Properties

Label 2100.4.k.p.1849.2
Level $2100$
Weight $4$
Character 2100.1849
Analytic conductor $123.904$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1849,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1849");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 395x^{4} + 40849x^{2} + 1040400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.2
Root \(10.5100i\) of defining polynomial
Character \(\chi\) \(=\) 2100.1849
Dual form 2100.4.k.p.1849.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} +7.00000i q^{7} -9.00000 q^{9} -26.6969 q^{11} -66.0486i q^{13} +49.4026i q^{17} +145.077 q^{19} +21.0000 q^{21} +79.0177i q^{23} +27.0000i q^{27} +108.038 q^{29} -107.051 q^{31} +80.0907i q^{33} -174.007i q^{37} -198.146 q^{39} -470.555 q^{41} +157.914i q^{43} +558.644i q^{47} -49.0000 q^{49} +148.208 q^{51} +262.604i q^{53} -435.232i q^{57} -101.734 q^{59} +227.179 q^{61} -63.0000i q^{63} -405.265i q^{67} +237.053 q^{69} +621.175 q^{71} +76.8430i q^{73} -186.878i q^{77} +168.925 q^{79} +81.0000 q^{81} -840.723i q^{83} -324.113i q^{87} +1028.04 q^{89} +462.340 q^{91} +321.153i q^{93} -1365.07i q^{97} +240.272 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 54 q^{9} - 16 q^{11} + 148 q^{19} + 126 q^{21} + 170 q^{29} - 454 q^{31} + 78 q^{39} - 678 q^{41} - 294 q^{49} - 510 q^{51} + 2634 q^{59} - 850 q^{61} + 354 q^{69} + 652 q^{71} + 3084 q^{79} + 486 q^{81}+ \cdots + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −26.6969 −0.731765 −0.365883 0.930661i \(-0.619233\pi\)
−0.365883 + 0.930661i \(0.619233\pi\)
\(12\) 0 0
\(13\) − 66.0486i − 1.40912i −0.709643 0.704561i \(-0.751144\pi\)
0.709643 0.704561i \(-0.248856\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 49.4026i 0.704817i 0.935846 + 0.352409i \(0.114637\pi\)
−0.935846 + 0.352409i \(0.885363\pi\)
\(18\) 0 0
\(19\) 145.077 1.75174 0.875869 0.482549i \(-0.160289\pi\)
0.875869 + 0.482549i \(0.160289\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) 79.0177i 0.716362i 0.933652 + 0.358181i \(0.116603\pi\)
−0.933652 + 0.358181i \(0.883397\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) 108.038 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(30\) 0 0
\(31\) −107.051 −0.620223 −0.310111 0.950700i \(-0.600366\pi\)
−0.310111 + 0.950700i \(0.600366\pi\)
\(32\) 0 0
\(33\) 80.0907i 0.422485i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 174.007i − 0.773149i −0.922258 0.386574i \(-0.873658\pi\)
0.922258 0.386574i \(-0.126342\pi\)
\(38\) 0 0
\(39\) −198.146 −0.813557
\(40\) 0 0
\(41\) −470.555 −1.79240 −0.896199 0.443651i \(-0.853683\pi\)
−0.896199 + 0.443651i \(0.853683\pi\)
\(42\) 0 0
\(43\) 157.914i 0.560037i 0.959995 + 0.280019i \(0.0903407\pi\)
−0.959995 + 0.280019i \(0.909659\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 558.644i 1.73376i 0.498520 + 0.866878i \(0.333877\pi\)
−0.498520 + 0.866878i \(0.666123\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) 148.208 0.406926
\(52\) 0 0
\(53\) 262.604i 0.680593i 0.940318 + 0.340296i \(0.110527\pi\)
−0.940318 + 0.340296i \(0.889473\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 435.232i − 1.01137i
\(58\) 0 0
\(59\) −101.734 −0.224486 −0.112243 0.993681i \(-0.535803\pi\)
−0.112243 + 0.993681i \(0.535803\pi\)
\(60\) 0 0
\(61\) 227.179 0.476841 0.238420 0.971162i \(-0.423370\pi\)
0.238420 + 0.971162i \(0.423370\pi\)
\(62\) 0 0
\(63\) − 63.0000i − 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 405.265i − 0.738971i −0.929237 0.369485i \(-0.879534\pi\)
0.929237 0.369485i \(-0.120466\pi\)
\(68\) 0 0
\(69\) 237.053 0.413592
\(70\) 0 0
\(71\) 621.175 1.03831 0.519154 0.854681i \(-0.326247\pi\)
0.519154 + 0.854681i \(0.326247\pi\)
\(72\) 0 0
\(73\) 76.8430i 0.123203i 0.998101 + 0.0616013i \(0.0196207\pi\)
−0.998101 + 0.0616013i \(0.980379\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 186.878i − 0.276581i
\(78\) 0 0
\(79\) 168.925 0.240577 0.120288 0.992739i \(-0.461618\pi\)
0.120288 + 0.992739i \(0.461618\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) − 840.723i − 1.11182i −0.831241 0.555912i \(-0.812369\pi\)
0.831241 0.555912i \(-0.187631\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 324.113i − 0.399408i
\(88\) 0 0
\(89\) 1028.04 1.22441 0.612203 0.790700i \(-0.290283\pi\)
0.612203 + 0.790700i \(0.290283\pi\)
\(90\) 0 0
\(91\) 462.340 0.532598
\(92\) 0 0
\(93\) 321.153i 0.358086i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1365.07i − 1.42889i −0.699692 0.714445i \(-0.746679\pi\)
0.699692 0.714445i \(-0.253321\pi\)
\(98\) 0 0
\(99\) 240.272 0.243922
\(100\) 0 0
\(101\) −157.878 −0.155539 −0.0777693 0.996971i \(-0.524780\pi\)
−0.0777693 + 0.996971i \(0.524780\pi\)
\(102\) 0 0
\(103\) − 860.849i − 0.823514i −0.911294 0.411757i \(-0.864915\pi\)
0.911294 0.411757i \(-0.135085\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1102.76i 0.996339i 0.867080 + 0.498170i \(0.165994\pi\)
−0.867080 + 0.498170i \(0.834006\pi\)
\(108\) 0 0
\(109\) 1340.97 1.17836 0.589182 0.808000i \(-0.299450\pi\)
0.589182 + 0.808000i \(0.299450\pi\)
\(110\) 0 0
\(111\) −522.020 −0.446378
\(112\) 0 0
\(113\) 989.907i 0.824094i 0.911163 + 0.412047i \(0.135186\pi\)
−0.911163 + 0.412047i \(0.864814\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 594.438i 0.469708i
\(118\) 0 0
\(119\) −345.818 −0.266396
\(120\) 0 0
\(121\) −618.276 −0.464520
\(122\) 0 0
\(123\) 1411.67i 1.03484i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1267.32i 0.885483i 0.896649 + 0.442741i \(0.145994\pi\)
−0.896649 + 0.442741i \(0.854006\pi\)
\(128\) 0 0
\(129\) 473.741 0.323338
\(130\) 0 0
\(131\) 2670.85 1.78132 0.890660 0.454670i \(-0.150243\pi\)
0.890660 + 0.454670i \(0.150243\pi\)
\(132\) 0 0
\(133\) 1015.54i 0.662095i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1010.11i − 0.629921i −0.949105 0.314960i \(-0.898009\pi\)
0.949105 0.314960i \(-0.101991\pi\)
\(138\) 0 0
\(139\) 2837.56 1.73150 0.865750 0.500476i \(-0.166842\pi\)
0.865750 + 0.500476i \(0.166842\pi\)
\(140\) 0 0
\(141\) 1675.93 1.00098
\(142\) 0 0
\(143\) 1763.29i 1.03115i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 147.000i 0.0824786i
\(148\) 0 0
\(149\) −351.183 −0.193088 −0.0965438 0.995329i \(-0.530779\pi\)
−0.0965438 + 0.995329i \(0.530779\pi\)
\(150\) 0 0
\(151\) −3372.87 −1.81775 −0.908875 0.417069i \(-0.863057\pi\)
−0.908875 + 0.417069i \(0.863057\pi\)
\(152\) 0 0
\(153\) − 444.624i − 0.234939i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 515.402i 0.261997i 0.991383 + 0.130999i \(0.0418183\pi\)
−0.991383 + 0.130999i \(0.958182\pi\)
\(158\) 0 0
\(159\) 787.812 0.392940
\(160\) 0 0
\(161\) −553.124 −0.270759
\(162\) 0 0
\(163\) 2366.85i 1.13734i 0.822566 + 0.568670i \(0.192542\pi\)
−0.822566 + 0.568670i \(0.807458\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 3107.82i − 1.44006i −0.693943 0.720030i \(-0.744128\pi\)
0.693943 0.720030i \(-0.255872\pi\)
\(168\) 0 0
\(169\) −2165.42 −0.985627
\(170\) 0 0
\(171\) −1305.70 −0.583913
\(172\) 0 0
\(173\) − 2388.14i − 1.04952i −0.851251 0.524759i \(-0.824155\pi\)
0.851251 0.524759i \(-0.175845\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 305.203i 0.129607i
\(178\) 0 0
\(179\) 3544.62 1.48010 0.740049 0.672553i \(-0.234802\pi\)
0.740049 + 0.672553i \(0.234802\pi\)
\(180\) 0 0
\(181\) 2330.01 0.956841 0.478421 0.878131i \(-0.341209\pi\)
0.478421 + 0.878131i \(0.341209\pi\)
\(182\) 0 0
\(183\) − 681.537i − 0.275304i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1318.90i − 0.515761i
\(188\) 0 0
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) 2625.69 0.994702 0.497351 0.867549i \(-0.334306\pi\)
0.497351 + 0.867549i \(0.334306\pi\)
\(192\) 0 0
\(193\) 4660.89i 1.73833i 0.494521 + 0.869166i \(0.335343\pi\)
−0.494521 + 0.869166i \(0.664657\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1677.43i − 0.606660i −0.952886 0.303330i \(-0.901902\pi\)
0.952886 0.303330i \(-0.0980985\pi\)
\(198\) 0 0
\(199\) −2835.45 −1.01005 −0.505024 0.863105i \(-0.668516\pi\)
−0.505024 + 0.863105i \(0.668516\pi\)
\(200\) 0 0
\(201\) −1215.80 −0.426645
\(202\) 0 0
\(203\) 756.263i 0.261474i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 711.159i − 0.238787i
\(208\) 0 0
\(209\) −3873.11 −1.28186
\(210\) 0 0
\(211\) 2798.05 0.912918 0.456459 0.889744i \(-0.349117\pi\)
0.456459 + 0.889744i \(0.349117\pi\)
\(212\) 0 0
\(213\) − 1863.52i − 0.599467i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 749.356i − 0.234422i
\(218\) 0 0
\(219\) 230.529 0.0711311
\(220\) 0 0
\(221\) 3262.98 0.993174
\(222\) 0 0
\(223\) − 2474.79i − 0.743158i −0.928401 0.371579i \(-0.878816\pi\)
0.928401 0.371579i \(-0.121184\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 3024.51i − 0.884335i −0.896933 0.442167i \(-0.854210\pi\)
0.896933 0.442167i \(-0.145790\pi\)
\(228\) 0 0
\(229\) 3588.88 1.03563 0.517816 0.855492i \(-0.326745\pi\)
0.517816 + 0.855492i \(0.326745\pi\)
\(230\) 0 0
\(231\) −560.635 −0.159684
\(232\) 0 0
\(233\) 707.221i 0.198848i 0.995045 + 0.0994240i \(0.0317000\pi\)
−0.995045 + 0.0994240i \(0.968300\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 506.775i − 0.138897i
\(238\) 0 0
\(239\) 5655.70 1.53070 0.765349 0.643615i \(-0.222566\pi\)
0.765349 + 0.643615i \(0.222566\pi\)
\(240\) 0 0
\(241\) 5282.16 1.41184 0.705921 0.708291i \(-0.250533\pi\)
0.705921 + 0.708291i \(0.250533\pi\)
\(242\) 0 0
\(243\) − 243.000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 9582.16i − 2.46841i
\(248\) 0 0
\(249\) −2522.17 −0.641911
\(250\) 0 0
\(251\) 1483.01 0.372935 0.186467 0.982461i \(-0.440296\pi\)
0.186467 + 0.982461i \(0.440296\pi\)
\(252\) 0 0
\(253\) − 2109.53i − 0.524209i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 3415.10i − 0.828904i −0.910071 0.414452i \(-0.863973\pi\)
0.910071 0.414452i \(-0.136027\pi\)
\(258\) 0 0
\(259\) 1218.05 0.292223
\(260\) 0 0
\(261\) −972.338 −0.230599
\(262\) 0 0
\(263\) − 1342.88i − 0.314850i −0.987531 0.157425i \(-0.949681\pi\)
0.987531 0.157425i \(-0.0503192\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 3084.13i − 0.706912i
\(268\) 0 0
\(269\) 3008.98 0.682011 0.341006 0.940061i \(-0.389232\pi\)
0.341006 + 0.940061i \(0.389232\pi\)
\(270\) 0 0
\(271\) −238.967 −0.0535653 −0.0267827 0.999641i \(-0.508526\pi\)
−0.0267827 + 0.999641i \(0.508526\pi\)
\(272\) 0 0
\(273\) − 1387.02i − 0.307496i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 2480.97i − 0.538147i −0.963120 0.269074i \(-0.913283\pi\)
0.963120 0.269074i \(-0.0867175\pi\)
\(278\) 0 0
\(279\) 963.458 0.206741
\(280\) 0 0
\(281\) 695.444 0.147640 0.0738198 0.997272i \(-0.476481\pi\)
0.0738198 + 0.997272i \(0.476481\pi\)
\(282\) 0 0
\(283\) − 7410.59i − 1.55659i −0.627901 0.778293i \(-0.716086\pi\)
0.627901 0.778293i \(-0.283914\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 3293.89i − 0.677463i
\(288\) 0 0
\(289\) 2472.38 0.503233
\(290\) 0 0
\(291\) −4095.22 −0.824970
\(292\) 0 0
\(293\) 8002.90i 1.59568i 0.602869 + 0.797840i \(0.294024\pi\)
−0.602869 + 0.797840i \(0.705976\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 720.816i − 0.140828i
\(298\) 0 0
\(299\) 5219.01 1.00944
\(300\) 0 0
\(301\) −1105.40 −0.211674
\(302\) 0 0
\(303\) 473.633i 0.0898003i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3454.92i 0.642288i 0.947030 + 0.321144i \(0.104067\pi\)
−0.947030 + 0.321144i \(0.895933\pi\)
\(308\) 0 0
\(309\) −2582.55 −0.475456
\(310\) 0 0
\(311\) 4649.17 0.847685 0.423843 0.905736i \(-0.360681\pi\)
0.423843 + 0.905736i \(0.360681\pi\)
\(312\) 0 0
\(313\) 6506.84i 1.17504i 0.809209 + 0.587522i \(0.199896\pi\)
−0.809209 + 0.587522i \(0.800104\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 1664.13i − 0.294847i −0.989073 0.147424i \(-0.952902\pi\)
0.989073 0.147424i \(-0.0470981\pi\)
\(318\) 0 0
\(319\) −2884.27 −0.506232
\(320\) 0 0
\(321\) 3308.29 0.575237
\(322\) 0 0
\(323\) 7167.20i 1.23466i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 4022.91i − 0.680329i
\(328\) 0 0
\(329\) −3910.50 −0.655298
\(330\) 0 0
\(331\) −1145.95 −0.190293 −0.0951467 0.995463i \(-0.530332\pi\)
−0.0951467 + 0.995463i \(0.530332\pi\)
\(332\) 0 0
\(333\) 1566.06i 0.257716i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 8602.86i − 1.39059i −0.718726 0.695294i \(-0.755274\pi\)
0.718726 0.695294i \(-0.244726\pi\)
\(338\) 0 0
\(339\) 2969.72 0.475791
\(340\) 0 0
\(341\) 2857.93 0.453857
\(342\) 0 0
\(343\) − 343.000i − 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7072.88i 1.09421i 0.837063 + 0.547107i \(0.184271\pi\)
−0.837063 + 0.547107i \(0.815729\pi\)
\(348\) 0 0
\(349\) −497.466 −0.0763001 −0.0381500 0.999272i \(-0.512146\pi\)
−0.0381500 + 0.999272i \(0.512146\pi\)
\(350\) 0 0
\(351\) 1783.31 0.271186
\(352\) 0 0
\(353\) 10951.0i 1.65117i 0.564279 + 0.825584i \(0.309154\pi\)
−0.564279 + 0.825584i \(0.690846\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1037.45i 0.153804i
\(358\) 0 0
\(359\) −3379.45 −0.496825 −0.248413 0.968654i \(-0.579909\pi\)
−0.248413 + 0.968654i \(0.579909\pi\)
\(360\) 0 0
\(361\) 14188.4 2.06859
\(362\) 0 0
\(363\) 1854.83i 0.268191i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 11428.8i − 1.62555i −0.582575 0.812777i \(-0.697955\pi\)
0.582575 0.812777i \(-0.302045\pi\)
\(368\) 0 0
\(369\) 4235.00 0.597466
\(370\) 0 0
\(371\) −1838.23 −0.257240
\(372\) 0 0
\(373\) − 9751.24i − 1.35362i −0.736158 0.676810i \(-0.763362\pi\)
0.736158 0.676810i \(-0.236638\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 7135.73i − 0.974825i
\(378\) 0 0
\(379\) 5629.75 0.763010 0.381505 0.924367i \(-0.375406\pi\)
0.381505 + 0.924367i \(0.375406\pi\)
\(380\) 0 0
\(381\) 3801.95 0.511234
\(382\) 0 0
\(383\) − 5254.80i − 0.701064i −0.936551 0.350532i \(-0.886001\pi\)
0.936551 0.350532i \(-0.113999\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1421.22i − 0.186679i
\(388\) 0 0
\(389\) 3964.29 0.516703 0.258351 0.966051i \(-0.416821\pi\)
0.258351 + 0.966051i \(0.416821\pi\)
\(390\) 0 0
\(391\) −3903.68 −0.504904
\(392\) 0 0
\(393\) − 8012.54i − 1.02845i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7404.95i 0.936130i 0.883694 + 0.468065i \(0.155049\pi\)
−0.883694 + 0.468065i \(0.844951\pi\)
\(398\) 0 0
\(399\) 3046.62 0.382261
\(400\) 0 0
\(401\) 5243.57 0.652996 0.326498 0.945198i \(-0.394131\pi\)
0.326498 + 0.945198i \(0.394131\pi\)
\(402\) 0 0
\(403\) 7070.56i 0.873970i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4645.44i 0.565763i
\(408\) 0 0
\(409\) 12986.1 1.56998 0.784989 0.619509i \(-0.212668\pi\)
0.784989 + 0.619509i \(0.212668\pi\)
\(410\) 0 0
\(411\) −3030.32 −0.363685
\(412\) 0 0
\(413\) − 712.139i − 0.0848477i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 8512.68i − 0.999682i
\(418\) 0 0
\(419\) −14172.7 −1.65246 −0.826232 0.563329i \(-0.809520\pi\)
−0.826232 + 0.563329i \(0.809520\pi\)
\(420\) 0 0
\(421\) −10699.3 −1.23860 −0.619299 0.785155i \(-0.712583\pi\)
−0.619299 + 0.785155i \(0.712583\pi\)
\(422\) 0 0
\(423\) − 5027.79i − 0.577919i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1590.25i 0.180229i
\(428\) 0 0
\(429\) 5289.88 0.595333
\(430\) 0 0
\(431\) 7858.53 0.878265 0.439132 0.898422i \(-0.355286\pi\)
0.439132 + 0.898422i \(0.355286\pi\)
\(432\) 0 0
\(433\) 1445.41i 0.160420i 0.996778 + 0.0802100i \(0.0255591\pi\)
−0.996778 + 0.0802100i \(0.974441\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11463.7i 1.25488i
\(438\) 0 0
\(439\) −7774.54 −0.845236 −0.422618 0.906308i \(-0.638889\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) − 14920.4i − 1.60020i −0.599868 0.800099i \(-0.704780\pi\)
0.599868 0.800099i \(-0.295220\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1053.55i 0.111479i
\(448\) 0 0
\(449\) −13013.1 −1.36777 −0.683884 0.729591i \(-0.739711\pi\)
−0.683884 + 0.729591i \(0.739711\pi\)
\(450\) 0 0
\(451\) 12562.4 1.31162
\(452\) 0 0
\(453\) 10118.6i 1.04948i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 3446.24i − 0.352753i −0.984323 0.176376i \(-0.943562\pi\)
0.984323 0.176376i \(-0.0564376\pi\)
\(458\) 0 0
\(459\) −1333.87 −0.135642
\(460\) 0 0
\(461\) 15096.6 1.52520 0.762601 0.646869i \(-0.223922\pi\)
0.762601 + 0.646869i \(0.223922\pi\)
\(462\) 0 0
\(463\) 915.782i 0.0919223i 0.998943 + 0.0459611i \(0.0146350\pi\)
−0.998943 + 0.0459611i \(0.985365\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 14075.8i − 1.39475i −0.716705 0.697376i \(-0.754351\pi\)
0.716705 0.697376i \(-0.245649\pi\)
\(468\) 0 0
\(469\) 2836.86 0.279305
\(470\) 0 0
\(471\) 1546.21 0.151264
\(472\) 0 0
\(473\) − 4215.80i − 0.409816i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 2363.43i − 0.226864i
\(478\) 0 0
\(479\) 11686.4 1.11475 0.557375 0.830261i \(-0.311809\pi\)
0.557375 + 0.830261i \(0.311809\pi\)
\(480\) 0 0
\(481\) −11492.9 −1.08946
\(482\) 0 0
\(483\) 1659.37i 0.156323i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 7829.75i − 0.728542i −0.931293 0.364271i \(-0.881318\pi\)
0.931293 0.364271i \(-0.118682\pi\)
\(488\) 0 0
\(489\) 7100.56 0.656643
\(490\) 0 0
\(491\) −4957.17 −0.455629 −0.227815 0.973705i \(-0.573158\pi\)
−0.227815 + 0.973705i \(0.573158\pi\)
\(492\) 0 0
\(493\) 5337.34i 0.487589i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4348.22i 0.392443i
\(498\) 0 0
\(499\) 10245.1 0.919106 0.459553 0.888150i \(-0.348010\pi\)
0.459553 + 0.888150i \(0.348010\pi\)
\(500\) 0 0
\(501\) −9323.45 −0.831419
\(502\) 0 0
\(503\) 11782.4i 1.04444i 0.852812 + 0.522218i \(0.174895\pi\)
−0.852812 + 0.522218i \(0.825105\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6496.26i 0.569052i
\(508\) 0 0
\(509\) −18384.1 −1.60091 −0.800453 0.599396i \(-0.795408\pi\)
−0.800453 + 0.599396i \(0.795408\pi\)
\(510\) 0 0
\(511\) −537.901 −0.0465662
\(512\) 0 0
\(513\) 3917.09i 0.337122i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 14914.0i − 1.26870i
\(518\) 0 0
\(519\) −7164.41 −0.605940
\(520\) 0 0
\(521\) −3880.67 −0.326325 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(522\) 0 0
\(523\) − 155.376i − 0.0129906i −0.999979 0.00649532i \(-0.997932\pi\)
0.999979 0.00649532i \(-0.00206754\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 5288.59i − 0.437144i
\(528\) 0 0
\(529\) 5923.21 0.486826
\(530\) 0 0
\(531\) 915.608 0.0748286
\(532\) 0 0
\(533\) 31079.5i 2.52571i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 10633.9i − 0.854535i
\(538\) 0 0
\(539\) 1308.15 0.104538
\(540\) 0 0
\(541\) 868.144 0.0689915 0.0344958 0.999405i \(-0.489017\pi\)
0.0344958 + 0.999405i \(0.489017\pi\)
\(542\) 0 0
\(543\) − 6990.03i − 0.552433i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 14593.6i − 1.14073i −0.821391 0.570365i \(-0.806802\pi\)
0.821391 0.570365i \(-0.193198\pi\)
\(548\) 0 0
\(549\) −2044.61 −0.158947
\(550\) 0 0
\(551\) 15673.8 1.21184
\(552\) 0 0
\(553\) 1182.48i 0.0909294i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6133.73i 0.466597i 0.972405 + 0.233298i \(0.0749519\pi\)
−0.972405 + 0.233298i \(0.925048\pi\)
\(558\) 0 0
\(559\) 10430.0 0.789161
\(560\) 0 0
\(561\) −3956.69 −0.297775
\(562\) 0 0
\(563\) − 10042.7i − 0.751774i −0.926665 0.375887i \(-0.877338\pi\)
0.926665 0.375887i \(-0.122662\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 567.000i 0.0419961i
\(568\) 0 0
\(569\) 2535.10 0.186778 0.0933891 0.995630i \(-0.470230\pi\)
0.0933891 + 0.995630i \(0.470230\pi\)
\(570\) 0 0
\(571\) −16755.7 −1.22803 −0.614015 0.789294i \(-0.710447\pi\)
−0.614015 + 0.789294i \(0.710447\pi\)
\(572\) 0 0
\(573\) − 7877.06i − 0.574291i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 7228.14i 0.521510i 0.965405 + 0.260755i \(0.0839715\pi\)
−0.965405 + 0.260755i \(0.916029\pi\)
\(578\) 0 0
\(579\) 13982.7 1.00363
\(580\) 0 0
\(581\) 5885.06 0.420230
\(582\) 0 0
\(583\) − 7010.71i − 0.498034i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7434.57i 0.522755i 0.965237 + 0.261378i \(0.0841768\pi\)
−0.965237 + 0.261378i \(0.915823\pi\)
\(588\) 0 0
\(589\) −15530.7 −1.08647
\(590\) 0 0
\(591\) −5032.29 −0.350255
\(592\) 0 0
\(593\) 20473.3i 1.41777i 0.705325 + 0.708884i \(0.250801\pi\)
−0.705325 + 0.708884i \(0.749199\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8506.35i 0.583152i
\(598\) 0 0
\(599\) 2136.87 0.145760 0.0728800 0.997341i \(-0.476781\pi\)
0.0728800 + 0.997341i \(0.476781\pi\)
\(600\) 0 0
\(601\) −28627.3 −1.94298 −0.971489 0.237083i \(-0.923809\pi\)
−0.971489 + 0.237083i \(0.923809\pi\)
\(602\) 0 0
\(603\) 3647.39i 0.246324i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 11526.8i 0.770768i 0.922756 + 0.385384i \(0.125931\pi\)
−0.922756 + 0.385384i \(0.874069\pi\)
\(608\) 0 0
\(609\) 2268.79 0.150962
\(610\) 0 0
\(611\) 36897.6 2.44307
\(612\) 0 0
\(613\) − 807.212i − 0.0531859i −0.999646 0.0265930i \(-0.991534\pi\)
0.999646 0.0265930i \(-0.00846580\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17858.5i 1.16524i 0.812744 + 0.582621i \(0.197973\pi\)
−0.812744 + 0.582621i \(0.802027\pi\)
\(618\) 0 0
\(619\) 14091.9 0.915028 0.457514 0.889202i \(-0.348740\pi\)
0.457514 + 0.889202i \(0.348740\pi\)
\(620\) 0 0
\(621\) −2133.48 −0.137864
\(622\) 0 0
\(623\) 7196.29i 0.462782i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 11619.3i 0.740083i
\(628\) 0 0
\(629\) 8596.38 0.544929
\(630\) 0 0
\(631\) 2161.37 0.136359 0.0681795 0.997673i \(-0.478281\pi\)
0.0681795 + 0.997673i \(0.478281\pi\)
\(632\) 0 0
\(633\) − 8394.15i − 0.527073i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3236.38i 0.201303i
\(638\) 0 0
\(639\) −5590.57 −0.346103
\(640\) 0 0
\(641\) −4374.38 −0.269544 −0.134772 0.990877i \(-0.543030\pi\)
−0.134772 + 0.990877i \(0.543030\pi\)
\(642\) 0 0
\(643\) − 9691.44i − 0.594390i −0.954817 0.297195i \(-0.903949\pi\)
0.954817 0.297195i \(-0.0960512\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17690.0i 1.07491i 0.843294 + 0.537453i \(0.180613\pi\)
−0.843294 + 0.537453i \(0.819387\pi\)
\(648\) 0 0
\(649\) 2715.99 0.164271
\(650\) 0 0
\(651\) −2248.07 −0.135344
\(652\) 0 0
\(653\) 6777.53i 0.406164i 0.979162 + 0.203082i \(0.0650959\pi\)
−0.979162 + 0.203082i \(0.934904\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 691.587i − 0.0410676i
\(658\) 0 0
\(659\) 29526.8 1.74537 0.872686 0.488283i \(-0.162377\pi\)
0.872686 + 0.488283i \(0.162377\pi\)
\(660\) 0 0
\(661\) −9505.64 −0.559344 −0.279672 0.960096i \(-0.590226\pi\)
−0.279672 + 0.960096i \(0.590226\pi\)
\(662\) 0 0
\(663\) − 9788.93i − 0.573409i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8536.87i 0.495576i
\(668\) 0 0
\(669\) −7424.37 −0.429062
\(670\) 0 0
\(671\) −6064.97 −0.348935
\(672\) 0 0
\(673\) 100.054i 0.00573077i 0.999996 + 0.00286538i \(0.000912081\pi\)
−0.999996 + 0.00286538i \(0.999088\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21975.7i 1.24756i 0.781602 + 0.623778i \(0.214403\pi\)
−0.781602 + 0.623778i \(0.785597\pi\)
\(678\) 0 0
\(679\) 9555.52 0.540070
\(680\) 0 0
\(681\) −9073.54 −0.510571
\(682\) 0 0
\(683\) 1891.73i 0.105981i 0.998595 + 0.0529904i \(0.0168753\pi\)
−0.998595 + 0.0529904i \(0.983125\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 10766.6i − 0.597923i
\(688\) 0 0
\(689\) 17344.6 0.959039
\(690\) 0 0
\(691\) −7174.11 −0.394958 −0.197479 0.980307i \(-0.563275\pi\)
−0.197479 + 0.980307i \(0.563275\pi\)
\(692\) 0 0
\(693\) 1681.90i 0.0921937i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 23246.7i − 1.26331i
\(698\) 0 0
\(699\) 2121.66 0.114805
\(700\) 0 0
\(701\) 2177.55 0.117325 0.0586626 0.998278i \(-0.481316\pi\)
0.0586626 + 0.998278i \(0.481316\pi\)
\(702\) 0 0
\(703\) − 25244.4i − 1.35435i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 1105.14i − 0.0587881i
\(708\) 0 0
\(709\) −23644.8 −1.25247 −0.626233 0.779636i \(-0.715404\pi\)
−0.626233 + 0.779636i \(0.715404\pi\)
\(710\) 0 0
\(711\) −1520.33 −0.0801922
\(712\) 0 0
\(713\) − 8458.91i − 0.444304i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 16967.1i − 0.883749i
\(718\) 0 0
\(719\) 10678.3 0.553869 0.276934 0.960889i \(-0.410682\pi\)
0.276934 + 0.960889i \(0.410682\pi\)
\(720\) 0 0
\(721\) 6025.94 0.311259
\(722\) 0 0
\(723\) − 15846.5i − 0.815127i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 28246.1i 1.44098i 0.693467 + 0.720489i \(0.256083\pi\)
−0.693467 + 0.720489i \(0.743917\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −7801.35 −0.394724
\(732\) 0 0
\(733\) − 3557.32i − 0.179253i −0.995975 0.0896265i \(-0.971433\pi\)
0.995975 0.0896265i \(-0.0285673\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10819.3i 0.540753i
\(738\) 0 0
\(739\) −7184.71 −0.357637 −0.178818 0.983882i \(-0.557227\pi\)
−0.178818 + 0.983882i \(0.557227\pi\)
\(740\) 0 0
\(741\) −28746.5 −1.42514
\(742\) 0 0
\(743\) 14989.1i 0.740106i 0.929011 + 0.370053i \(0.120660\pi\)
−0.929011 + 0.370053i \(0.879340\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 7566.51i 0.370608i
\(748\) 0 0
\(749\) −7719.35 −0.376581
\(750\) 0 0
\(751\) 16705.0 0.811685 0.405842 0.913943i \(-0.366978\pi\)
0.405842 + 0.913943i \(0.366978\pi\)
\(752\) 0 0
\(753\) − 4449.03i − 0.215314i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 13196.1i 0.633581i 0.948496 + 0.316790i \(0.102605\pi\)
−0.948496 + 0.316790i \(0.897395\pi\)
\(758\) 0 0
\(759\) −6328.58 −0.302652
\(760\) 0 0
\(761\) 11359.7 0.541117 0.270558 0.962704i \(-0.412792\pi\)
0.270558 + 0.962704i \(0.412792\pi\)
\(762\) 0 0
\(763\) 9386.80i 0.445380i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6719.40i 0.316328i
\(768\) 0 0
\(769\) −31970.8 −1.49921 −0.749607 0.661883i \(-0.769758\pi\)
−0.749607 + 0.661883i \(0.769758\pi\)
\(770\) 0 0
\(771\) −10245.3 −0.478568
\(772\) 0 0
\(773\) − 11528.7i − 0.536426i −0.963360 0.268213i \(-0.913567\pi\)
0.963360 0.268213i \(-0.0864332\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 3654.14i − 0.168715i
\(778\) 0 0
\(779\) −68266.9 −3.13981
\(780\) 0 0
\(781\) −16583.4 −0.759797
\(782\) 0 0
\(783\) 2917.01i 0.133136i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 26360.4i 1.19396i 0.802256 + 0.596981i \(0.203633\pi\)
−0.802256 + 0.596981i \(0.796367\pi\)
\(788\) 0 0
\(789\) −4028.64 −0.181779
\(790\) 0 0
\(791\) −6929.35 −0.311478
\(792\) 0 0
\(793\) − 15004.9i − 0.671927i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 23128.8i − 1.02793i −0.857810 0.513967i \(-0.828175\pi\)
0.857810 0.513967i \(-0.171825\pi\)
\(798\) 0 0
\(799\) −27598.5 −1.22198
\(800\) 0 0
\(801\) −9252.38 −0.408136
\(802\) 0 0
\(803\) − 2051.47i − 0.0901554i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 9026.95i − 0.393759i
\(808\) 0 0
\(809\) −16689.9 −0.725323 −0.362661 0.931921i \(-0.618132\pi\)
−0.362661 + 0.931921i \(0.618132\pi\)
\(810\) 0 0
\(811\) 1784.32 0.0772578 0.0386289 0.999254i \(-0.487701\pi\)
0.0386289 + 0.999254i \(0.487701\pi\)
\(812\) 0 0
\(813\) 716.901i 0.0309260i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 22909.7i 0.981039i
\(818\) 0 0
\(819\) −4161.06 −0.177533
\(820\) 0 0
\(821\) −3943.02 −0.167615 −0.0838077 0.996482i \(-0.526708\pi\)
−0.0838077 + 0.996482i \(0.526708\pi\)
\(822\) 0 0
\(823\) − 20456.9i − 0.866441i −0.901288 0.433221i \(-0.857377\pi\)
0.901288 0.433221i \(-0.142623\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 960.218i − 0.0403749i −0.999796 0.0201875i \(-0.993574\pi\)
0.999796 0.0201875i \(-0.00642630\pi\)
\(828\) 0 0
\(829\) 2875.01 0.120450 0.0602251 0.998185i \(-0.480818\pi\)
0.0602251 + 0.998185i \(0.480818\pi\)
\(830\) 0 0
\(831\) −7442.90 −0.310699
\(832\) 0 0
\(833\) − 2420.73i − 0.100688i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2890.37i − 0.119362i
\(838\) 0 0
\(839\) −16620.8 −0.683927 −0.341964 0.939713i \(-0.611092\pi\)
−0.341964 + 0.939713i \(0.611092\pi\)
\(840\) 0 0
\(841\) −12716.9 −0.521419
\(842\) 0 0
\(843\) − 2086.33i − 0.0852397i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 4327.93i − 0.175572i
\(848\) 0 0
\(849\) −22231.8 −0.898695
\(850\) 0 0
\(851\) 13749.6 0.553854
\(852\) 0 0
\(853\) 32589.4i 1.30813i 0.756437 + 0.654067i \(0.226939\pi\)
−0.756437 + 0.654067i \(0.773061\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 31152.2i 1.24170i 0.783928 + 0.620851i \(0.213213\pi\)
−0.783928 + 0.620851i \(0.786787\pi\)
\(858\) 0 0
\(859\) 31785.9 1.26254 0.631269 0.775564i \(-0.282534\pi\)
0.631269 + 0.775564i \(0.282534\pi\)
\(860\) 0 0
\(861\) −9881.66 −0.391134
\(862\) 0 0
\(863\) − 8290.40i − 0.327009i −0.986543 0.163504i \(-0.947720\pi\)
0.986543 0.163504i \(-0.0522798\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 7417.14i − 0.290541i
\(868\) 0 0
\(869\) −4509.77 −0.176046
\(870\) 0 0
\(871\) −26767.2 −1.04130
\(872\) 0 0
\(873\) 12285.7i 0.476297i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 8950.92i − 0.344642i −0.985041 0.172321i \(-0.944873\pi\)
0.985041 0.172321i \(-0.0551266\pi\)
\(878\) 0 0
\(879\) 24008.7 0.921267
\(880\) 0 0
\(881\) 33961.1 1.29873 0.649363 0.760478i \(-0.275036\pi\)
0.649363 + 0.760478i \(0.275036\pi\)
\(882\) 0 0
\(883\) − 32361.6i − 1.23336i −0.787215 0.616679i \(-0.788478\pi\)
0.787215 0.616679i \(-0.211522\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 28712.4i 1.08689i 0.839446 + 0.543443i \(0.182880\pi\)
−0.839446 + 0.543443i \(0.817120\pi\)
\(888\) 0 0
\(889\) −8871.23 −0.334681
\(890\) 0 0
\(891\) −2162.45 −0.0813072
\(892\) 0 0
\(893\) 81046.5i 3.03709i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 15657.0i − 0.582801i
\(898\) 0 0
\(899\) −11565.5 −0.429067
\(900\) 0 0
\(901\) −12973.3 −0.479694
\(902\) 0 0
\(903\) 3316.19i 0.122210i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 14814.9i 0.542360i 0.962529 + 0.271180i \(0.0874138\pi\)
−0.962529 + 0.271180i \(0.912586\pi\)
\(908\) 0 0
\(909\) 1420.90 0.0518462
\(910\) 0 0
\(911\) 25721.2 0.935436 0.467718 0.883878i \(-0.345076\pi\)
0.467718 + 0.883878i \(0.345076\pi\)
\(912\) 0 0
\(913\) 22444.7i 0.813594i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18695.9i 0.673276i
\(918\) 0 0
\(919\) 18520.0 0.664765 0.332382 0.943145i \(-0.392148\pi\)
0.332382 + 0.943145i \(0.392148\pi\)
\(920\) 0 0
\(921\) 10364.8 0.370825
\(922\) 0 0
\(923\) − 41027.7i − 1.46310i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 7747.64i 0.274505i
\(928\) 0 0
\(929\) −22153.2 −0.782370 −0.391185 0.920312i \(-0.627935\pi\)
−0.391185 + 0.920312i \(0.627935\pi\)
\(930\) 0 0
\(931\) −7108.79 −0.250248
\(932\) 0 0
\(933\) − 13947.5i − 0.489411i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 36393.2i − 1.26885i −0.772984 0.634426i \(-0.781237\pi\)
0.772984 0.634426i \(-0.218763\pi\)
\(938\) 0 0
\(939\) 19520.5 0.678411
\(940\) 0 0
\(941\) 54740.4 1.89637 0.948186 0.317716i \(-0.102916\pi\)
0.948186 + 0.317716i \(0.102916\pi\)
\(942\) 0 0
\(943\) − 37182.2i − 1.28401i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 39249.7i 1.34682i 0.739267 + 0.673412i \(0.235172\pi\)
−0.739267 + 0.673412i \(0.764828\pi\)
\(948\) 0 0
\(949\) 5075.38 0.173608
\(950\) 0 0
\(951\) −4992.38 −0.170230
\(952\) 0 0
\(953\) − 42849.0i − 1.45647i −0.685328 0.728234i \(-0.740341\pi\)
0.685328 0.728234i \(-0.259659\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 8652.80i 0.292273i
\(958\) 0 0
\(959\) 7070.74 0.238088
\(960\) 0 0
\(961\) −18331.1 −0.615324
\(962\) 0 0
\(963\) − 9924.88i − 0.332113i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 18397.1i 0.611801i 0.952064 + 0.305900i \(0.0989574\pi\)
−0.952064 + 0.305900i \(0.901043\pi\)
\(968\) 0 0
\(969\) 21501.6 0.712829
\(970\) 0 0
\(971\) 1379.79 0.0456021 0.0228011 0.999740i \(-0.492742\pi\)
0.0228011 + 0.999740i \(0.492742\pi\)
\(972\) 0 0
\(973\) 19862.9i 0.654446i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 15827.3i 0.518281i 0.965840 + 0.259141i \(0.0834393\pi\)
−0.965840 + 0.259141i \(0.916561\pi\)
\(978\) 0 0
\(979\) −27445.5 −0.895978
\(980\) 0 0
\(981\) −12068.7 −0.392788
\(982\) 0 0
\(983\) 5439.58i 0.176496i 0.996099 + 0.0882480i \(0.0281268\pi\)
−0.996099 + 0.0882480i \(0.971873\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 11731.5i 0.378337i
\(988\) 0 0
\(989\) −12478.0 −0.401189
\(990\) 0 0
\(991\) −33148.5 −1.06256 −0.531280 0.847196i \(-0.678289\pi\)
−0.531280 + 0.847196i \(0.678289\pi\)
\(992\) 0 0
\(993\) 3437.85i 0.109866i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 6846.42i 0.217481i 0.994070 + 0.108740i \(0.0346817\pi\)
−0.994070 + 0.108740i \(0.965318\pi\)
\(998\) 0 0
\(999\) 4698.18 0.148793
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.4.k.p.1849.2 6
5.2 odd 4 2100.4.a.v.1.2 3
5.3 odd 4 2100.4.a.z.1.2 yes 3
5.4 even 2 inner 2100.4.k.p.1849.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2100.4.a.v.1.2 3 5.2 odd 4
2100.4.a.z.1.2 yes 3 5.3 odd 4
2100.4.k.p.1849.2 6 1.1 even 1 trivial
2100.4.k.p.1849.5 6 5.4 even 2 inner