Properties

Label 2100.4.k.e.1849.2
Level $2100$
Weight $4$
Character 2100.1849
Analytic conductor $123.904$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1849,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1849");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2100.1849
Dual form 2100.4.k.e.1849.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} -7.00000i q^{7} -9.00000 q^{9} -16.0000 q^{11} -14.0000i q^{13} -130.000i q^{17} -104.000 q^{19} +21.0000 q^{21} -88.0000i q^{23} -27.0000i q^{27} -54.0000 q^{29} +28.0000 q^{31} -48.0000i q^{33} +266.000i q^{37} +42.0000 q^{39} +202.000 q^{41} +348.000i q^{43} -104.000i q^{47} -49.0000 q^{49} +390.000 q^{51} +402.000i q^{53} -312.000i q^{57} +100.000 q^{59} +310.000 q^{61} +63.0000i q^{63} +324.000i q^{67} +264.000 q^{69} -644.000 q^{71} -290.000i q^{73} +112.000i q^{77} -744.000 q^{79} +81.0000 q^{81} +1044.00i q^{83} -162.000i q^{87} -298.000 q^{89} -98.0000 q^{91} +84.0000i q^{93} +290.000i q^{97} +144.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{9} - 32 q^{11} - 208 q^{19} + 42 q^{21} - 108 q^{29} + 56 q^{31} + 84 q^{39} + 404 q^{41} - 98 q^{49} + 780 q^{51} + 200 q^{59} + 620 q^{61} + 528 q^{69} - 1288 q^{71} - 1488 q^{79} + 162 q^{81}+ \cdots + 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 7.00000i − 0.377964i
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −16.0000 −0.438562 −0.219281 0.975662i \(-0.570371\pi\)
−0.219281 + 0.975662i \(0.570371\pi\)
\(12\) 0 0
\(13\) − 14.0000i − 0.298685i −0.988786 0.149342i \(-0.952284\pi\)
0.988786 0.149342i \(-0.0477157\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 130.000i − 1.85468i −0.374215 0.927342i \(-0.622088\pi\)
0.374215 0.927342i \(-0.377912\pi\)
\(18\) 0 0
\(19\) −104.000 −1.25575 −0.627875 0.778314i \(-0.716075\pi\)
−0.627875 + 0.778314i \(0.716075\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) − 88.0000i − 0.797794i −0.916996 0.398897i \(-0.869393\pi\)
0.916996 0.398897i \(-0.130607\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 27.0000i − 0.192450i
\(28\) 0 0
\(29\) −54.0000 −0.345778 −0.172889 0.984941i \(-0.555310\pi\)
−0.172889 + 0.984941i \(0.555310\pi\)
\(30\) 0 0
\(31\) 28.0000 0.162224 0.0811121 0.996705i \(-0.474153\pi\)
0.0811121 + 0.996705i \(0.474153\pi\)
\(32\) 0 0
\(33\) − 48.0000i − 0.253204i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 266.000i 1.18190i 0.806710 + 0.590948i \(0.201246\pi\)
−0.806710 + 0.590948i \(0.798754\pi\)
\(38\) 0 0
\(39\) 42.0000 0.172446
\(40\) 0 0
\(41\) 202.000 0.769441 0.384721 0.923033i \(-0.374298\pi\)
0.384721 + 0.923033i \(0.374298\pi\)
\(42\) 0 0
\(43\) 348.000i 1.23417i 0.786895 + 0.617087i \(0.211687\pi\)
−0.786895 + 0.617087i \(0.788313\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 104.000i − 0.322765i −0.986892 0.161383i \(-0.948405\pi\)
0.986892 0.161383i \(-0.0515953\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) 390.000 1.07080
\(52\) 0 0
\(53\) 402.000i 1.04187i 0.853597 + 0.520933i \(0.174416\pi\)
−0.853597 + 0.520933i \(0.825584\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 312.000i − 0.725007i
\(58\) 0 0
\(59\) 100.000 0.220659 0.110330 0.993895i \(-0.464809\pi\)
0.110330 + 0.993895i \(0.464809\pi\)
\(60\) 0 0
\(61\) 310.000 0.650679 0.325340 0.945597i \(-0.394521\pi\)
0.325340 + 0.945597i \(0.394521\pi\)
\(62\) 0 0
\(63\) 63.0000i 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 324.000i 0.590790i 0.955375 + 0.295395i \(0.0954512\pi\)
−0.955375 + 0.295395i \(0.904549\pi\)
\(68\) 0 0
\(69\) 264.000 0.460607
\(70\) 0 0
\(71\) −644.000 −1.07646 −0.538231 0.842798i \(-0.680907\pi\)
−0.538231 + 0.842798i \(0.680907\pi\)
\(72\) 0 0
\(73\) − 290.000i − 0.464958i −0.972601 0.232479i \(-0.925316\pi\)
0.972601 0.232479i \(-0.0746837\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 112.000i 0.165761i
\(78\) 0 0
\(79\) −744.000 −1.05958 −0.529788 0.848130i \(-0.677729\pi\)
−0.529788 + 0.848130i \(0.677729\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 1044.00i 1.38065i 0.723500 + 0.690325i \(0.242532\pi\)
−0.723500 + 0.690325i \(0.757468\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 162.000i − 0.199635i
\(88\) 0 0
\(89\) −298.000 −0.354921 −0.177460 0.984128i \(-0.556788\pi\)
−0.177460 + 0.984128i \(0.556788\pi\)
\(90\) 0 0
\(91\) −98.0000 −0.112892
\(92\) 0 0
\(93\) 84.0000i 0.0936602i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 290.000i 0.303557i 0.988415 + 0.151779i \(0.0485001\pi\)
−0.988415 + 0.151779i \(0.951500\pi\)
\(98\) 0 0
\(99\) 144.000 0.146187
\(100\) 0 0
\(101\) 1518.00 1.49551 0.747756 0.663974i \(-0.231131\pi\)
0.747756 + 0.663974i \(0.231131\pi\)
\(102\) 0 0
\(103\) − 616.000i − 0.589284i −0.955608 0.294642i \(-0.904800\pi\)
0.955608 0.294642i \(-0.0952004\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 52.0000i 0.0469816i 0.999724 + 0.0234908i \(0.00747804\pi\)
−0.999724 + 0.0234908i \(0.992522\pi\)
\(108\) 0 0
\(109\) 1034.00 0.908617 0.454308 0.890844i \(-0.349886\pi\)
0.454308 + 0.890844i \(0.349886\pi\)
\(110\) 0 0
\(111\) −798.000 −0.682368
\(112\) 0 0
\(113\) 662.000i 0.551113i 0.961285 + 0.275556i \(0.0888620\pi\)
−0.961285 + 0.275556i \(0.911138\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 126.000i 0.0995616i
\(118\) 0 0
\(119\) −910.000 −0.701005
\(120\) 0 0
\(121\) −1075.00 −0.807663
\(122\) 0 0
\(123\) 606.000i 0.444237i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1128.00i 0.788140i 0.919080 + 0.394070i \(0.128933\pi\)
−0.919080 + 0.394070i \(0.871067\pi\)
\(128\) 0 0
\(129\) −1044.00 −0.712551
\(130\) 0 0
\(131\) 492.000 0.328139 0.164070 0.986449i \(-0.447538\pi\)
0.164070 + 0.986449i \(0.447538\pi\)
\(132\) 0 0
\(133\) 728.000i 0.474629i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1258.00i 0.784512i 0.919856 + 0.392256i \(0.128305\pi\)
−0.919856 + 0.392256i \(0.871695\pi\)
\(138\) 0 0
\(139\) 2176.00 1.32781 0.663906 0.747816i \(-0.268897\pi\)
0.663906 + 0.747816i \(0.268897\pi\)
\(140\) 0 0
\(141\) 312.000 0.186349
\(142\) 0 0
\(143\) 224.000i 0.130992i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 147.000i − 0.0824786i
\(148\) 0 0
\(149\) 714.000 0.392572 0.196286 0.980547i \(-0.437112\pi\)
0.196286 + 0.980547i \(0.437112\pi\)
\(150\) 0 0
\(151\) −952.000 −0.513064 −0.256532 0.966536i \(-0.582580\pi\)
−0.256532 + 0.966536i \(0.582580\pi\)
\(152\) 0 0
\(153\) 1170.00i 0.618228i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 938.000i − 0.476819i −0.971165 0.238409i \(-0.923374\pi\)
0.971165 0.238409i \(-0.0766260\pi\)
\(158\) 0 0
\(159\) −1206.00 −0.601522
\(160\) 0 0
\(161\) −616.000 −0.301538
\(162\) 0 0
\(163\) − 2988.00i − 1.43582i −0.696137 0.717909i \(-0.745100\pi\)
0.696137 0.717909i \(-0.254900\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3224.00i 1.49390i 0.664883 + 0.746948i \(0.268482\pi\)
−0.664883 + 0.746948i \(0.731518\pi\)
\(168\) 0 0
\(169\) 2001.00 0.910787
\(170\) 0 0
\(171\) 936.000 0.418583
\(172\) 0 0
\(173\) 2254.00i 0.990569i 0.868731 + 0.495285i \(0.164936\pi\)
−0.868731 + 0.495285i \(0.835064\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 300.000i 0.127398i
\(178\) 0 0
\(179\) 2296.00 0.958721 0.479361 0.877618i \(-0.340869\pi\)
0.479361 + 0.877618i \(0.340869\pi\)
\(180\) 0 0
\(181\) −4378.00 −1.79787 −0.898934 0.438084i \(-0.855657\pi\)
−0.898934 + 0.438084i \(0.855657\pi\)
\(182\) 0 0
\(183\) 930.000i 0.375670i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2080.00i 0.813394i
\(188\) 0 0
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) 76.0000 0.0287915 0.0143957 0.999896i \(-0.495418\pi\)
0.0143957 + 0.999896i \(0.495418\pi\)
\(192\) 0 0
\(193\) 3730.00i 1.39115i 0.718455 + 0.695573i \(0.244850\pi\)
−0.718455 + 0.695573i \(0.755150\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 2298.00i − 0.831095i −0.909571 0.415548i \(-0.863590\pi\)
0.909571 0.415548i \(-0.136410\pi\)
\(198\) 0 0
\(199\) 2044.00 0.728117 0.364059 0.931376i \(-0.381391\pi\)
0.364059 + 0.931376i \(0.381391\pi\)
\(200\) 0 0
\(201\) −972.000 −0.341093
\(202\) 0 0
\(203\) 378.000i 0.130692i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 792.000i 0.265931i
\(208\) 0 0
\(209\) 1664.00 0.550724
\(210\) 0 0
\(211\) −2524.00 −0.823504 −0.411752 0.911296i \(-0.635083\pi\)
−0.411752 + 0.911296i \(0.635083\pi\)
\(212\) 0 0
\(213\) − 1932.00i − 0.621495i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 196.000i − 0.0613150i
\(218\) 0 0
\(219\) 870.000 0.268444
\(220\) 0 0
\(221\) −1820.00 −0.553966
\(222\) 0 0
\(223\) − 4296.00i − 1.29005i −0.764161 0.645026i \(-0.776847\pi\)
0.764161 0.645026i \(-0.223153\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4812.00i 1.40698i 0.710707 + 0.703488i \(0.248375\pi\)
−0.710707 + 0.703488i \(0.751625\pi\)
\(228\) 0 0
\(229\) 2402.00 0.693138 0.346569 0.938024i \(-0.387347\pi\)
0.346569 + 0.938024i \(0.387347\pi\)
\(230\) 0 0
\(231\) −336.000 −0.0957021
\(232\) 0 0
\(233\) 6158.00i 1.73143i 0.500534 + 0.865717i \(0.333137\pi\)
−0.500534 + 0.865717i \(0.666863\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 2232.00i − 0.611747i
\(238\) 0 0
\(239\) −2932.00 −0.793537 −0.396768 0.917919i \(-0.629868\pi\)
−0.396768 + 0.917919i \(0.629868\pi\)
\(240\) 0 0
\(241\) −5670.00 −1.51551 −0.757753 0.652542i \(-0.773703\pi\)
−0.757753 + 0.652542i \(0.773703\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1456.00i 0.375073i
\(248\) 0 0
\(249\) −3132.00 −0.797118
\(250\) 0 0
\(251\) −5620.00 −1.41327 −0.706636 0.707577i \(-0.749788\pi\)
−0.706636 + 0.707577i \(0.749788\pi\)
\(252\) 0 0
\(253\) 1408.00i 0.349882i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 4666.00i − 1.13252i −0.824227 0.566259i \(-0.808390\pi\)
0.824227 0.566259i \(-0.191610\pi\)
\(258\) 0 0
\(259\) 1862.00 0.446714
\(260\) 0 0
\(261\) 486.000 0.115259
\(262\) 0 0
\(263\) − 3648.00i − 0.855305i −0.903943 0.427653i \(-0.859341\pi\)
0.903943 0.427653i \(-0.140659\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 894.000i − 0.204914i
\(268\) 0 0
\(269\) −1206.00 −0.273350 −0.136675 0.990616i \(-0.543642\pi\)
−0.136675 + 0.990616i \(0.543642\pi\)
\(270\) 0 0
\(271\) −396.000 −0.0887649 −0.0443824 0.999015i \(-0.514132\pi\)
−0.0443824 + 0.999015i \(0.514132\pi\)
\(272\) 0 0
\(273\) − 294.000i − 0.0651783i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5914.00i 1.28281i 0.767203 + 0.641404i \(0.221648\pi\)
−0.767203 + 0.641404i \(0.778352\pi\)
\(278\) 0 0
\(279\) −252.000 −0.0540747
\(280\) 0 0
\(281\) −478.000 −0.101477 −0.0507386 0.998712i \(-0.516158\pi\)
−0.0507386 + 0.998712i \(0.516158\pi\)
\(282\) 0 0
\(283\) 6260.00i 1.31491i 0.753496 + 0.657453i \(0.228366\pi\)
−0.753496 + 0.657453i \(0.771634\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 1414.00i − 0.290822i
\(288\) 0 0
\(289\) −11987.0 −2.43985
\(290\) 0 0
\(291\) −870.000 −0.175259
\(292\) 0 0
\(293\) − 1146.00i − 0.228498i −0.993452 0.114249i \(-0.963554\pi\)
0.993452 0.114249i \(-0.0364462\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 432.000i 0.0844013i
\(298\) 0 0
\(299\) −1232.00 −0.238289
\(300\) 0 0
\(301\) 2436.00 0.466474
\(302\) 0 0
\(303\) 4554.00i 0.863434i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3580.00i 0.665542i 0.943008 + 0.332771i \(0.107984\pi\)
−0.943008 + 0.332771i \(0.892016\pi\)
\(308\) 0 0
\(309\) 1848.00 0.340223
\(310\) 0 0
\(311\) −5432.00 −0.990419 −0.495210 0.868773i \(-0.664909\pi\)
−0.495210 + 0.868773i \(0.664909\pi\)
\(312\) 0 0
\(313\) 7798.00i 1.40821i 0.710097 + 0.704104i \(0.248651\pi\)
−0.710097 + 0.704104i \(0.751349\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 3130.00i − 0.554569i −0.960788 0.277284i \(-0.910566\pi\)
0.960788 0.277284i \(-0.0894344\pi\)
\(318\) 0 0
\(319\) 864.000 0.151645
\(320\) 0 0
\(321\) −156.000 −0.0271248
\(322\) 0 0
\(323\) 13520.0i 2.32902i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3102.00i 0.524590i
\(328\) 0 0
\(329\) −728.000 −0.121994
\(330\) 0 0
\(331\) −6020.00 −0.999665 −0.499833 0.866122i \(-0.666605\pi\)
−0.499833 + 0.866122i \(0.666605\pi\)
\(332\) 0 0
\(333\) − 2394.00i − 0.393965i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 2066.00i − 0.333953i −0.985961 0.166977i \(-0.946600\pi\)
0.985961 0.166977i \(-0.0534004\pi\)
\(338\) 0 0
\(339\) −1986.00 −0.318185
\(340\) 0 0
\(341\) −448.000 −0.0711453
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 10644.0i − 1.64669i −0.567544 0.823343i \(-0.692107\pi\)
0.567544 0.823343i \(-0.307893\pi\)
\(348\) 0 0
\(349\) −2150.00 −0.329762 −0.164881 0.986313i \(-0.552724\pi\)
−0.164881 + 0.986313i \(0.552724\pi\)
\(350\) 0 0
\(351\) −378.000 −0.0574819
\(352\) 0 0
\(353\) 11250.0i 1.69625i 0.529794 + 0.848126i \(0.322269\pi\)
−0.529794 + 0.848126i \(0.677731\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 2730.00i − 0.404725i
\(358\) 0 0
\(359\) 7756.00 1.14024 0.570120 0.821562i \(-0.306897\pi\)
0.570120 + 0.821562i \(0.306897\pi\)
\(360\) 0 0
\(361\) 3957.00 0.576906
\(362\) 0 0
\(363\) − 3225.00i − 0.466305i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 9176.00i 1.30513i 0.757732 + 0.652566i \(0.226307\pi\)
−0.757732 + 0.652566i \(0.773693\pi\)
\(368\) 0 0
\(369\) −1818.00 −0.256480
\(370\) 0 0
\(371\) 2814.00 0.393789
\(372\) 0 0
\(373\) 12590.0i 1.74768i 0.486212 + 0.873841i \(0.338378\pi\)
−0.486212 + 0.873841i \(0.661622\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 756.000i 0.103278i
\(378\) 0 0
\(379\) −6580.00 −0.891799 −0.445900 0.895083i \(-0.647116\pi\)
−0.445900 + 0.895083i \(0.647116\pi\)
\(380\) 0 0
\(381\) −3384.00 −0.455033
\(382\) 0 0
\(383\) 2928.00i 0.390637i 0.980740 + 0.195318i \(0.0625740\pi\)
−0.980740 + 0.195318i \(0.937426\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 3132.00i − 0.411391i
\(388\) 0 0
\(389\) 10170.0 1.32555 0.662776 0.748818i \(-0.269378\pi\)
0.662776 + 0.748818i \(0.269378\pi\)
\(390\) 0 0
\(391\) −11440.0 −1.47966
\(392\) 0 0
\(393\) 1476.00i 0.189451i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 9538.00i − 1.20579i −0.797821 0.602895i \(-0.794014\pi\)
0.797821 0.602895i \(-0.205986\pi\)
\(398\) 0 0
\(399\) −2184.00 −0.274027
\(400\) 0 0
\(401\) 4626.00 0.576088 0.288044 0.957617i \(-0.406995\pi\)
0.288044 + 0.957617i \(0.406995\pi\)
\(402\) 0 0
\(403\) − 392.000i − 0.0484539i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 4256.00i − 0.518334i
\(408\) 0 0
\(409\) 4934.00 0.596505 0.298253 0.954487i \(-0.403596\pi\)
0.298253 + 0.954487i \(0.403596\pi\)
\(410\) 0 0
\(411\) −3774.00 −0.452938
\(412\) 0 0
\(413\) − 700.000i − 0.0834013i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 6528.00i 0.766613i
\(418\) 0 0
\(419\) 2196.00 0.256042 0.128021 0.991771i \(-0.459138\pi\)
0.128021 + 0.991771i \(0.459138\pi\)
\(420\) 0 0
\(421\) 10366.0 1.20002 0.600009 0.799993i \(-0.295163\pi\)
0.600009 + 0.799993i \(0.295163\pi\)
\(422\) 0 0
\(423\) 936.000i 0.107588i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 2170.00i − 0.245934i
\(428\) 0 0
\(429\) −672.000 −0.0756281
\(430\) 0 0
\(431\) −10284.0 −1.14933 −0.574667 0.818387i \(-0.694868\pi\)
−0.574667 + 0.818387i \(0.694868\pi\)
\(432\) 0 0
\(433\) − 16242.0i − 1.80263i −0.433160 0.901317i \(-0.642601\pi\)
0.433160 0.901317i \(-0.357399\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9152.00i 1.00183i
\(438\) 0 0
\(439\) −10052.0 −1.09284 −0.546419 0.837512i \(-0.684009\pi\)
−0.546419 + 0.837512i \(0.684009\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 14260.0i 1.52937i 0.644401 + 0.764687i \(0.277107\pi\)
−0.644401 + 0.764687i \(0.722893\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2142.00i 0.226651i
\(448\) 0 0
\(449\) 11710.0 1.23080 0.615400 0.788215i \(-0.288995\pi\)
0.615400 + 0.788215i \(0.288995\pi\)
\(450\) 0 0
\(451\) −3232.00 −0.337448
\(452\) 0 0
\(453\) − 2856.00i − 0.296218i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 11266.0i − 1.15318i −0.817035 0.576588i \(-0.804384\pi\)
0.817035 0.576588i \(-0.195616\pi\)
\(458\) 0 0
\(459\) −3510.00 −0.356934
\(460\) 0 0
\(461\) −698.000 −0.0705187 −0.0352593 0.999378i \(-0.511226\pi\)
−0.0352593 + 0.999378i \(0.511226\pi\)
\(462\) 0 0
\(463\) − 7624.00i − 0.765264i −0.923901 0.382632i \(-0.875018\pi\)
0.923901 0.382632i \(-0.124982\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18220.0i 1.80540i 0.430272 + 0.902699i \(0.358418\pi\)
−0.430272 + 0.902699i \(0.641582\pi\)
\(468\) 0 0
\(469\) 2268.00 0.223297
\(470\) 0 0
\(471\) 2814.00 0.275291
\(472\) 0 0
\(473\) − 5568.00i − 0.541262i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 3618.00i − 0.347289i
\(478\) 0 0
\(479\) −6432.00 −0.613540 −0.306770 0.951784i \(-0.599248\pi\)
−0.306770 + 0.951784i \(0.599248\pi\)
\(480\) 0 0
\(481\) 3724.00 0.353014
\(482\) 0 0
\(483\) − 1848.00i − 0.174093i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 3984.00i − 0.370703i −0.982672 0.185351i \(-0.940658\pi\)
0.982672 0.185351i \(-0.0593423\pi\)
\(488\) 0 0
\(489\) 8964.00 0.828970
\(490\) 0 0
\(491\) 11952.0 1.09855 0.549273 0.835643i \(-0.314905\pi\)
0.549273 + 0.835643i \(0.314905\pi\)
\(492\) 0 0
\(493\) 7020.00i 0.641308i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4508.00i 0.406864i
\(498\) 0 0
\(499\) −18844.0 −1.69053 −0.845264 0.534349i \(-0.820557\pi\)
−0.845264 + 0.534349i \(0.820557\pi\)
\(500\) 0 0
\(501\) −9672.00 −0.862501
\(502\) 0 0
\(503\) 13208.0i 1.17081i 0.810742 + 0.585403i \(0.199064\pi\)
−0.810742 + 0.585403i \(0.800936\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6003.00i 0.525843i
\(508\) 0 0
\(509\) 14714.0 1.28131 0.640655 0.767829i \(-0.278663\pi\)
0.640655 + 0.767829i \(0.278663\pi\)
\(510\) 0 0
\(511\) −2030.00 −0.175738
\(512\) 0 0
\(513\) 2808.00i 0.241669i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1664.00i 0.141552i
\(518\) 0 0
\(519\) −6762.00 −0.571905
\(520\) 0 0
\(521\) −5670.00 −0.476789 −0.238395 0.971168i \(-0.576621\pi\)
−0.238395 + 0.971168i \(0.576621\pi\)
\(522\) 0 0
\(523\) 12668.0i 1.05915i 0.848265 + 0.529573i \(0.177648\pi\)
−0.848265 + 0.529573i \(0.822352\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 3640.00i − 0.300875i
\(528\) 0 0
\(529\) 4423.00 0.363524
\(530\) 0 0
\(531\) −900.000 −0.0735531
\(532\) 0 0
\(533\) − 2828.00i − 0.229820i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6888.00i 0.553518i
\(538\) 0 0
\(539\) 784.000 0.0626517
\(540\) 0 0
\(541\) −7498.00 −0.595867 −0.297934 0.954587i \(-0.596297\pi\)
−0.297934 + 0.954587i \(0.596297\pi\)
\(542\) 0 0
\(543\) − 13134.0i − 1.03800i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 16396.0i − 1.28161i −0.767702 0.640807i \(-0.778600\pi\)
0.767702 0.640807i \(-0.221400\pi\)
\(548\) 0 0
\(549\) −2790.00 −0.216893
\(550\) 0 0
\(551\) 5616.00 0.434210
\(552\) 0 0
\(553\) 5208.00i 0.400482i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13126.0i 0.998504i 0.866457 + 0.499252i \(0.166392\pi\)
−0.866457 + 0.499252i \(0.833608\pi\)
\(558\) 0 0
\(559\) 4872.00 0.368629
\(560\) 0 0
\(561\) −6240.00 −0.469613
\(562\) 0 0
\(563\) − 12180.0i − 0.911769i −0.890039 0.455884i \(-0.849323\pi\)
0.890039 0.455884i \(-0.150677\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 567.000i − 0.0419961i
\(568\) 0 0
\(569\) −1914.00 −0.141018 −0.0705088 0.997511i \(-0.522462\pi\)
−0.0705088 + 0.997511i \(0.522462\pi\)
\(570\) 0 0
\(571\) 340.000 0.0249187 0.0124593 0.999922i \(-0.496034\pi\)
0.0124593 + 0.999922i \(0.496034\pi\)
\(572\) 0 0
\(573\) 228.000i 0.0166228i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 9394.00i 0.677777i 0.940827 + 0.338889i \(0.110051\pi\)
−0.940827 + 0.338889i \(0.889949\pi\)
\(578\) 0 0
\(579\) −11190.0 −0.803179
\(580\) 0 0
\(581\) 7308.00 0.521836
\(582\) 0 0
\(583\) − 6432.00i − 0.456923i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6108.00i 0.429479i 0.976671 + 0.214739i \(0.0688902\pi\)
−0.976671 + 0.214739i \(0.931110\pi\)
\(588\) 0 0
\(589\) −2912.00 −0.203713
\(590\) 0 0
\(591\) 6894.00 0.479833
\(592\) 0 0
\(593\) 2274.00i 0.157474i 0.996895 + 0.0787369i \(0.0250887\pi\)
−0.996895 + 0.0787369i \(0.974911\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6132.00i 0.420379i
\(598\) 0 0
\(599\) 24140.0 1.64663 0.823317 0.567582i \(-0.192121\pi\)
0.823317 + 0.567582i \(0.192121\pi\)
\(600\) 0 0
\(601\) −1438.00 −0.0975994 −0.0487997 0.998809i \(-0.515540\pi\)
−0.0487997 + 0.998809i \(0.515540\pi\)
\(602\) 0 0
\(603\) − 2916.00i − 0.196930i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17736.0i 1.18597i 0.805215 + 0.592984i \(0.202050\pi\)
−0.805215 + 0.592984i \(0.797950\pi\)
\(608\) 0 0
\(609\) −1134.00 −0.0754548
\(610\) 0 0
\(611\) −1456.00 −0.0964050
\(612\) 0 0
\(613\) 6374.00i 0.419973i 0.977704 + 0.209986i \(0.0673420\pi\)
−0.977704 + 0.209986i \(0.932658\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 9854.00i − 0.642961i −0.946916 0.321481i \(-0.895819\pi\)
0.946916 0.321481i \(-0.104181\pi\)
\(618\) 0 0
\(619\) 8480.00 0.550630 0.275315 0.961354i \(-0.411218\pi\)
0.275315 + 0.961354i \(0.411218\pi\)
\(620\) 0 0
\(621\) −2376.00 −0.153536
\(622\) 0 0
\(623\) 2086.00i 0.134147i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 4992.00i 0.317961i
\(628\) 0 0
\(629\) 34580.0 2.19204
\(630\) 0 0
\(631\) −8880.00 −0.560233 −0.280117 0.959966i \(-0.590373\pi\)
−0.280117 + 0.959966i \(0.590373\pi\)
\(632\) 0 0
\(633\) − 7572.00i − 0.475450i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 686.000i 0.0426692i
\(638\) 0 0
\(639\) 5796.00 0.358820
\(640\) 0 0
\(641\) −2118.00 −0.130509 −0.0652543 0.997869i \(-0.520786\pi\)
−0.0652543 + 0.997869i \(0.520786\pi\)
\(642\) 0 0
\(643\) − 2732.00i − 0.167558i −0.996484 0.0837788i \(-0.973301\pi\)
0.996484 0.0837788i \(-0.0266989\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10312.0i 0.626594i 0.949655 + 0.313297i \(0.101434\pi\)
−0.949655 + 0.313297i \(0.898566\pi\)
\(648\) 0 0
\(649\) −1600.00 −0.0967727
\(650\) 0 0
\(651\) 588.000 0.0354002
\(652\) 0 0
\(653\) − 11774.0i − 0.705593i −0.935700 0.352796i \(-0.885231\pi\)
0.935700 0.352796i \(-0.114769\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2610.00i 0.154986i
\(658\) 0 0
\(659\) −656.000 −0.0387771 −0.0193886 0.999812i \(-0.506172\pi\)
−0.0193886 + 0.999812i \(0.506172\pi\)
\(660\) 0 0
\(661\) 25358.0 1.49215 0.746076 0.665861i \(-0.231936\pi\)
0.746076 + 0.665861i \(0.231936\pi\)
\(662\) 0 0
\(663\) − 5460.00i − 0.319832i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4752.00i 0.275859i
\(668\) 0 0
\(669\) 12888.0 0.744811
\(670\) 0 0
\(671\) −4960.00 −0.285363
\(672\) 0 0
\(673\) − 15622.0i − 0.894775i −0.894340 0.447388i \(-0.852354\pi\)
0.894340 0.447388i \(-0.147646\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 10854.0i − 0.616179i −0.951357 0.308089i \(-0.900310\pi\)
0.951357 0.308089i \(-0.0996896\pi\)
\(678\) 0 0
\(679\) 2030.00 0.114734
\(680\) 0 0
\(681\) −14436.0 −0.812318
\(682\) 0 0
\(683\) 6004.00i 0.336364i 0.985756 + 0.168182i \(0.0537896\pi\)
−0.985756 + 0.168182i \(0.946210\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 7206.00i 0.400183i
\(688\) 0 0
\(689\) 5628.00 0.311190
\(690\) 0 0
\(691\) 26176.0 1.44107 0.720537 0.693417i \(-0.243895\pi\)
0.720537 + 0.693417i \(0.243895\pi\)
\(692\) 0 0
\(693\) − 1008.00i − 0.0552536i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 26260.0i − 1.42707i
\(698\) 0 0
\(699\) −18474.0 −0.999644
\(700\) 0 0
\(701\) −20874.0 −1.12468 −0.562340 0.826906i \(-0.690099\pi\)
−0.562340 + 0.826906i \(0.690099\pi\)
\(702\) 0 0
\(703\) − 27664.0i − 1.48416i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 10626.0i − 0.565250i
\(708\) 0 0
\(709\) −22750.0 −1.20507 −0.602535 0.798093i \(-0.705842\pi\)
−0.602535 + 0.798093i \(0.705842\pi\)
\(710\) 0 0
\(711\) 6696.00 0.353192
\(712\) 0 0
\(713\) − 2464.00i − 0.129421i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 8796.00i − 0.458149i
\(718\) 0 0
\(719\) −11160.0 −0.578856 −0.289428 0.957200i \(-0.593465\pi\)
−0.289428 + 0.957200i \(0.593465\pi\)
\(720\) 0 0
\(721\) −4312.00 −0.222729
\(722\) 0 0
\(723\) − 17010.0i − 0.874977i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 21264.0i 1.08478i 0.840125 + 0.542392i \(0.182481\pi\)
−0.840125 + 0.542392i \(0.817519\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 45240.0 2.28900
\(732\) 0 0
\(733\) − 27438.0i − 1.38260i −0.722568 0.691300i \(-0.757038\pi\)
0.722568 0.691300i \(-0.242962\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 5184.00i − 0.259098i
\(738\) 0 0
\(739\) −35388.0 −1.76153 −0.880764 0.473556i \(-0.842970\pi\)
−0.880764 + 0.473556i \(0.842970\pi\)
\(740\) 0 0
\(741\) −4368.00 −0.216549
\(742\) 0 0
\(743\) 17568.0i 0.867439i 0.901048 + 0.433720i \(0.142799\pi\)
−0.901048 + 0.433720i \(0.857201\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 9396.00i − 0.460216i
\(748\) 0 0
\(749\) 364.000 0.0177574
\(750\) 0 0
\(751\) 11752.0 0.571021 0.285510 0.958376i \(-0.407837\pi\)
0.285510 + 0.958376i \(0.407837\pi\)
\(752\) 0 0
\(753\) − 16860.0i − 0.815953i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 10834.0i 0.520170i 0.965586 + 0.260085i \(0.0837505\pi\)
−0.965586 + 0.260085i \(0.916249\pi\)
\(758\) 0 0
\(759\) −4224.00 −0.202005
\(760\) 0 0
\(761\) 6394.00 0.304576 0.152288 0.988336i \(-0.451336\pi\)
0.152288 + 0.988336i \(0.451336\pi\)
\(762\) 0 0
\(763\) − 7238.00i − 0.343425i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1400.00i − 0.0659075i
\(768\) 0 0
\(769\) 7526.00 0.352919 0.176459 0.984308i \(-0.443536\pi\)
0.176459 + 0.984308i \(0.443536\pi\)
\(770\) 0 0
\(771\) 13998.0 0.653859
\(772\) 0 0
\(773\) − 874.000i − 0.0406670i −0.999793 0.0203335i \(-0.993527\pi\)
0.999793 0.0203335i \(-0.00647280\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 5586.00i 0.257911i
\(778\) 0 0
\(779\) −21008.0 −0.966226
\(780\) 0 0
\(781\) 10304.0 0.472095
\(782\) 0 0
\(783\) 1458.00i 0.0665449i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 26668.0i 1.20789i 0.797025 + 0.603946i \(0.206406\pi\)
−0.797025 + 0.603946i \(0.793594\pi\)
\(788\) 0 0
\(789\) 10944.0 0.493811
\(790\) 0 0
\(791\) 4634.00 0.208301
\(792\) 0 0
\(793\) − 4340.00i − 0.194348i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 15582.0i − 0.692525i −0.938138 0.346263i \(-0.887451\pi\)
0.938138 0.346263i \(-0.112549\pi\)
\(798\) 0 0
\(799\) −13520.0 −0.598627
\(800\) 0 0
\(801\) 2682.00 0.118307
\(802\) 0 0
\(803\) 4640.00i 0.203913i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 3618.00i − 0.157819i
\(808\) 0 0
\(809\) 24286.0 1.05544 0.527720 0.849419i \(-0.323047\pi\)
0.527720 + 0.849419i \(0.323047\pi\)
\(810\) 0 0
\(811\) −5280.00 −0.228614 −0.114307 0.993445i \(-0.536465\pi\)
−0.114307 + 0.993445i \(0.536465\pi\)
\(812\) 0 0
\(813\) − 1188.00i − 0.0512484i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 36192.0i − 1.54981i
\(818\) 0 0
\(819\) 882.000 0.0376307
\(820\) 0 0
\(821\) 13598.0 0.578043 0.289022 0.957323i \(-0.406670\pi\)
0.289022 + 0.957323i \(0.406670\pi\)
\(822\) 0 0
\(823\) 24208.0i 1.02532i 0.858592 + 0.512660i \(0.171340\pi\)
−0.858592 + 0.512660i \(0.828660\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 4428.00i − 0.186187i −0.995657 0.0930935i \(-0.970324\pi\)
0.995657 0.0930935i \(-0.0296756\pi\)
\(828\) 0 0
\(829\) −28142.0 −1.17903 −0.589513 0.807759i \(-0.700680\pi\)
−0.589513 + 0.807759i \(0.700680\pi\)
\(830\) 0 0
\(831\) −17742.0 −0.740630
\(832\) 0 0
\(833\) 6370.00i 0.264955i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 756.000i − 0.0312201i
\(838\) 0 0
\(839\) 15072.0 0.620195 0.310097 0.950705i \(-0.399638\pi\)
0.310097 + 0.950705i \(0.399638\pi\)
\(840\) 0 0
\(841\) −21473.0 −0.880438
\(842\) 0 0
\(843\) − 1434.00i − 0.0585879i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 7525.00i 0.305268i
\(848\) 0 0
\(849\) −18780.0 −0.759161
\(850\) 0 0
\(851\) 23408.0 0.942909
\(852\) 0 0
\(853\) − 4118.00i − 0.165296i −0.996579 0.0826481i \(-0.973662\pi\)
0.996579 0.0826481i \(-0.0263377\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 14914.0i − 0.594460i −0.954806 0.297230i \(-0.903937\pi\)
0.954806 0.297230i \(-0.0960629\pi\)
\(858\) 0 0
\(859\) −13064.0 −0.518903 −0.259452 0.965756i \(-0.583542\pi\)
−0.259452 + 0.965756i \(0.583542\pi\)
\(860\) 0 0
\(861\) 4242.00 0.167906
\(862\) 0 0
\(863\) 5232.00i 0.206372i 0.994662 + 0.103186i \(0.0329037\pi\)
−0.994662 + 0.103186i \(0.967096\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 35961.0i − 1.40865i
\(868\) 0 0
\(869\) 11904.0 0.464690
\(870\) 0 0
\(871\) 4536.00 0.176460
\(872\) 0 0
\(873\) − 2610.00i − 0.101186i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 30158.0i − 1.16119i −0.814193 0.580595i \(-0.802820\pi\)
0.814193 0.580595i \(-0.197180\pi\)
\(878\) 0 0
\(879\) 3438.00 0.131924
\(880\) 0 0
\(881\) 17154.0 0.655997 0.327998 0.944678i \(-0.393626\pi\)
0.327998 + 0.944678i \(0.393626\pi\)
\(882\) 0 0
\(883\) 15868.0i 0.604757i 0.953188 + 0.302379i \(0.0977807\pi\)
−0.953188 + 0.302379i \(0.902219\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12928.0i 0.489380i 0.969601 + 0.244690i \(0.0786861\pi\)
−0.969601 + 0.244690i \(0.921314\pi\)
\(888\) 0 0
\(889\) 7896.00 0.297889
\(890\) 0 0
\(891\) −1296.00 −0.0487291
\(892\) 0 0
\(893\) 10816.0i 0.405312i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 3696.00i − 0.137576i
\(898\) 0 0
\(899\) −1512.00 −0.0560935
\(900\) 0 0
\(901\) 52260.0 1.93233
\(902\) 0 0
\(903\) 7308.00i 0.269319i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 13572.0i − 0.496859i −0.968650 0.248429i \(-0.920086\pi\)
0.968650 0.248429i \(-0.0799144\pi\)
\(908\) 0 0
\(909\) −13662.0 −0.498504
\(910\) 0 0
\(911\) 25164.0 0.915171 0.457585 0.889166i \(-0.348714\pi\)
0.457585 + 0.889166i \(0.348714\pi\)
\(912\) 0 0
\(913\) − 16704.0i − 0.605500i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 3444.00i − 0.124025i
\(918\) 0 0
\(919\) 36944.0 1.32608 0.663041 0.748583i \(-0.269265\pi\)
0.663041 + 0.748583i \(0.269265\pi\)
\(920\) 0 0
\(921\) −10740.0 −0.384251
\(922\) 0 0
\(923\) 9016.00i 0.321522i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 5544.00i 0.196428i
\(928\) 0 0
\(929\) 38542.0 1.36116 0.680582 0.732672i \(-0.261727\pi\)
0.680582 + 0.732672i \(0.261727\pi\)
\(930\) 0 0
\(931\) 5096.00 0.179393
\(932\) 0 0
\(933\) − 16296.0i − 0.571819i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 55134.0i − 1.92225i −0.276112 0.961126i \(-0.589046\pi\)
0.276112 0.961126i \(-0.410954\pi\)
\(938\) 0 0
\(939\) −23394.0 −0.813029
\(940\) 0 0
\(941\) 35286.0 1.22241 0.611207 0.791471i \(-0.290684\pi\)
0.611207 + 0.791471i \(0.290684\pi\)
\(942\) 0 0
\(943\) − 17776.0i − 0.613856i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 25740.0i − 0.883250i −0.897200 0.441625i \(-0.854402\pi\)
0.897200 0.441625i \(-0.145598\pi\)
\(948\) 0 0
\(949\) −4060.00 −0.138876
\(950\) 0 0
\(951\) 9390.00 0.320180
\(952\) 0 0
\(953\) − 34914.0i − 1.18675i −0.804925 0.593376i \(-0.797795\pi\)
0.804925 0.593376i \(-0.202205\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 2592.00i 0.0875522i
\(958\) 0 0
\(959\) 8806.00 0.296518
\(960\) 0 0
\(961\) −29007.0 −0.973683
\(962\) 0 0
\(963\) − 468.000i − 0.0156605i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 3784.00i − 0.125838i −0.998019 0.0629189i \(-0.979959\pi\)
0.998019 0.0629189i \(-0.0200410\pi\)
\(968\) 0 0
\(969\) −40560.0 −1.34466
\(970\) 0 0
\(971\) 13452.0 0.444588 0.222294 0.974980i \(-0.428645\pi\)
0.222294 + 0.974980i \(0.428645\pi\)
\(972\) 0 0
\(973\) − 15232.0i − 0.501866i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21978.0i 0.719691i 0.933012 + 0.359846i \(0.117171\pi\)
−0.933012 + 0.359846i \(0.882829\pi\)
\(978\) 0 0
\(979\) 4768.00 0.155655
\(980\) 0 0
\(981\) −9306.00 −0.302872
\(982\) 0 0
\(983\) 50176.0i 1.62804i 0.580835 + 0.814021i \(0.302726\pi\)
−0.580835 + 0.814021i \(0.697274\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 2184.00i − 0.0704331i
\(988\) 0 0
\(989\) 30624.0 0.984617
\(990\) 0 0
\(991\) 13480.0 0.432095 0.216048 0.976383i \(-0.430683\pi\)
0.216048 + 0.976383i \(0.430683\pi\)
\(992\) 0 0
\(993\) − 18060.0i − 0.577157i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 33910.0i 1.07717i 0.842571 + 0.538586i \(0.181041\pi\)
−0.842571 + 0.538586i \(0.818959\pi\)
\(998\) 0 0
\(999\) 7182.00 0.227456
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.4.k.e.1849.2 2
5.2 odd 4 420.4.a.e.1.1 1
5.3 odd 4 2100.4.a.b.1.1 1
5.4 even 2 inner 2100.4.k.e.1849.1 2
15.2 even 4 1260.4.a.f.1.1 1
20.7 even 4 1680.4.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.4.a.e.1.1 1 5.2 odd 4
1260.4.a.f.1.1 1 15.2 even 4
1680.4.a.g.1.1 1 20.7 even 4
2100.4.a.b.1.1 1 5.3 odd 4
2100.4.k.e.1849.1 2 5.4 even 2 inner
2100.4.k.e.1849.2 2 1.1 even 1 trivial