032
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −537.340 −0.335095 −0.167548 0.985864i \(-0.553585\pi\)
−0.167548 + 0.985864i \(0.553585\pi\)
\(138\) 0 0
\(139\) −668.910 −0.408174 −0.204087 0.978953i \(-0.565423\pi\)
−0.204087 + 0.978953i \(0.565423\pi\)
\(140\) 0 0
\(141\) −607.079 −0.362591
\(142\) 0 0
\(143\) −64.7053 −0.0378387
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 147.000 0.0824786
\(148\) 0 0
\(149\) 396.285 0.217886 0.108943 0.994048i \(-0.465253\pi\)
0.108943 + 0.994048i \(0.465253\pi\)
\(150\) 0 0
\(151\) −1753.87 −0.945218 −0.472609 0.881272i \(-0.656688\pi\)
−0.472609 + 0.881272i \(0.656688\pi\)
\(152\) 0 0
\(153\) 304.718 0.161013
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1897.59 0.964610 0.482305 0.876003i \(-0.339800\pi\)
0.482305 + 0.876003i \(0.339800\pi\)
\(158\) 0 0
\(159\) 228.567 0.114003
\(160\) 0 0
\(161\) −1030.18 −0.504283
\(162\) 0 0
\(163\) −319.695 −0.153622 −0.0768111 0.997046i \(-0.524474\pi\)
−0.0768111 + 0.997046i \(0.524474\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 685.713 0.317737 0.158868 0.987300i \(-0.449215\pi\)
0.158868 + 0.987300i \(0.449215\pi\)
\(168\) 0 0
\(169\) 1837.86 0.836531
\(170\) 0 0
\(171\) 274.181 0.122615
\(172\) 0 0
\(173\) 2310.88 1.01557 0.507783 0.861485i \(-0.330465\pi\)
0.507783 + 0.861485i \(0.330465\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2397.30 −1.01803
\(178\) 0 0
\(179\) 479.478 0.200211 0.100106 0.994977i \(-0.468082\pi\)
0.100106 + 0.994977i \(0.468082\pi\)
\(180\) 0 0
\(181\) −4110.84 −1.68816 −0.844078 0.536220i \(-0.819852\pi\)
−0.844078 + 0.536220i \(0.819852\pi\)
\(182\) 0 0
\(183\) 2341.25 0.945741
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 34.4891 0.0134871
\(188\) 0 0
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) −4898.91 −1.85588 −0.927940 0.372730i \(-0.878422\pi\)
−0.927940 + 0.372730i \(0.878422\pi\)
\(192\) 0 0
\(193\) −4253.09 −1.58624 −0.793119 0.609066i \(-0.791544\pi\)
−0.793119 + 0.609066i \(0.791544\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4329.51 −1.56581 −0.782906 0.622140i \(-0.786264\pi\)
−0.782906 + 0.622140i \(0.786264\pi\)
\(198\) 0 0
\(199\) −3387.04 −1.20654 −0.603269 0.797538i \(-0.706135\pi\)
−0.603269 + 0.797538i \(0.706135\pi\)
\(200\) 0 0
\(201\) −1397.06 −0.490254
\(202\) 0 0
\(203\) 1930.22 0.667363
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1324.52 0.444736
\(208\) 0 0
\(209\) 31.0328 0.0102707
\(210\) 0 0
\(211\) 3182.61 1.03839 0.519193 0.854657i \(-0.326232\pi\)
0.519193 + 0.854657i \(0.326232\pi\)
\(212\) 0 0
\(213\) −842.184 −0.270918
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −276.644 −0.0865429
\(218\) 0 0
\(219\) −2521.71 −0.778088
\(220\) 0 0
\(221\) −2150.65 −0.654608
\(222\) 0 0
\(223\) −6598.42 −1.98145 −0.990724 0.135889i \(-0.956611\pi\)
−0.990724 + 0.135889i \(0.956611\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1362.55 0.398396 0.199198 0.979959i \(-0.436166\pi\)
0.199198 + 0.979959i \(0.436166\pi\)
\(228\) 0 0
\(229\) 440.818 0.127206 0.0636028 0.997975i \(-0.479741\pi\)
0.0636028 + 0.997975i \(0.479741\pi\)
\(230\) 0 0
\(231\) −21.3917 −0.00609295
\(232\) 0 0
\(233\) 4405.63 1.23872 0.619362 0.785106i \(-0.287391\pi\)
0.619362 + 0.785106i \(0.287391\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −909.123 −0.249173
\(238\) 0 0
\(239\) −2645.24 −0.715926 −0.357963 0.933736i \(-0.616529\pi\)
−0.357963 + 0.933736i \(0.616529\pi\)
\(240\) 0 0
\(241\) −2914.75 −0.779070 −0.389535 0.921012i \(-0.627364\pi\)
−0.389535 + 0.921012i \(0.627364\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1935.13 −0.498499
\(248\) 0 0
\(249\) −2357.08 −0.599896
\(250\) 0 0
\(251\) 1789.69 0.450058 0.225029 0.974352i \(-0.427752\pi\)
0.225029 + 0.974352i \(0.427752\pi\)
\(252\) 0 0
\(253\) 149.914 0.0372529
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5468.14 1.32721 0.663606 0.748082i \(-0.269025\pi\)
0.663606 + 0.748082i \(0.269025\pi\)
\(258\) 0 0
\(259\) −2023.71 −0.485510
\(260\) 0 0
\(261\) −2481.71 −0.588559
\(262\) 0 0
\(263\) −1558.82 −0.365478 −0.182739 0.983161i \(-0.558496\pi\)
−0.182739 + 0.983161i \(0.558496\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2118.23 −0.485518
\(268\) 0 0
\(269\) −518.723 −0.117573 −0.0587865 0.998271i \(-0.518723\pi\)
−0.0587865 + 0.998271i \(0.518723\pi\)
\(270\) 0 0
\(271\) −2487.65 −0.557616 −0.278808 0.960347i \(-0.589939\pi\)
−0.278808 + 0.960347i \(0.589939\pi\)
\(272\) 0 0
\(273\) 1333.93 0.295726
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7631.02 1.65525 0.827624 0.561283i \(-0.189692\pi\)
0.827624 + 0.561283i \(0.189692\pi\)
\(278\) 0 0
\(279\) 355.685 0.0763237
\(280\) 0 0
\(281\) 3696.97 0.784849 0.392425 0.919784i \(-0.371636\pi\)
0.392425 + 0.919784i \(0.371636\pi\)
\(282\) 0 0
\(283\) 8631.55 1.81305 0.906524 0.422155i \(-0.138726\pi\)
0.906524 + 0.422155i \(0.138726\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1214.33 −0.249755
\(288\) 0 0
\(289\) −3766.66 −0.766673
\(290\) 0 0
\(291\) 3225.92 0.649852
\(292\) 0 0
\(293\) 3002.34 0.598630 0.299315 0.954154i \(-0.403242\pi\)
0.299315 + 0.954154i \(0.403242\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 27.5036 0.00537347
\(298\) 0 0
\(299\) −9348.23 −1.80810
\(300\) 0 0
\(301\) 930.869 0.178254
\(302\) 0 0
\(303\) −4111.17 −0.779474
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7206.48 1.33972 0.669862 0.742485i \(-0.266353\pi\)
0.669862 + 0.742485i \(0.266353\pi\)
\(308\) 0 0
\(309\) −1038.01 −0.191101
\(310\) 0 0
\(311\) −2413.36 −0.440028 −0.220014 0.975497i \(-0.570610\pi\)
−0.220014 + 0.975497i \(0.570610\pi\)
\(312\) 0 0
\(313\) 1795.30 0.324206 0.162103 0.986774i \(-0.448172\pi\)
0.162103 + 0.986774i \(0.448172\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4393.88 −0.778501 −0.389250 0.921132i \(-0.627266\pi\)
−0.389250 + 0.921132i \(0.627266\pi\)
\(318\) 0 0
\(319\) −280.888 −0.0493001
\(320\) 0 0
\(321\) −490.351 −0.0852608
\(322\) 0 0
\(323\) 1031.46 0.177684
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3209.42 −0.542757
\(328\) 0 0
\(329\) 1416.52 0.237371
\(330\) 0 0
\(331\) 6917.15 1.14864 0.574322 0.818630i \(-0.305266\pi\)
0.574322 + 0.818630i \(0.305266\pi\)
\(332\) 0 0
\(333\) 2601.91 0.428179
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −5560.89 −0.898876 −0.449438 0.893312i \(-0.648376\pi\)
−0.449438 + 0.893312i \(0.648376\pi\)
\(338\) 0 0
\(339\) −820.611 −0.131473
\(340\) 0 0
\(341\) 40.2577 0.00639319
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8105.46 1.25396 0.626980 0.779035i \(-0.284291\pi\)
0.626980 + 0.779035i \(0.284291\pi\)
\(348\) 0 0
\(349\) −8455.40 −1.29687 −0.648434 0.761271i \(-0.724576\pi\)
−0.648434 + 0.761271i \(0.724576\pi\)
\(350\) 0 0
\(351\) −1715.05 −0.260806
\(352\) 0 0
\(353\) −8078.23 −1.21802 −0.609010 0.793163i \(-0.708433\pi\)
−0.609010 + 0.793163i \(0.708433\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −711.009 −0.105408
\(358\) 0 0
\(359\) −7211.89 −1.06025 −0.530124 0.847920i \(-0.677855\pi\)
−0.530124 + 0.847920i \(0.677855\pi\)
\(360\) 0 0
\(361\) −5930.91 −0.864690
\(362\) 0 0
\(363\) −3989.89 −0.576900
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5013.11 −0.713031 −0.356515 0.934289i \(-0.616035\pi\)
−0.356515 + 0.934289i \(0.616035\pi\)
\(368\) 0 0
\(369\) 1561.28 0.220263
\(370\) 0 0
\(371\) −533.322 −0.0746326
\(372\) 0 0
\(373\) 8283.03 1.14981 0.574905 0.818220i \(-0.305039\pi\)
0.574905 + 0.818220i \(0.305039\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17515.5 2.39282
\(378\) 0 0
\(379\) −11249.8 −1.52470 −0.762351 0.647163i \(-0.775955\pi\)
−0.762351 + 0.647163i \(0.775955\pi\)
\(380\) 0 0
\(381\) 375.461 0.0504867
\(382\) 0 0
\(383\) 6512.53 0.868864 0.434432 0.900705i \(-0.356949\pi\)
0.434432 + 0.900705i \(0.356949\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1196.83 −0.157205
\(388\) 0 0
\(389\) −7913.44 −1.03143 −0.515716 0.856759i \(-0.672474\pi\)
−0.515716 + 0.856759i \(0.672474\pi\)
\(390\) 0 0
\(391\) 4982.77 0.644475
\(392\) 0 0
\(393\) 7275.87 0.933891
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −10278.6 −1.29941 −0.649705 0.760186i \(-0.725108\pi\)
−0.649705 + 0.760186i \(0.725108\pi\)
\(398\) 0 0
\(399\) −639.756 −0.0802704
\(400\) 0 0
\(401\) 3434.29 0.427682 0.213841 0.976868i \(-0.431403\pi\)
0.213841 + 0.976868i \(0.431403\pi\)
\(402\) 0 0
\(403\) −2510.37 −0.310298
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 294.493 0.0358661
\(408\) 0 0
\(409\) −6768.53 −0.818294 −0.409147 0.912468i \(-0.634174\pi\)
−0.409147 + 0.912468i \(0.634174\pi\)
\(410\) 0 0
\(411\) −1612.02 −0.193467
\(412\) 0 0
\(413\) 5593.70 0.666460
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −2006.73 −0.235659
\(418\) 0 0
\(419\) −3996.73 −0.465998 −0.232999 0.972477i \(-0.574854\pi\)
−0.232999 + 0.972477i \(0.574854\pi\)
\(420\) 0 0
\(421\) 3039.08 0.351818 0.175909 0.984406i \(-0.443713\pi\)
0.175909 + 0.984406i \(0.443713\pi\)
\(422\) 0 0
\(423\) −1821.24 −0.209342
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5462.93 −0.619133
\(428\) 0 0
\(429\) −194.116 −0.0218462
\(430\) 0 0
\(431\) 13547.8 1.51410 0.757050 0.653357i \(-0.226640\pi\)
0.757050 + 0.653357i \(0.226640\pi\)
\(432\) 0 0
\(433\) −14052.0 −1.55957 −0.779787 0.626045i \(-0.784673\pi\)
−0.779787 + 0.626045i \(0.784673\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4483.43 0.490782
\(438\) 0 0
\(439\) 246.377 0.0267858 0.0133929 0.999910i \(-0.495737\pi\)
0.0133929 + 0.999910i \(0.495737\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 2217.44 0.237819 0.118909 0.992905i \(-0.462060\pi\)
0.118909 + 0.992905i \(0.462060\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1188.86 0.125796
\(448\) 0 0
\(449\) −8163.10 −0.857996 −0.428998 0.903305i \(-0.641133\pi\)
−0.428998 + 0.903305i \(0.641133\pi\)
\(450\) 0 0
\(451\) 176.712 0.0184502
\(452\) 0 0
\(453\) −5261.61 −0.545722
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −354.013 −0.0362364 −0.0181182 0.999836i \(-0.505768\pi\)
−0.0181182 + 0.999836i \(0.505768\pi\)
\(458\) 0 0
\(459\) 914.154 0.0929609
\(460\) 0 0
\(461\) −8981.87 −0.907434 −0.453717 0.891146i \(-0.649902\pi\)
−0.453717 + 0.891146i \(0.649902\pi\)
\(462\) 0 0
\(463\) 8101.65 0.813208 0.406604 0.913604i \(-0.366713\pi\)
0.406604 + 0.913604i \(0.366713\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6010.43 −0.595567 −0.297783 0.954633i \(-0.596247\pi\)
−0.297783 + 0.954633i \(0.596247\pi\)
\(468\) 0 0
\(469\) 3259.81 0.320947
\(470\) 0 0
\(471\) 5692.76 0.556918
\(472\) 0 0
\(473\) −135.462 −0.0131682
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 685.700 0.0658198
\(478\) 0 0
\(479\) 3488.64 0.332777 0.166388 0.986060i \(-0.446789\pi\)
0.166388 + 0.986060i \(0.446789\pi\)
\(480\) 0 0
\(481\) −18363.8 −1.74079
\(482\) 0 0
\(483\) −3090.54 −0.291148
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −19351.4 −1.80061 −0.900304 0.435261i \(-0.856656\pi\)
−0.900304 + 0.435261i \(0.856656\pi\)
\(488\) 0 0
\(489\) −959.084 −0.0886939
\(490\) 0 0
\(491\) −7657.24 −0.703802 −0.351901 0.936037i \(-0.614465\pi\)
−0.351901 + 0.936037i \(0.614465\pi\)
\(492\) 0 0
\(493\) −9336.06 −0.852891
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1965.10 0.177357
\(498\) 0 0
\(499\) −882.964 −0.0792122 −0.0396061 0.999215i \(-0.512610\pi\)
−0.0396061 + 0.999215i \(0.512610\pi\)
\(500\) 0 0
\(501\) 2057.14 0.183445
\(502\) 0 0
\(503\) −16298.4 −1.44475 −0.722374 0.691503i \(-0.756949\pi\)
−0.722374 + 0.691503i \(0.756949\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 5513.58 0.482972
\(508\) 0 0
\(509\) −2429.50 −0.211563 −0.105781 0.994389i \(-0.533734\pi\)
−0.105781 + 0.994389i \(0.533734\pi\)
\(510\) 0 0
\(511\) 5883.98 0.509378
\(512\) 0 0
\(513\) 822.544 0.0707918
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −206.134 −0.0175353
\(518\) 0 0
\(519\) 6932.64 0.586337
\(520\) 0 0
\(521\) −16784.9 −1.41144 −0.705720 0.708491i \(-0.749376\pi\)
−0.705720 + 0.708491i \(0.749376\pi\)
\(522\) 0 0
\(523\) 11261.6 0.941560 0.470780 0.882251i \(-0.343973\pi\)
0.470780 + 0.882251i \(0.343973\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1338.07 0.110602
\(528\) 0 0
\(529\) 9491.61 0.780111
\(530\) 0 0
\(531\) −7191.90 −0.587762
\(532\) 0 0
\(533\) −11019.3 −0.895494
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1438.43 0.115592
\(538\) 0 0
\(539\) 49.9140 0.00398877
\(540\) 0 0
\(541\) −11072.4 −0.879922 −0.439961 0.898017i \(-0.645008\pi\)
−0.439961 + 0.898017i \(0.645008\pi\)
\(542\) 0 0
\(543\) −12332.5 −0.974658
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −11800.9 −0.922434 −0.461217 0.887287i \(-0.652587\pi\)
−0.461217 + 0.887287i \(0.652587\pi\)
\(548\) 0 0
\(549\) 7023.76 0.546024
\(550\) 0 0
\(551\) −8400.46 −0.649495
\(552\) 0 0
\(553\) 2121.29 0.163122
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8777.51 0.667711 0.333855 0.942624i \(-0.391650\pi\)
0.333855 + 0.942624i \(0.391650\pi\)
\(558\) 0 0
\(559\) 8447.05 0.639127
\(560\) 0 0
\(561\) 103.467 0.00778680
\(562\) 0 0
\(563\) 3225.26 0.241436 0.120718 0.992687i \(-0.461480\pi\)
0.120718 + 0.992687i \(0.461480\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) −2312.75 −0.170396 −0.0851981 0.996364i \(-0.527152\pi\)
−0.0851981 + 0.996364i \(0.527152\pi\)
\(570\) 0 0
\(571\) 2045.95 0.149948 0.0749740 0.997185i \(-0.476113\pi\)
0.0749740 + 0.997185i \(0.476113\pi\)
\(572\) 0 0
\(573\) −14696.7 −1.07149
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 16418.3 1.18458 0.592291 0.805724i \(-0.298224\pi\)
0.592291 + 0.805724i \(0.298224\pi\)
\(578\) 0 0
\(579\) −12759.3 −0.915815
\(580\) 0 0
\(581\) 5499.86 0.392724
\(582\) 0 0
\(583\) 77.6100 0.00551334
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 26289.2 1.84850 0.924251 0.381785i \(-0.124691\pi\)
0.924251 + 0.381785i \(0.124691\pi\)
\(588\) 0 0
\(589\) 1203.98 0.0842258
\(590\) 0 0
\(591\) −12988.5 −0.904022
\(592\) 0 0
\(593\) 24597.7 1.70338 0.851690 0.524046i \(-0.175578\pi\)
0.851690 + 0.524046i \(0.175578\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10161.1 −0.696595
\(598\) 0 0
\(599\) 19963.1 1.36172 0.680859 0.732415i \(-0.261607\pi\)
0.680859 + 0.732415i \(0.261607\pi\)
\(600\) 0 0
\(601\) 17328.1 1.17608 0.588042 0.808830i \(-0.299899\pi\)
0.588042 + 0.808830i \(0.299899\pi\)
\(602\) 0 0
\(603\) −4191.19 −0.283049
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −9765.74 −0.653013 −0.326507 0.945195i \(-0.605872\pi\)
−0.326507 + 0.945195i \(0.605872\pi\)
\(608\) 0 0
\(609\) 5790.65 0.385302
\(610\) 0 0
\(611\) 12854.0 0.851092
\(612\) 0 0
\(613\) 16655.7 1.09742 0.548710 0.836013i \(-0.315119\pi\)
0.548710 + 0.836013i \(0.315119\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6655.24 0.434246 0.217123 0.976144i \(-0.430333\pi\)
0.217123 + 0.976144i \(0.430333\pi\)
\(618\) 0 0
\(619\) 4892.75 0.317700 0.158850 0.987303i \(-0.449221\pi\)
0.158850 + 0.987303i \(0.449221\pi\)
\(620\) 0 0
\(621\) 3973.55 0.256768
\(622\) 0 0
\(623\) 4942.53 0.317846
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 93.0985 0.00592982
\(628\) 0 0
\(629\) 9788.25 0.620482
\(630\) 0 0
\(631\) −13790.8 −0.870055 −0.435027 0.900417i \(-0.643261\pi\)
−0.435027 + 0.900417i \(0.643261\pi\)
\(632\) 0 0
\(633\) 9547.82 0.599513
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3112.51 −0.193598
\(638\) 0 0
\(639\) −2526.55 −0.156415
\(640\) 0 0
\(641\) 2380.10 0.146659 0.0733295 0.997308i \(-0.476638\pi\)
0.0733295 + 0.997308i \(0.476638\pi\)
\(642\) 0 0
\(643\) −6098.34 −0.374021 −0.187010 0.982358i \(-0.559880\pi\)
−0.187010 + 0.982358i \(0.559880\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2069.63 0.125758 0.0628791 0.998021i \(-0.479972\pi\)
0.0628791 + 0.998021i \(0.479972\pi\)
\(648\) 0 0
\(649\) −814.005 −0.0492334
\(650\) 0 0
\(651\) −829.931 −0.0499656
\(652\) 0 0
\(653\) −9525.57 −0.570849 −0.285424 0.958401i \(-0.592135\pi\)
−0.285424 + 0.958401i \(0.592135\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −7565.12 −0.449229
\(658\) 0 0
\(659\) 28827.7 1.70405 0.852023 0.523504i \(-0.175376\pi\)
0.852023 + 0.523504i \(0.175376\pi\)
\(660\) 0 0
\(661\) −1696.86 −0.0998488 −0.0499244 0.998753i \(-0.515898\pi\)
−0.0499244 + 0.998753i \(0.515898\pi\)
\(662\) 0 0
\(663\) −6451.95 −0.377938
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −40581.0 −2.35578
\(668\) 0 0
\(669\) −19795.3 −1.14399
\(670\) 0 0
\(671\) 794.975 0.0457372
\(672\) 0 0
\(673\) 25637.6 1.46843 0.734217 0.678915i \(-0.237550\pi\)
0.734217 + 0.678915i \(0.237550\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21279.1 1.20801 0.604005 0.796980i \(-0.293571\pi\)
0.604005 + 0.796980i \(0.293571\pi\)
\(678\) 0 0
\(679\) −7527.16 −0.425428
\(680\) 0 0
\(681\) 4087.66 0.230014
\(682\) 0 0
\(683\) −6828.09 −0.382533 −0.191266 0.981538i \(-0.561259\pi\)
−0.191266 + 0.981538i \(0.561259\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1322.45 0.0734422
\(688\) 0 0
\(689\) −4839.56 −0.267594
\(690\) 0 0
\(691\) 7710.08 0.424465 0.212232 0.977219i \(-0.431927\pi\)
0.212232 + 0.977219i \(0.431927\pi\)
\(692\) 0 0
\(693\) −64.1751 −0.00351776
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5873.47 0.319188
\(698\) 0 0
\(699\) 13216.9 0.715178
\(700\) 0 0
\(701\) 4712.20 0.253891 0.126945 0.991910i \(-0.459483\pi\)
0.126945 + 0.991910i \(0.459483\pi\)
\(702\) 0 0
\(703\) 8807.34 0.472511
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9592.73 0.510286
\(708\) 0 0
\(709\) 10005.7 0.530001 0.265001 0.964248i \(-0.414628\pi\)
0.265001 + 0.964248i \(0.414628\pi\)
\(710\) 0 0
\(711\) −2727.37 −0.143860
\(712\) 0 0
\(713\) 5816.19 0.305495
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −7935.71 −0.413340
\(718\) 0 0
\(719\) 24420.6 1.26667 0.633333 0.773879i \(-0.281686\pi\)
0.633333 + 0.773879i \(0.281686\pi\)
\(720\) 0 0
\(721\) 2422.02 0.125105
\(722\) 0 0
\(723\) −8744.26 −0.449796
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −18875.2 −0.962918 −0.481459 0.876469i \(-0.659893\pi\)
−0.481459 + 0.876469i \(0.659893\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −4502.43 −0.227809
\(732\) 0 0
\(733\) −19504.7 −0.982841 −0.491420 0.870923i \(-0.663522\pi\)
−0.491420 + 0.870923i \(0.663522\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −474.373 −0.0237093
\(738\) 0 0
\(739\) 35927.8 1.78840 0.894199 0.447670i \(-0.147746\pi\)
0.894199 + 0.447670i \(0.147746\pi\)
\(740\) 0 0
\(741\) −5805.38 −0.287808
\(742\) 0 0
\(743\) −21322.5 −1.05282 −0.526412 0.850230i \(-0.676463\pi\)
−0.526412 + 0.850230i \(0.676463\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −7071.25 −0.346350
\(748\) 0 0
\(749\) 1144.15 0.0558163
\(750\) 0 0
\(751\) −30538.1 −1.48382 −0.741912 0.670497i \(-0.766081\pi\)
−0.741912 + 0.670497i \(0.766081\pi\)
\(752\) 0 0
\(753\) 5369.08 0.259841
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −581.620 −0.0279251 −0.0139626 0.999903i \(-0.504445\pi\)
−0.0139626 + 0.999903i \(0.504445\pi\)
\(758\) 0 0
\(759\) 449.741 0.0215080
\(760\) 0 0
\(761\) −5358.99 −0.255274 −0.127637 0.991821i \(-0.540739\pi\)
−0.127637 + 0.991821i \(0.540739\pi\)
\(762\) 0 0
\(763\) 7488.65 0.355318
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 50759.2 2.38958
\(768\) 0 0
\(769\) −12576.2 −0.589741 −0.294871 0.955537i \(-0.595277\pi\)
−0.294871 + 0.955537i \(0.595277\pi\)
\(770\) 0 0
\(771\) 16404.4 0.766266
\(772\) 0 0
\(773\) 8574.25 0.398958 0.199479 0.979902i \(-0.436075\pi\)
0.199479 + 0.979902i \(0.436075\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −6071.12 −0.280309
\(778\) 0 0
\(779\) 5284.87 0.243068
\(780\) 0 0
\(781\) −285.964 −0.0131019
\(782\) 0 0
\(783\) −7445.12 −0.339804
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −24471.6 −1.10841 −0.554206 0.832380i \(-0.686978\pi\)
−0.554206 + 0.832380i \(0.686978\pi\)
\(788\) 0 0
\(789\) −4676.45 −0.211009
\(790\) 0 0
\(791\) 1914.76 0.0860695
\(792\) 0 0
\(793\) −49572.6 −2.21989
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −31962.3 −1.42053 −0.710266 0.703934i \(-0.751425\pi\)
−0.710266 + 0.703934i \(0.751425\pi\)
\(798\) 0 0
\(799\) −6851.41 −0.303361
\(800\) 0 0
\(801\) −6354.68 −0.280314
\(802\) 0 0
\(803\) −856.248 −0.0376293
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1556.17 −0.0678807
\(808\) 0 0
\(809\) −31743.1 −1.37952 −0.689758 0.724040i \(-0.742283\pi\)
−0.689758 + 0.724040i \(0.742283\pi\)
\(810\) 0 0
\(811\) 40594.6 1.75767 0.878834 0.477128i \(-0.158322\pi\)
0.878834 + 0.477128i \(0.158322\pi\)
\(812\) 0 0
\(813\) −7462.95 −0.321940
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −4051.22 −0.173481
\(818\) 0 0
\(819\) 4001.79 0.170737
\(820\) 0 0
\(821\) −4840.20 −0.205754 −0.102877 0.994694i \(-0.532805\pi\)
−0.102877 + 0.994694i \(0.532805\pi\)
\(822\) 0 0
\(823\) −3706.56 −0.156990 −0.0784948 0.996915i \(-0.525011\pi\)
−0.0784948 + 0.996915i \(0.525011\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3280.08 −0.137920 −0.0689599 0.997619i \(-0.521968\pi\)
−0.0689599 + 0.997619i \(0.521968\pi\)
\(828\) 0 0
\(829\) −42382.8 −1.77565 −0.887825 0.460181i \(-0.847785\pi\)
−0.887825 + 0.460181i \(0.847785\pi\)
\(830\) 0 0
\(831\) 22893.1 0.955658
\(832\) 0 0
\(833\) 1659.02 0.0690056
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1067.05 0.0440655
\(838\) 0 0
\(839\) 40306.9 1.65858 0.829290 0.558818i \(-0.188745\pi\)
0.829290 + 0.558818i \(0.188745\pi\)
\(840\) 0 0
\(841\) 51646.4 2.11761
\(842\) 0 0
\(843\) 11090.9 0.453133
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 9309.74 0.377670
\(848\) 0 0
\(849\) 25894.6 1.04676
\(850\) 0 0
\(851\) 42546.6 1.71384
\(852\) 0 0
\(853\) −22158.9 −0.889456 −0.444728 0.895666i \(-0.646700\pi\)
−0.444728 + 0.895666i \(0.646700\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 45815.6 1.82617 0.913087 0.407764i \(-0.133691\pi\)
0.913087 + 0.407764i \(0.133691\pi\)
\(858\) 0 0
\(859\) 14724.2 0.584846 0.292423 0.956289i \(-0.405538\pi\)
0.292423 + 0.956289i \(0.405538\pi\)
\(860\) 0 0
\(861\) −3642.99 −0.144196
\(862\) 0 0
\(863\) 27168.6 1.07165 0.535824 0.844330i \(-0.320001\pi\)
0.535824 + 0.844330i \(0.320001\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −11300.0 −0.442639
\(868\) 0 0
\(869\) −308.694 −0.0120503
\(870\) 0 0
\(871\) 29580.7 1.15075
\(872\) 0 0
\(873\) 9677.77 0.375192
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 5839.59 0.224845 0.112422 0.993661i \(-0.464139\pi\)
0.112422 + 0.993661i \(0.464139\pi\)
\(878\) 0 0
\(879\) 9007.02 0.345619
\(880\) 0 0
\(881\) −28684.0 −1.09692 −0.548461 0.836176i \(-0.684786\pi\)
−0.548461 + 0.836176i \(0.684786\pi\)
\(882\) 0 0
\(883\) −17221.1 −0.656326 −0.328163 0.944621i \(-0.606430\pi\)
−0.328163 + 0.944621i \(0.606430\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32495.5 1.23009 0.615046 0.788491i \(-0.289137\pi\)
0.615046 + 0.788491i \(0.289137\pi\)
\(888\) 0 0
\(889\) −876.075 −0.0330513
\(890\) 0 0
\(891\) 82.5108 0.00310238
\(892\) 0 0
\(893\) −6164.81 −0.231016
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −28044.7 −1.04391
\(898\) 0 0
\(899\) −10897.6 −0.404288
\(900\) 0 0
\(901\) 2579.57 0.0953806
\(902\) 0 0
\(903\) 2792.61 0.102915
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 9095.47 0.332977 0.166488 0.986043i \(-0.446757\pi\)
0.166488 + 0.986043i \(0.446757\pi\)
\(908\) 0 0
\(909\) −12333.5 −0.450030
\(910\) 0 0
\(911\) 25214.0 0.916989 0.458495 0.888697i \(-0.348389\pi\)
0.458495 + 0.888697i \(0.348389\pi\)
\(912\) 0 0
\(913\) −800.350 −0.0290117
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −16977.0 −0.611375
\(918\) 0 0
\(919\) 11204.3 0.402171 0.201085 0.979574i \(-0.435553\pi\)
0.201085 + 0.979574i \(0.435553\pi\)
\(920\) 0 0
\(921\) 21619.4 0.773491
\(922\) 0 0
\(923\) 17832.0 0.635913
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −3114.03 −0.110332
\(928\) 0 0
\(929\) −4395.54 −0.155235 −0.0776173 0.996983i \(-0.524731\pi\)
−0.0776173 + 0.996983i \(0.524731\pi\)
\(930\) 0 0
\(931\) 1492.76 0.0525493
\(932\) 0 0
\(933\) −7240.07 −0.254051
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1389.66 0.0484504 0.0242252 0.999707i \(-0.492288\pi\)
0.0242252 + 0.999707i \(0.492288\pi\)
\(938\) 0 0
\(939\) 5385.90 0.187180
\(940\) 0 0
\(941\) 2342.75 0.0811600 0.0405800 0.999176i \(-0.487079\pi\)
0.0405800 + 0.999176i \(0.487079\pi\)
\(942\) 0 0
\(943\) 25530.2 0.881631
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 39418.7 1.35263 0.676313 0.736614i \(-0.263577\pi\)
0.676313 + 0.736614i \(0.263577\pi\)
\(948\) 0 0
\(949\) 53393.4 1.82637
\(950\) 0 0
\(951\) −13181.6 −0.449468
\(952\) 0 0
\(953\) 52564.0 1.78669 0.893345 0.449371i \(-0.148352\pi\)
0.893345 + 0.449371i \(0.148352\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −842.665 −0.0284634
\(958\) 0 0
\(959\) 3761.38 0.126654
\(960\) 0 0
\(961\) −28229.1 −0.947572
\(962\) 0 0
\(963\) −1471.05 −0.0492254
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 34020.4 1.13136 0.565679 0.824626i \(-0.308614\pi\)
0.565679 + 0.824626i \(0.308614\pi\)
\(968\) 0 0
\(969\) 3094.37 0.102586
\(970\) 0 0
\(971\) 23646.8 0.781526 0.390763 0.920491i \(-0.372211\pi\)
0.390763 + 0.920491i \(0.372211\pi\)
\(972\) 0 0
\(973\) 4682.37 0.154275
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −56300.6 −1.84362 −0.921809 0.387645i \(-0.873289\pi\)
−0.921809 + 0.387645i \(0.873289\pi\)
\(978\) 0 0
\(979\) −719.245 −0.0234803
\(980\) 0 0
\(981\) −9628.26 −0.313361
\(982\) 0 0
\(983\) 50882.8 1.65098 0.825488 0.564420i \(-0.190900\pi\)
0.825488 + 0.564420i \(0.190900\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 4249.55 0.137046
\(988\) 0 0
\(989\) −19570.7 −0.629233
\(990\) 0 0
\(991\) −56050.7 −1.79668 −0.898339 0.439302i \(-0.855226\pi\)
−0.898339 + 0.439302i \(0.855226\pi\)
\(992\) 0 0
\(993\) 20751.4 0.663169
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1487.65 −0.0472560 −0.0236280 0.999721i \(-0.507522\pi\)
−0.0236280 + 0.999721i \(0.507522\pi\)
\(998\) 0 0
\(999\) 7805.72 0.247209
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.4.a.y.1.3 3
5.2 odd 4 420.4.k.b.169.1 6
5.3 odd 4 420.4.k.b.169.4 yes 6
5.4 even 2 2100.4.a.x.1.3 3
15.2 even 4 1260.4.k.e.1009.5 6
15.8 even 4 1260.4.k.e.1009.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.4.k.b.169.1 6 5.2 odd 4
420.4.k.b.169.4 yes 6 5.3 odd 4
1260.4.k.e.1009.5 6 15.2 even 4
1260.4.k.e.1009.6 6 15.8 even 4
2100.4.a.x.1.3 3 5.4 even 2
2100.4.a.y.1.3 3 1.1 even 1 trivial