Properties

Label 2100.4.k.a.1849.1
Level $2100$
Weight $4$
Character 2100.1849
Analytic conductor $123.904$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1849,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1849");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2100.1849
Dual form 2100.4.k.a.1849.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} -7.00000i q^{7} -9.00000 q^{9} -44.0000 q^{11} +42.0000i q^{13} -94.0000i q^{17} +36.0000 q^{19} -21.0000 q^{21} -24.0000i q^{23} +27.0000i q^{27} -54.0000 q^{29} -112.000 q^{31} +132.000i q^{33} -322.000i q^{37} +126.000 q^{39} -22.0000 q^{41} -292.000i q^{43} +272.000i q^{47} -49.0000 q^{49} -282.000 q^{51} +578.000i q^{53} -108.000i q^{57} +44.0000 q^{59} -26.0000 q^{61} +63.0000i q^{63} +12.0000i q^{67} -72.0000 q^{69} -280.000 q^{71} -410.000i q^{73} +308.000i q^{77} +320.000 q^{79} +81.0000 q^{81} +1252.00i q^{83} +162.000i q^{87} +38.0000 q^{89} +294.000 q^{91} +336.000i q^{93} +1250.00i q^{97} +396.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{9} - 88 q^{11} + 72 q^{19} - 42 q^{21} - 108 q^{29} - 224 q^{31} + 252 q^{39} - 44 q^{41} - 98 q^{49} - 564 q^{51} + 88 q^{59} - 52 q^{61} - 144 q^{69} - 560 q^{71} + 640 q^{79} + 162 q^{81}+ \cdots + 792 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 7.00000i − 0.377964i
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −44.0000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 42.0000i 0.896054i 0.894020 + 0.448027i \(0.147873\pi\)
−0.894020 + 0.448027i \(0.852127\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 94.0000i − 1.34108i −0.741874 0.670540i \(-0.766063\pi\)
0.741874 0.670540i \(-0.233937\pi\)
\(18\) 0 0
\(19\) 36.0000 0.434682 0.217341 0.976096i \(-0.430262\pi\)
0.217341 + 0.976096i \(0.430262\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) − 24.0000i − 0.217580i −0.994065 0.108790i \(-0.965302\pi\)
0.994065 0.108790i \(-0.0346976\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) −54.0000 −0.345778 −0.172889 0.984941i \(-0.555310\pi\)
−0.172889 + 0.984941i \(0.555310\pi\)
\(30\) 0 0
\(31\) −112.000 −0.648897 −0.324448 0.945903i \(-0.605179\pi\)
−0.324448 + 0.945903i \(0.605179\pi\)
\(32\) 0 0
\(33\) 132.000i 0.696311i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 322.000i − 1.43072i −0.698758 0.715358i \(-0.746264\pi\)
0.698758 0.715358i \(-0.253736\pi\)
\(38\) 0 0
\(39\) 126.000 0.517337
\(40\) 0 0
\(41\) −22.0000 −0.0838006 −0.0419003 0.999122i \(-0.513341\pi\)
−0.0419003 + 0.999122i \(0.513341\pi\)
\(42\) 0 0
\(43\) − 292.000i − 1.03557i −0.855510 0.517786i \(-0.826756\pi\)
0.855510 0.517786i \(-0.173244\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 272.000i 0.844155i 0.906560 + 0.422077i \(0.138699\pi\)
−0.906560 + 0.422077i \(0.861301\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −282.000 −0.774273
\(52\) 0 0
\(53\) 578.000i 1.49801i 0.662566 + 0.749004i \(0.269468\pi\)
−0.662566 + 0.749004i \(0.730532\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 108.000i − 0.250964i
\(58\) 0 0
\(59\) 44.0000 0.0970900 0.0485450 0.998821i \(-0.484542\pi\)
0.0485450 + 0.998821i \(0.484542\pi\)
\(60\) 0 0
\(61\) −26.0000 −0.0545731 −0.0272865 0.999628i \(-0.508687\pi\)
−0.0272865 + 0.999628i \(0.508687\pi\)
\(62\) 0 0
\(63\) 63.0000i 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0000i 0.0218811i 0.999940 + 0.0109405i \(0.00348255\pi\)
−0.999940 + 0.0109405i \(0.996517\pi\)
\(68\) 0 0
\(69\) −72.0000 −0.125620
\(70\) 0 0
\(71\) −280.000 −0.468027 −0.234013 0.972233i \(-0.575186\pi\)
−0.234013 + 0.972233i \(0.575186\pi\)
\(72\) 0 0
\(73\) − 410.000i − 0.657354i −0.944442 0.328677i \(-0.893397\pi\)
0.944442 0.328677i \(-0.106603\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 308.000i 0.455842i
\(78\) 0 0
\(79\) 320.000 0.455732 0.227866 0.973693i \(-0.426825\pi\)
0.227866 + 0.973693i \(0.426825\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 1252.00i 1.65572i 0.560934 + 0.827861i \(0.310442\pi\)
−0.560934 + 0.827861i \(0.689558\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 162.000i 0.199635i
\(88\) 0 0
\(89\) 38.0000 0.0452583 0.0226292 0.999744i \(-0.492796\pi\)
0.0226292 + 0.999744i \(0.492796\pi\)
\(90\) 0 0
\(91\) 294.000 0.338677
\(92\) 0 0
\(93\) 336.000i 0.374641i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1250.00i 1.30844i 0.756306 + 0.654218i \(0.227002\pi\)
−0.756306 + 0.654218i \(0.772998\pi\)
\(98\) 0 0
\(99\) 396.000 0.402015
\(100\) 0 0
\(101\) −834.000 −0.821645 −0.410822 0.911715i \(-0.634758\pi\)
−0.410822 + 0.911715i \(0.634758\pi\)
\(102\) 0 0
\(103\) 728.000i 0.696427i 0.937415 + 0.348213i \(0.113212\pi\)
−0.937415 + 0.348213i \(0.886788\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 108.000i − 0.0975771i −0.998809 0.0487886i \(-0.984464\pi\)
0.998809 0.0487886i \(-0.0155361\pi\)
\(108\) 0 0
\(109\) −534.000 −0.469247 −0.234624 0.972086i \(-0.575386\pi\)
−0.234624 + 0.972086i \(0.575386\pi\)
\(110\) 0 0
\(111\) −966.000 −0.826024
\(112\) 0 0
\(113\) 1774.00i 1.47685i 0.674336 + 0.738424i \(0.264430\pi\)
−0.674336 + 0.738424i \(0.735570\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 378.000i − 0.298685i
\(118\) 0 0
\(119\) −658.000 −0.506880
\(120\) 0 0
\(121\) 605.000 0.454545
\(122\) 0 0
\(123\) 66.0000i 0.0483823i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2512.00i 1.75515i 0.479440 + 0.877575i \(0.340840\pi\)
−0.479440 + 0.877575i \(0.659160\pi\)
\(128\) 0 0
\(129\) −876.000 −0.597888
\(130\) 0 0
\(131\) 1388.00 0.925726 0.462863 0.886430i \(-0.346822\pi\)
0.462863 + 0.886430i \(0.346822\pi\)
\(132\) 0 0
\(133\) − 252.000i − 0.164295i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 2406.00i − 1.50043i −0.661196 0.750213i \(-0.729951\pi\)
0.661196 0.750213i \(-0.270049\pi\)
\(138\) 0 0
\(139\) 860.000 0.524779 0.262389 0.964962i \(-0.415490\pi\)
0.262389 + 0.964962i \(0.415490\pi\)
\(140\) 0 0
\(141\) 816.000 0.487373
\(142\) 0 0
\(143\) − 1848.00i − 1.08068i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 147.000i 0.0824786i
\(148\) 0 0
\(149\) −798.000 −0.438756 −0.219378 0.975640i \(-0.570403\pi\)
−0.219378 + 0.975640i \(0.570403\pi\)
\(150\) 0 0
\(151\) 3416.00 1.84099 0.920497 0.390749i \(-0.127784\pi\)
0.920497 + 0.390749i \(0.127784\pi\)
\(152\) 0 0
\(153\) 846.000i 0.447026i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 70.0000i 0.0355835i 0.999842 + 0.0177917i \(0.00566359\pi\)
−0.999842 + 0.0177917i \(0.994336\pi\)
\(158\) 0 0
\(159\) 1734.00 0.864875
\(160\) 0 0
\(161\) −168.000 −0.0822376
\(162\) 0 0
\(163\) − 2444.00i − 1.17441i −0.809438 0.587205i \(-0.800228\pi\)
0.809438 0.587205i \(-0.199772\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 648.000i − 0.300262i −0.988666 0.150131i \(-0.952030\pi\)
0.988666 0.150131i \(-0.0479695\pi\)
\(168\) 0 0
\(169\) 433.000 0.197087
\(170\) 0 0
\(171\) −324.000 −0.144894
\(172\) 0 0
\(173\) − 1526.00i − 0.670634i −0.942105 0.335317i \(-0.891157\pi\)
0.942105 0.335317i \(-0.108843\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 132.000i − 0.0560550i
\(178\) 0 0
\(179\) 84.0000 0.0350752 0.0175376 0.999846i \(-0.494417\pi\)
0.0175376 + 0.999846i \(0.494417\pi\)
\(180\) 0 0
\(181\) −1970.00 −0.809000 −0.404500 0.914538i \(-0.632554\pi\)
−0.404500 + 0.914538i \(0.632554\pi\)
\(182\) 0 0
\(183\) 78.0000i 0.0315078i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4136.00i 1.61740i
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 720.000 0.272761 0.136381 0.990657i \(-0.456453\pi\)
0.136381 + 0.990657i \(0.456453\pi\)
\(192\) 0 0
\(193\) 1534.00i 0.572123i 0.958211 + 0.286061i \(0.0923462\pi\)
−0.958211 + 0.286061i \(0.907654\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3950.00i 1.42856i 0.699861 + 0.714279i \(0.253245\pi\)
−0.699861 + 0.714279i \(0.746755\pi\)
\(198\) 0 0
\(199\) −3752.00 −1.33654 −0.668272 0.743917i \(-0.732966\pi\)
−0.668272 + 0.743917i \(0.732966\pi\)
\(200\) 0 0
\(201\) 36.0000 0.0126331
\(202\) 0 0
\(203\) 378.000i 0.130692i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 216.000i 0.0725268i
\(208\) 0 0
\(209\) −1584.00 −0.524247
\(210\) 0 0
\(211\) 5596.00 1.82580 0.912902 0.408179i \(-0.133836\pi\)
0.912902 + 0.408179i \(0.133836\pi\)
\(212\) 0 0
\(213\) 840.000i 0.270215i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 784.000i 0.245260i
\(218\) 0 0
\(219\) −1230.00 −0.379524
\(220\) 0 0
\(221\) 3948.00 1.20168
\(222\) 0 0
\(223\) 2672.00i 0.802378i 0.915995 + 0.401189i \(0.131403\pi\)
−0.915995 + 0.401189i \(0.868597\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 620.000i 0.181281i 0.995884 + 0.0906406i \(0.0288915\pi\)
−0.995884 + 0.0906406i \(0.971109\pi\)
\(228\) 0 0
\(229\) −4318.00 −1.24603 −0.623016 0.782209i \(-0.714093\pi\)
−0.623016 + 0.782209i \(0.714093\pi\)
\(230\) 0 0
\(231\) 924.000 0.263181
\(232\) 0 0
\(233\) 4902.00i 1.37829i 0.724625 + 0.689143i \(0.242013\pi\)
−0.724625 + 0.689143i \(0.757987\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 960.000i − 0.263117i
\(238\) 0 0
\(239\) −2176.00 −0.588928 −0.294464 0.955663i \(-0.595141\pi\)
−0.294464 + 0.955663i \(0.595141\pi\)
\(240\) 0 0
\(241\) 1330.00 0.355489 0.177744 0.984077i \(-0.443120\pi\)
0.177744 + 0.984077i \(0.443120\pi\)
\(242\) 0 0
\(243\) − 243.000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1512.00i 0.389499i
\(248\) 0 0
\(249\) 3756.00 0.955931
\(250\) 0 0
\(251\) −972.000 −0.244431 −0.122215 0.992504i \(-0.539000\pi\)
−0.122215 + 0.992504i \(0.539000\pi\)
\(252\) 0 0
\(253\) 1056.00i 0.262412i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 1102.00i − 0.267474i −0.991017 0.133737i \(-0.957302\pi\)
0.991017 0.133737i \(-0.0426978\pi\)
\(258\) 0 0
\(259\) −2254.00 −0.540760
\(260\) 0 0
\(261\) 486.000 0.115259
\(262\) 0 0
\(263\) 4600.00i 1.07851i 0.842143 + 0.539255i \(0.181294\pi\)
−0.842143 + 0.539255i \(0.818706\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 114.000i − 0.0261299i
\(268\) 0 0
\(269\) 3498.00 0.792851 0.396425 0.918067i \(-0.370251\pi\)
0.396425 + 0.918067i \(0.370251\pi\)
\(270\) 0 0
\(271\) 8256.00 1.85061 0.925307 0.379219i \(-0.123807\pi\)
0.925307 + 0.379219i \(0.123807\pi\)
\(272\) 0 0
\(273\) − 882.000i − 0.195535i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 594.000i − 0.128845i −0.997923 0.0644224i \(-0.979480\pi\)
0.997923 0.0644224i \(-0.0205205\pi\)
\(278\) 0 0
\(279\) 1008.00 0.216299
\(280\) 0 0
\(281\) −2326.00 −0.493799 −0.246900 0.969041i \(-0.579412\pi\)
−0.246900 + 0.969041i \(0.579412\pi\)
\(282\) 0 0
\(283\) 5164.00i 1.08469i 0.840155 + 0.542346i \(0.182464\pi\)
−0.840155 + 0.542346i \(0.817536\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 154.000i 0.0316736i
\(288\) 0 0
\(289\) −3923.00 −0.798494
\(290\) 0 0
\(291\) 3750.00 0.755426
\(292\) 0 0
\(293\) 9602.00i 1.91452i 0.289226 + 0.957261i \(0.406602\pi\)
−0.289226 + 0.957261i \(0.593398\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1188.00i − 0.232104i
\(298\) 0 0
\(299\) 1008.00 0.194964
\(300\) 0 0
\(301\) −2044.00 −0.391409
\(302\) 0 0
\(303\) 2502.00i 0.474377i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 836.000i − 0.155417i −0.996976 0.0777085i \(-0.975240\pi\)
0.996976 0.0777085i \(-0.0247604\pi\)
\(308\) 0 0
\(309\) 2184.00 0.402082
\(310\) 0 0
\(311\) 1512.00 0.275684 0.137842 0.990454i \(-0.455983\pi\)
0.137842 + 0.990454i \(0.455983\pi\)
\(312\) 0 0
\(313\) 9142.00i 1.65091i 0.564464 + 0.825457i \(0.309083\pi\)
−0.564464 + 0.825457i \(0.690917\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.0000i 0.00389793i 0.999998 + 0.00194896i \(0.000620375\pi\)
−0.999998 + 0.00194896i \(0.999380\pi\)
\(318\) 0 0
\(319\) 2376.00 0.417023
\(320\) 0 0
\(321\) −324.000 −0.0563362
\(322\) 0 0
\(323\) − 3384.00i − 0.582944i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1602.00i 0.270920i
\(328\) 0 0
\(329\) 1904.00 0.319061
\(330\) 0 0
\(331\) 8932.00 1.48322 0.741612 0.670829i \(-0.234062\pi\)
0.741612 + 0.670829i \(0.234062\pi\)
\(332\) 0 0
\(333\) 2898.00i 0.476905i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 3086.00i − 0.498828i −0.968397 0.249414i \(-0.919762\pi\)
0.968397 0.249414i \(-0.0802380\pi\)
\(338\) 0 0
\(339\) 5322.00 0.852659
\(340\) 0 0
\(341\) 4928.00 0.782599
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 3356.00i − 0.519192i −0.965717 0.259596i \(-0.916411\pi\)
0.965717 0.259596i \(-0.0835893\pi\)
\(348\) 0 0
\(349\) 9722.00 1.49114 0.745568 0.666429i \(-0.232178\pi\)
0.745568 + 0.666429i \(0.232178\pi\)
\(350\) 0 0
\(351\) −1134.00 −0.172446
\(352\) 0 0
\(353\) 10254.0i 1.54608i 0.634359 + 0.773039i \(0.281264\pi\)
−0.634359 + 0.773039i \(0.718736\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1974.00i 0.292648i
\(358\) 0 0
\(359\) −9800.00 −1.44074 −0.720368 0.693592i \(-0.756027\pi\)
−0.720368 + 0.693592i \(0.756027\pi\)
\(360\) 0 0
\(361\) −5563.00 −0.811051
\(362\) 0 0
\(363\) − 1815.00i − 0.262432i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 7328.00i − 1.04228i −0.853470 0.521142i \(-0.825506\pi\)
0.853470 0.521142i \(-0.174494\pi\)
\(368\) 0 0
\(369\) 198.000 0.0279335
\(370\) 0 0
\(371\) 4046.00 0.566194
\(372\) 0 0
\(373\) − 9902.00i − 1.37455i −0.726399 0.687274i \(-0.758807\pi\)
0.726399 0.687274i \(-0.241193\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2268.00i − 0.309835i
\(378\) 0 0
\(379\) 5292.00 0.717234 0.358617 0.933485i \(-0.383248\pi\)
0.358617 + 0.933485i \(0.383248\pi\)
\(380\) 0 0
\(381\) 7536.00 1.01334
\(382\) 0 0
\(383\) 6144.00i 0.819696i 0.912154 + 0.409848i \(0.134418\pi\)
−0.912154 + 0.409848i \(0.865582\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2628.00i 0.345191i
\(388\) 0 0
\(389\) 4402.00 0.573754 0.286877 0.957967i \(-0.407383\pi\)
0.286877 + 0.957967i \(0.407383\pi\)
\(390\) 0 0
\(391\) −2256.00 −0.291792
\(392\) 0 0
\(393\) − 4164.00i − 0.534468i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 7850.00i − 0.992393i −0.868210 0.496197i \(-0.834729\pi\)
0.868210 0.496197i \(-0.165271\pi\)
\(398\) 0 0
\(399\) −756.000 −0.0948555
\(400\) 0 0
\(401\) 11122.0 1.38505 0.692526 0.721393i \(-0.256498\pi\)
0.692526 + 0.721393i \(0.256498\pi\)
\(402\) 0 0
\(403\) − 4704.00i − 0.581446i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 14168.0i 1.72551i
\(408\) 0 0
\(409\) 3030.00 0.366317 0.183159 0.983083i \(-0.441368\pi\)
0.183159 + 0.983083i \(0.441368\pi\)
\(410\) 0 0
\(411\) −7218.00 −0.866272
\(412\) 0 0
\(413\) − 308.000i − 0.0366966i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 2580.00i − 0.302981i
\(418\) 0 0
\(419\) 13620.0 1.58802 0.794010 0.607904i \(-0.207990\pi\)
0.794010 + 0.607904i \(0.207990\pi\)
\(420\) 0 0
\(421\) −1282.00 −0.148411 −0.0742053 0.997243i \(-0.523642\pi\)
−0.0742053 + 0.997243i \(0.523642\pi\)
\(422\) 0 0
\(423\) − 2448.00i − 0.281385i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 182.000i 0.0206267i
\(428\) 0 0
\(429\) −5544.00 −0.623932
\(430\) 0 0
\(431\) −13056.0 −1.45913 −0.729565 0.683911i \(-0.760278\pi\)
−0.729565 + 0.683911i \(0.760278\pi\)
\(432\) 0 0
\(433\) 9550.00i 1.05992i 0.848024 + 0.529958i \(0.177792\pi\)
−0.848024 + 0.529958i \(0.822208\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 864.000i − 0.0945783i
\(438\) 0 0
\(439\) −3640.00 −0.395735 −0.197868 0.980229i \(-0.563402\pi\)
−0.197868 + 0.980229i \(0.563402\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 10940.0i 1.17331i 0.809838 + 0.586654i \(0.199555\pi\)
−0.809838 + 0.586654i \(0.800445\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2394.00i 0.253316i
\(448\) 0 0
\(449\) −13602.0 −1.42966 −0.714831 0.699297i \(-0.753496\pi\)
−0.714831 + 0.699297i \(0.753496\pi\)
\(450\) 0 0
\(451\) 968.000 0.101067
\(452\) 0 0
\(453\) − 10248.0i − 1.06290i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 15130.0i 1.54869i 0.632763 + 0.774345i \(0.281921\pi\)
−0.632763 + 0.774345i \(0.718079\pi\)
\(458\) 0 0
\(459\) 2538.00 0.258091
\(460\) 0 0
\(461\) −9770.00 −0.987059 −0.493530 0.869729i \(-0.664294\pi\)
−0.493530 + 0.869729i \(0.664294\pi\)
\(462\) 0 0
\(463\) 1408.00i 0.141329i 0.997500 + 0.0706645i \(0.0225120\pi\)
−0.997500 + 0.0706645i \(0.977488\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 8644.00i − 0.856524i −0.903655 0.428262i \(-0.859126\pi\)
0.903655 0.428262i \(-0.140874\pi\)
\(468\) 0 0
\(469\) 84.0000 0.00827028
\(470\) 0 0
\(471\) 210.000 0.0205441
\(472\) 0 0
\(473\) 12848.0i 1.24895i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 5202.00i − 0.499336i
\(478\) 0 0
\(479\) −17184.0 −1.63916 −0.819579 0.572966i \(-0.805793\pi\)
−0.819579 + 0.572966i \(0.805793\pi\)
\(480\) 0 0
\(481\) 13524.0 1.28200
\(482\) 0 0
\(483\) 504.000i 0.0474799i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8744.00i 0.813611i 0.913515 + 0.406805i \(0.133357\pi\)
−0.913515 + 0.406805i \(0.866643\pi\)
\(488\) 0 0
\(489\) −7332.00 −0.678046
\(490\) 0 0
\(491\) 9012.00 0.828322 0.414161 0.910204i \(-0.364075\pi\)
0.414161 + 0.910204i \(0.364075\pi\)
\(492\) 0 0
\(493\) 5076.00i 0.463715i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1960.00i 0.176897i
\(498\) 0 0
\(499\) 18564.0 1.66541 0.832704 0.553718i \(-0.186791\pi\)
0.832704 + 0.553718i \(0.186791\pi\)
\(500\) 0 0
\(501\) −1944.00 −0.173356
\(502\) 0 0
\(503\) − 552.000i − 0.0489313i −0.999701 0.0244657i \(-0.992212\pi\)
0.999701 0.0244657i \(-0.00778844\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 1299.00i − 0.113788i
\(508\) 0 0
\(509\) −19558.0 −1.70313 −0.851565 0.524249i \(-0.824346\pi\)
−0.851565 + 0.524249i \(0.824346\pi\)
\(510\) 0 0
\(511\) −2870.00 −0.248457
\(512\) 0 0
\(513\) 972.000i 0.0836547i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 11968.0i − 1.01809i
\(518\) 0 0
\(519\) −4578.00 −0.387191
\(520\) 0 0
\(521\) 10346.0 0.869993 0.434997 0.900432i \(-0.356750\pi\)
0.434997 + 0.900432i \(0.356750\pi\)
\(522\) 0 0
\(523\) 3740.00i 0.312694i 0.987702 + 0.156347i \(0.0499718\pi\)
−0.987702 + 0.156347i \(0.950028\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10528.0i 0.870222i
\(528\) 0 0
\(529\) 11591.0 0.952659
\(530\) 0 0
\(531\) −396.000 −0.0323633
\(532\) 0 0
\(533\) − 924.000i − 0.0750898i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 252.000i − 0.0202507i
\(538\) 0 0
\(539\) 2156.00 0.172292
\(540\) 0 0
\(541\) −15450.0 −1.22781 −0.613907 0.789378i \(-0.710403\pi\)
−0.613907 + 0.789378i \(0.710403\pi\)
\(542\) 0 0
\(543\) 5910.00i 0.467076i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13260.0i 1.03648i 0.855234 + 0.518242i \(0.173413\pi\)
−0.855234 + 0.518242i \(0.826587\pi\)
\(548\) 0 0
\(549\) 234.000 0.0181910
\(550\) 0 0
\(551\) −1944.00 −0.150303
\(552\) 0 0
\(553\) − 2240.00i − 0.172250i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15238.0i 1.15916i 0.814914 + 0.579582i \(0.196784\pi\)
−0.814914 + 0.579582i \(0.803216\pi\)
\(558\) 0 0
\(559\) 12264.0 0.927928
\(560\) 0 0
\(561\) 12408.0 0.933808
\(562\) 0 0
\(563\) 11620.0i 0.869848i 0.900467 + 0.434924i \(0.143225\pi\)
−0.900467 + 0.434924i \(0.856775\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 567.000i − 0.0419961i
\(568\) 0 0
\(569\) −25770.0 −1.89865 −0.949327 0.314289i \(-0.898234\pi\)
−0.949327 + 0.314289i \(0.898234\pi\)
\(570\) 0 0
\(571\) −6828.00 −0.500425 −0.250213 0.968191i \(-0.580501\pi\)
−0.250213 + 0.968191i \(0.580501\pi\)
\(572\) 0 0
\(573\) − 2160.00i − 0.157479i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 25886.0i − 1.86767i −0.357698 0.933837i \(-0.616438\pi\)
0.357698 0.933837i \(-0.383562\pi\)
\(578\) 0 0
\(579\) 4602.00 0.330315
\(580\) 0 0
\(581\) 8764.00 0.625804
\(582\) 0 0
\(583\) − 25432.0i − 1.80667i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1180.00i − 0.0829707i −0.999139 0.0414854i \(-0.986791\pi\)
0.999139 0.0414854i \(-0.0132090\pi\)
\(588\) 0 0
\(589\) −4032.00 −0.282064
\(590\) 0 0
\(591\) 11850.0 0.824778
\(592\) 0 0
\(593\) − 16386.0i − 1.13473i −0.823468 0.567363i \(-0.807964\pi\)
0.823468 0.567363i \(-0.192036\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 11256.0i 0.771654i
\(598\) 0 0
\(599\) 1320.00 0.0900396 0.0450198 0.998986i \(-0.485665\pi\)
0.0450198 + 0.998986i \(0.485665\pi\)
\(600\) 0 0
\(601\) 1866.00 0.126648 0.0633242 0.997993i \(-0.479830\pi\)
0.0633242 + 0.997993i \(0.479830\pi\)
\(602\) 0 0
\(603\) − 108.000i − 0.00729370i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 28240.0i 1.88835i 0.329450 + 0.944173i \(0.393137\pi\)
−0.329450 + 0.944173i \(0.606863\pi\)
\(608\) 0 0
\(609\) 1134.00 0.0754548
\(610\) 0 0
\(611\) −11424.0 −0.756408
\(612\) 0 0
\(613\) − 1278.00i − 0.0842054i −0.999113 0.0421027i \(-0.986594\pi\)
0.999113 0.0421027i \(-0.0134057\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 2662.00i − 0.173692i −0.996222 0.0868461i \(-0.972321\pi\)
0.996222 0.0868461i \(-0.0276788\pi\)
\(618\) 0 0
\(619\) 15676.0 1.01789 0.508943 0.860800i \(-0.330036\pi\)
0.508943 + 0.860800i \(0.330036\pi\)
\(620\) 0 0
\(621\) 648.000 0.0418733
\(622\) 0 0
\(623\) − 266.000i − 0.0171060i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 4752.00i 0.302674i
\(628\) 0 0
\(629\) −30268.0 −1.91870
\(630\) 0 0
\(631\) 23768.0 1.49951 0.749754 0.661717i \(-0.230172\pi\)
0.749754 + 0.661717i \(0.230172\pi\)
\(632\) 0 0
\(633\) − 16788.0i − 1.05413i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 2058.00i − 0.128008i
\(638\) 0 0
\(639\) 2520.00 0.156009
\(640\) 0 0
\(641\) −5758.00 −0.354801 −0.177400 0.984139i \(-0.556769\pi\)
−0.177400 + 0.984139i \(0.556769\pi\)
\(642\) 0 0
\(643\) 7604.00i 0.466365i 0.972433 + 0.233182i \(0.0749139\pi\)
−0.972433 + 0.233182i \(0.925086\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 8072.00i − 0.490484i −0.969462 0.245242i \(-0.921133\pi\)
0.969462 0.245242i \(-0.0788674\pi\)
\(648\) 0 0
\(649\) −1936.00 −0.117095
\(650\) 0 0
\(651\) 2352.00 0.141601
\(652\) 0 0
\(653\) − 15302.0i − 0.917019i −0.888689 0.458510i \(-0.848383\pi\)
0.888689 0.458510i \(-0.151617\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3690.00i 0.219118i
\(658\) 0 0
\(659\) 4244.00 0.250869 0.125435 0.992102i \(-0.459967\pi\)
0.125435 + 0.992102i \(0.459967\pi\)
\(660\) 0 0
\(661\) −10706.0 −0.629978 −0.314989 0.949095i \(-0.602001\pi\)
−0.314989 + 0.949095i \(0.602001\pi\)
\(662\) 0 0
\(663\) − 11844.0i − 0.693790i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1296.00i 0.0752344i
\(668\) 0 0
\(669\) 8016.00 0.463253
\(670\) 0 0
\(671\) 1144.00 0.0658176
\(672\) 0 0
\(673\) 10526.0i 0.602894i 0.953483 + 0.301447i \(0.0974696\pi\)
−0.953483 + 0.301447i \(0.902530\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 10146.0i − 0.575986i −0.957633 0.287993i \(-0.907012\pi\)
0.957633 0.287993i \(-0.0929880\pi\)
\(678\) 0 0
\(679\) 8750.00 0.494542
\(680\) 0 0
\(681\) 1860.00 0.104663
\(682\) 0 0
\(683\) 10348.0i 0.579729i 0.957068 + 0.289865i \(0.0936103\pi\)
−0.957068 + 0.289865i \(0.906390\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 12954.0i 0.719397i
\(688\) 0 0
\(689\) −24276.0 −1.34230
\(690\) 0 0
\(691\) −17252.0 −0.949779 −0.474889 0.880046i \(-0.657512\pi\)
−0.474889 + 0.880046i \(0.657512\pi\)
\(692\) 0 0
\(693\) − 2772.00i − 0.151947i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2068.00i 0.112383i
\(698\) 0 0
\(699\) 14706.0 0.795754
\(700\) 0 0
\(701\) −35882.0 −1.93330 −0.966651 0.256098i \(-0.917563\pi\)
−0.966651 + 0.256098i \(0.917563\pi\)
\(702\) 0 0
\(703\) − 11592.0i − 0.621907i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5838.00i 0.310552i
\(708\) 0 0
\(709\) −21406.0 −1.13388 −0.566939 0.823760i \(-0.691872\pi\)
−0.566939 + 0.823760i \(0.691872\pi\)
\(710\) 0 0
\(711\) −2880.00 −0.151911
\(712\) 0 0
\(713\) 2688.00i 0.141187i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6528.00i 0.340018i
\(718\) 0 0
\(719\) 11184.0 0.580101 0.290051 0.957011i \(-0.406328\pi\)
0.290051 + 0.957011i \(0.406328\pi\)
\(720\) 0 0
\(721\) 5096.00 0.263225
\(722\) 0 0
\(723\) − 3990.00i − 0.205242i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 2280.00i − 0.116314i −0.998307 0.0581572i \(-0.981478\pi\)
0.998307 0.0581572i \(-0.0185225\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −27448.0 −1.38878
\(732\) 0 0
\(733\) − 18118.0i − 0.912965i −0.889732 0.456483i \(-0.849109\pi\)
0.889732 0.456483i \(-0.150891\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 528.000i − 0.0263896i
\(738\) 0 0
\(739\) −30124.0 −1.49950 −0.749749 0.661722i \(-0.769826\pi\)
−0.749749 + 0.661722i \(0.769826\pi\)
\(740\) 0 0
\(741\) 4536.00 0.224877
\(742\) 0 0
\(743\) 3768.00i 0.186049i 0.995664 + 0.0930246i \(0.0296535\pi\)
−0.995664 + 0.0930246i \(0.970346\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 11268.0i − 0.551907i
\(748\) 0 0
\(749\) −756.000 −0.0368807
\(750\) 0 0
\(751\) −18880.0 −0.917365 −0.458682 0.888600i \(-0.651678\pi\)
−0.458682 + 0.888600i \(0.651678\pi\)
\(752\) 0 0
\(753\) 2916.00i 0.141122i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 9266.00i − 0.444886i −0.974946 0.222443i \(-0.928597\pi\)
0.974946 0.222443i \(-0.0714031\pi\)
\(758\) 0 0
\(759\) 3168.00 0.151503
\(760\) 0 0
\(761\) −4134.00 −0.196922 −0.0984608 0.995141i \(-0.531392\pi\)
−0.0984608 + 0.995141i \(0.531392\pi\)
\(762\) 0 0
\(763\) 3738.00i 0.177359i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1848.00i 0.0869979i
\(768\) 0 0
\(769\) 18110.0 0.849237 0.424619 0.905372i \(-0.360408\pi\)
0.424619 + 0.905372i \(0.360408\pi\)
\(770\) 0 0
\(771\) −3306.00 −0.154426
\(772\) 0 0
\(773\) − 35358.0i − 1.64520i −0.568621 0.822600i \(-0.692523\pi\)
0.568621 0.822600i \(-0.307477\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 6762.00i 0.312208i
\(778\) 0 0
\(779\) −792.000 −0.0364266
\(780\) 0 0
\(781\) 12320.0 0.564461
\(782\) 0 0
\(783\) − 1458.00i − 0.0665449i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 31652.0i − 1.43364i −0.697260 0.716818i \(-0.745598\pi\)
0.697260 0.716818i \(-0.254402\pi\)
\(788\) 0 0
\(789\) 13800.0 0.622678
\(790\) 0 0
\(791\) 12418.0 0.558196
\(792\) 0 0
\(793\) − 1092.00i − 0.0489005i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 8442.00i − 0.375196i −0.982246 0.187598i \(-0.939930\pi\)
0.982246 0.187598i \(-0.0600702\pi\)
\(798\) 0 0
\(799\) 25568.0 1.13208
\(800\) 0 0
\(801\) −342.000 −0.0150861
\(802\) 0 0
\(803\) 18040.0i 0.792799i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 10494.0i − 0.457753i
\(808\) 0 0
\(809\) −14298.0 −0.621373 −0.310687 0.950512i \(-0.600559\pi\)
−0.310687 + 0.950512i \(0.600559\pi\)
\(810\) 0 0
\(811\) −44956.0 −1.94651 −0.973254 0.229730i \(-0.926216\pi\)
−0.973254 + 0.229730i \(0.926216\pi\)
\(812\) 0 0
\(813\) − 24768.0i − 1.06845i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 10512.0i − 0.450145i
\(818\) 0 0
\(819\) −2646.00 −0.112892
\(820\) 0 0
\(821\) −45090.0 −1.91675 −0.958375 0.285512i \(-0.907836\pi\)
−0.958375 + 0.285512i \(0.907836\pi\)
\(822\) 0 0
\(823\) − 35128.0i − 1.48783i −0.668274 0.743916i \(-0.732966\pi\)
0.668274 0.743916i \(-0.267034\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11204.0i 0.471102i 0.971862 + 0.235551i \(0.0756894\pi\)
−0.971862 + 0.235551i \(0.924311\pi\)
\(828\) 0 0
\(829\) 2266.00 0.0949354 0.0474677 0.998873i \(-0.484885\pi\)
0.0474677 + 0.998873i \(0.484885\pi\)
\(830\) 0 0
\(831\) −1782.00 −0.0743886
\(832\) 0 0
\(833\) 4606.00i 0.191583i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 3024.00i − 0.124880i
\(838\) 0 0
\(839\) 22408.0 0.922062 0.461031 0.887384i \(-0.347480\pi\)
0.461031 + 0.887384i \(0.347480\pi\)
\(840\) 0 0
\(841\) −21473.0 −0.880438
\(842\) 0 0
\(843\) 6978.00i 0.285095i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 4235.00i − 0.171802i
\(848\) 0 0
\(849\) 15492.0 0.626247
\(850\) 0 0
\(851\) −7728.00 −0.311295
\(852\) 0 0
\(853\) 21394.0i 0.858753i 0.903126 + 0.429377i \(0.141267\pi\)
−0.903126 + 0.429377i \(0.858733\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 26022.0i − 1.03722i −0.855012 0.518608i \(-0.826450\pi\)
0.855012 0.518608i \(-0.173550\pi\)
\(858\) 0 0
\(859\) −12756.0 −0.506670 −0.253335 0.967379i \(-0.581527\pi\)
−0.253335 + 0.967379i \(0.581527\pi\)
\(860\) 0 0
\(861\) 462.000 0.0182868
\(862\) 0 0
\(863\) 2384.00i 0.0940351i 0.998894 + 0.0470176i \(0.0149717\pi\)
−0.998894 + 0.0470176i \(0.985028\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 11769.0i 0.461011i
\(868\) 0 0
\(869\) −14080.0 −0.549633
\(870\) 0 0
\(871\) −504.000 −0.0196066
\(872\) 0 0
\(873\) − 11250.0i − 0.436145i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 29482.0i − 1.13516i −0.823318 0.567581i \(-0.807880\pi\)
0.823318 0.567581i \(-0.192120\pi\)
\(878\) 0 0
\(879\) 28806.0 1.10535
\(880\) 0 0
\(881\) 3266.00 0.124897 0.0624485 0.998048i \(-0.480109\pi\)
0.0624485 + 0.998048i \(0.480109\pi\)
\(882\) 0 0
\(883\) 4068.00i 0.155039i 0.996991 + 0.0775193i \(0.0246999\pi\)
−0.996991 + 0.0775193i \(0.975300\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 27544.0i − 1.04266i −0.853356 0.521329i \(-0.825437\pi\)
0.853356 0.521329i \(-0.174563\pi\)
\(888\) 0 0
\(889\) 17584.0 0.663384
\(890\) 0 0
\(891\) −3564.00 −0.134005
\(892\) 0 0
\(893\) 9792.00i 0.366939i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 3024.00i − 0.112562i
\(898\) 0 0
\(899\) 6048.00 0.224374
\(900\) 0 0
\(901\) 54332.0 2.00895
\(902\) 0 0
\(903\) 6132.00i 0.225980i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 9092.00i 0.332850i 0.986054 + 0.166425i \(0.0532224\pi\)
−0.986054 + 0.166425i \(0.946778\pi\)
\(908\) 0 0
\(909\) 7506.00 0.273882
\(910\) 0 0
\(911\) −22464.0 −0.816976 −0.408488 0.912764i \(-0.633944\pi\)
−0.408488 + 0.912764i \(0.633944\pi\)
\(912\) 0 0
\(913\) − 55088.0i − 1.99687i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 9716.00i − 0.349892i
\(918\) 0 0
\(919\) −1304.00 −0.0468063 −0.0234032 0.999726i \(-0.507450\pi\)
−0.0234032 + 0.999726i \(0.507450\pi\)
\(920\) 0 0
\(921\) −2508.00 −0.0897301
\(922\) 0 0
\(923\) − 11760.0i − 0.419377i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 6552.00i − 0.232142i
\(928\) 0 0
\(929\) 10094.0 0.356484 0.178242 0.983987i \(-0.442959\pi\)
0.178242 + 0.983987i \(0.442959\pi\)
\(930\) 0 0
\(931\) −1764.00 −0.0620975
\(932\) 0 0
\(933\) − 4536.00i − 0.159166i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21338.0i 0.743951i 0.928243 + 0.371975i \(0.121319\pi\)
−0.928243 + 0.371975i \(0.878681\pi\)
\(938\) 0 0
\(939\) 27426.0 0.953156
\(940\) 0 0
\(941\) 46934.0 1.62593 0.812967 0.582309i \(-0.197851\pi\)
0.812967 + 0.582309i \(0.197851\pi\)
\(942\) 0 0
\(943\) 528.000i 0.0182333i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 9652.00i − 0.331202i −0.986193 0.165601i \(-0.947044\pi\)
0.986193 0.165601i \(-0.0529563\pi\)
\(948\) 0 0
\(949\) 17220.0 0.589025
\(950\) 0 0
\(951\) 66.0000 0.00225047
\(952\) 0 0
\(953\) 34998.0i 1.18961i 0.803871 + 0.594804i \(0.202770\pi\)
−0.803871 + 0.594804i \(0.797230\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 7128.00i − 0.240769i
\(958\) 0 0
\(959\) −16842.0 −0.567108
\(960\) 0 0
\(961\) −17247.0 −0.578933
\(962\) 0 0
\(963\) 972.000i 0.0325257i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 9160.00i 0.304618i 0.988333 + 0.152309i \(0.0486709\pi\)
−0.988333 + 0.152309i \(0.951329\pi\)
\(968\) 0 0
\(969\) −10152.0 −0.336563
\(970\) 0 0
\(971\) −6204.00 −0.205042 −0.102521 0.994731i \(-0.532691\pi\)
−0.102521 + 0.994731i \(0.532691\pi\)
\(972\) 0 0
\(973\) − 6020.00i − 0.198348i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 49614.0i − 1.62466i −0.583198 0.812330i \(-0.698199\pi\)
0.583198 0.812330i \(-0.301801\pi\)
\(978\) 0 0
\(979\) −1672.00 −0.0545836
\(980\) 0 0
\(981\) 4806.00 0.156416
\(982\) 0 0
\(983\) 25816.0i 0.837642i 0.908069 + 0.418821i \(0.137557\pi\)
−0.908069 + 0.418821i \(0.862443\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 5712.00i − 0.184210i
\(988\) 0 0
\(989\) −7008.00 −0.225320
\(990\) 0 0
\(991\) 48592.0 1.55759 0.778797 0.627276i \(-0.215830\pi\)
0.778797 + 0.627276i \(0.215830\pi\)
\(992\) 0 0
\(993\) − 26796.0i − 0.856340i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 9634.00i − 0.306030i −0.988224 0.153015i \(-0.951102\pi\)
0.988224 0.153015i \(-0.0488983\pi\)
\(998\) 0 0
\(999\) 8694.00 0.275341
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.4.k.a.1849.1 2
5.2 odd 4 2100.4.a.d.1.1 1
5.3 odd 4 420.4.a.d.1.1 1
5.4 even 2 inner 2100.4.k.a.1849.2 2
15.8 even 4 1260.4.a.c.1.1 1
20.3 even 4 1680.4.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.4.a.d.1.1 1 5.3 odd 4
1260.4.a.c.1.1 1 15.8 even 4
1680.4.a.k.1.1 1 20.3 even 4
2100.4.a.d.1.1 1 5.2 odd 4
2100.4.k.a.1849.1 2 1.1 even 1 trivial
2100.4.k.a.1849.2 2 5.4 even 2 inner