Properties

Label 2100.4.k.p
Level $2100$
Weight $4$
Character orbit 2100.k
Analytic conductor $123.904$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1849,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1849");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 395x^{4} + 40849x^{2} + 1040400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 \beta_1 q^{3} + 7 \beta_1 q^{7} - 9 q^{9} + (\beta_{4} - 2 \beta_{3} - 3) q^{11} + (3 \beta_{5} - \beta_{2} + 3 \beta_1) q^{13} + ( - \beta_{5} + 3 \beta_{2} - 27 \beta_1) q^{17} + (6 \beta_{4} + \beta_{3} + 27) q^{19}+ \cdots + ( - 9 \beta_{4} + 18 \beta_{3} + 27) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 54 q^{9} - 16 q^{11} + 148 q^{19} + 126 q^{21} + 170 q^{29} - 454 q^{31} + 78 q^{39} - 678 q^{41} - 294 q^{49} - 510 q^{51} + 2634 q^{59} - 850 q^{61} + 354 q^{69} + 652 q^{71} + 3084 q^{79} + 486 q^{81}+ \cdots + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 395x^{4} + 40849x^{2} + 1040400 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} + 625\nu^{3} + 161111\nu ) / 839460 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 625\nu^{3} + 1517809\nu ) / 839460 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{4} - 396\nu^{2} - 2863 ) / 823 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -7\nu^{4} - 2209\nu^{2} - 118245 ) / 2469 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 59\nu^{5} + 19089\nu^{3} + 1127611\nu ) / 167892 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -6\beta_{4} + 7\beta_{3} - 263 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{5} - 95\beta_{2} + 790\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 1188\beta_{4} - 2209\beta_{3} + 49211 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 3750\beta_{5} + 42361\beta_{2} - 530309\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1849.1
6.18398i
10.5100i
15.6939i
6.18398i
10.5100i
15.6939i
0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.2 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.3 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.4 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.5 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.6 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1849.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.4.k.p 6
5.b even 2 1 inner 2100.4.k.p 6
5.c odd 4 1 2100.4.a.v 3
5.c odd 4 1 2100.4.a.z yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.4.a.v 3 5.c odd 4 1
2100.4.a.z yes 3 5.c odd 4 1
2100.4.k.p 6 1.a even 1 1 trivial
2100.4.k.p 6 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(2100, [\chi])\):

\( T_{11}^{3} + 8T_{11}^{2} - 3211T_{11} - 72398 \) Copy content Toggle raw display
\( T_{13}^{6} + 7549T_{13}^{4} + 16245324T_{13}^{2} + 10226063376 \) Copy content Toggle raw display
\( T_{17}^{6} + 17853T_{17}^{4} + 39373596T_{17}^{2} + 4290250000 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T^{2} + 49)^{3} \) Copy content Toggle raw display
$11$ \( (T^{3} + 8 T^{2} + \cdots - 72398)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 10226063376 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 4290250000 \) Copy content Toggle raw display
$19$ \( (T^{3} - 74 T^{2} + \cdots - 24912)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 579661436025 \) Copy content Toggle raw display
$29$ \( (T^{3} - 85 T^{2} + \cdots + 622737)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 227 T^{2} + \cdots - 1029900)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 17177924679876 \) Copy content Toggle raw display
$41$ \( (T^{3} + 339 T^{2} + \cdots - 5932800)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 907874931307369 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 47775744000000 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 14\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( (T^{3} - 1317 T^{2} + \cdots + 50739300)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 425 T^{2} + \cdots + 1280080)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 2845469669904 \) Copy content Toggle raw display
$71$ \( (T^{3} - 326 T^{2} + \cdots + 193977956)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 117581058510400 \) Copy content Toggle raw display
$79$ \( (T^{3} - 1542 T^{2} + \cdots - 333158)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 33\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( (T^{3} - 1768 T^{2} + \cdots - 73899800)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
show more
show less