Properties

Label 2100.4.k.q.1849.2
Level $2100$
Weight $4$
Character 2100.1849
Analytic conductor $123.904$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1849,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1849");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 411x^{4} + 42405x^{2} + 36100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.2
Root \(0.926522i\) of defining polynomial
Character \(\chi\) \(=\) 2100.1849
Dual form 2100.4.k.q.1849.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} +7.00000i q^{7} -9.00000 q^{9} +19.9969 q^{11} -36.5561i q^{13} -10.5561i q^{17} +80.6590 q^{19} +21.0000 q^{21} +148.330i q^{23} +27.0000i q^{27} -162.777 q^{29} -46.1029 q^{31} -59.9908i q^{33} +383.533i q^{37} -109.668 q^{39} +345.421 q^{41} -138.771i q^{43} -56.6713i q^{47} -49.0000 q^{49} -31.6682 q^{51} -168.327i q^{53} -241.977i q^{57} -604.292 q^{59} +362.570 q^{61} -63.0000i q^{63} -44.8556i q^{67} +444.991 q^{69} -933.941 q^{71} -271.593i q^{73} +139.979i q^{77} +357.547 q^{79} +81.0000 q^{81} +490.564i q^{83} +488.332i q^{87} +859.974 q^{89} +255.892 q^{91} +138.309i q^{93} -182.402i q^{97} -179.972 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 54 q^{9} + 16 q^{11} - 204 q^{19} + 126 q^{21} - 246 q^{29} + 286 q^{31} - 282 q^{39} + 134 q^{41} - 294 q^{49} + 186 q^{51} - 82 q^{59} + 1234 q^{61} - 210 q^{69} + 1508 q^{71} - 860 q^{79} + 486 q^{81}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 19.9969 0.548118 0.274059 0.961713i \(-0.411634\pi\)
0.274059 + 0.961713i \(0.411634\pi\)
\(12\) 0 0
\(13\) − 36.5561i − 0.779910i −0.920834 0.389955i \(-0.872491\pi\)
0.920834 0.389955i \(-0.127509\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 10.5561i − 0.150601i −0.997161 0.0753006i \(-0.976008\pi\)
0.997161 0.0753006i \(-0.0239916\pi\)
\(18\) 0 0
\(19\) 80.6590 0.973918 0.486959 0.873425i \(-0.338106\pi\)
0.486959 + 0.873425i \(0.338106\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) 148.330i 1.34474i 0.740216 + 0.672369i \(0.234723\pi\)
−0.740216 + 0.672369i \(0.765277\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) −162.777 −1.04231 −0.521155 0.853462i \(-0.674499\pi\)
−0.521155 + 0.853462i \(0.674499\pi\)
\(30\) 0 0
\(31\) −46.1029 −0.267107 −0.133554 0.991042i \(-0.542639\pi\)
−0.133554 + 0.991042i \(0.542639\pi\)
\(32\) 0 0
\(33\) − 59.9908i − 0.316456i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 383.533i 1.70412i 0.523444 + 0.852060i \(0.324647\pi\)
−0.523444 + 0.852060i \(0.675353\pi\)
\(38\) 0 0
\(39\) −109.668 −0.450281
\(40\) 0 0
\(41\) 345.421 1.31575 0.657874 0.753128i \(-0.271456\pi\)
0.657874 + 0.753128i \(0.271456\pi\)
\(42\) 0 0
\(43\) − 138.771i − 0.492149i −0.969251 0.246074i \(-0.920859\pi\)
0.969251 0.246074i \(-0.0791407\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 56.6713i − 0.175880i −0.996126 0.0879399i \(-0.971972\pi\)
0.996126 0.0879399i \(-0.0280283\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −31.6682 −0.0869497
\(52\) 0 0
\(53\) − 168.327i − 0.436255i −0.975920 0.218127i \(-0.930005\pi\)
0.975920 0.218127i \(-0.0699949\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 241.977i − 0.562292i
\(58\) 0 0
\(59\) −604.292 −1.33343 −0.666713 0.745315i \(-0.732299\pi\)
−0.666713 + 0.745315i \(0.732299\pi\)
\(60\) 0 0
\(61\) 362.570 0.761021 0.380511 0.924777i \(-0.375748\pi\)
0.380511 + 0.924777i \(0.375748\pi\)
\(62\) 0 0
\(63\) − 63.0000i − 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 44.8556i − 0.0817908i −0.999163 0.0408954i \(-0.986979\pi\)
0.999163 0.0408954i \(-0.0130210\pi\)
\(68\) 0 0
\(69\) 444.991 0.776385
\(70\) 0 0
\(71\) −933.941 −1.56111 −0.780553 0.625090i \(-0.785062\pi\)
−0.780553 + 0.625090i \(0.785062\pi\)
\(72\) 0 0
\(73\) − 271.593i − 0.435446i −0.976011 0.217723i \(-0.930137\pi\)
0.976011 0.217723i \(-0.0698629\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 139.979i 0.207169i
\(78\) 0 0
\(79\) 357.547 0.509204 0.254602 0.967046i \(-0.418055\pi\)
0.254602 + 0.967046i \(0.418055\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 490.564i 0.648751i 0.945928 + 0.324376i \(0.105154\pi\)
−0.945928 + 0.324376i \(0.894846\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 488.332i 0.601778i
\(88\) 0 0
\(89\) 859.974 1.02424 0.512118 0.858915i \(-0.328861\pi\)
0.512118 + 0.858915i \(0.328861\pi\)
\(90\) 0 0
\(91\) 255.892 0.294778
\(92\) 0 0
\(93\) 138.309i 0.154215i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 182.402i − 0.190929i −0.995433 0.0954647i \(-0.969566\pi\)
0.995433 0.0954647i \(-0.0304337\pi\)
\(98\) 0 0
\(99\) −179.972 −0.182706
\(100\) 0 0
\(101\) 1205.91 1.18805 0.594024 0.804448i \(-0.297539\pi\)
0.594024 + 0.804448i \(0.297539\pi\)
\(102\) 0 0
\(103\) 1372.99i 1.31344i 0.754134 + 0.656720i \(0.228057\pi\)
−0.754134 + 0.656720i \(0.771943\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 183.843i 0.166101i 0.996545 + 0.0830505i \(0.0264663\pi\)
−0.996545 + 0.0830505i \(0.973534\pi\)
\(108\) 0 0
\(109\) −510.934 −0.448978 −0.224489 0.974477i \(-0.572071\pi\)
−0.224489 + 0.974477i \(0.572071\pi\)
\(110\) 0 0
\(111\) 1150.60 0.983874
\(112\) 0 0
\(113\) 633.525i 0.527408i 0.964604 + 0.263704i \(0.0849441\pi\)
−0.964604 + 0.263704i \(0.915056\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 329.005i 0.259970i
\(118\) 0 0
\(119\) 73.8924 0.0569219
\(120\) 0 0
\(121\) −931.123 −0.699566
\(122\) 0 0
\(123\) − 1036.26i − 0.759648i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2732.95i 1.90953i 0.297363 + 0.954764i \(0.403893\pi\)
−0.297363 + 0.954764i \(0.596107\pi\)
\(128\) 0 0
\(129\) −416.313 −0.284142
\(130\) 0 0
\(131\) 1494.90 0.997026 0.498513 0.866882i \(-0.333880\pi\)
0.498513 + 0.866882i \(0.333880\pi\)
\(132\) 0 0
\(133\) 564.613i 0.368106i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1265.40i 0.789126i 0.918869 + 0.394563i \(0.129104\pi\)
−0.918869 + 0.394563i \(0.870896\pi\)
\(138\) 0 0
\(139\) −2196.54 −1.34035 −0.670173 0.742205i \(-0.733780\pi\)
−0.670173 + 0.742205i \(0.733780\pi\)
\(140\) 0 0
\(141\) −170.014 −0.101544
\(142\) 0 0
\(143\) − 731.009i − 0.427483i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 147.000i 0.0824786i
\(148\) 0 0
\(149\) 645.613 0.354971 0.177486 0.984123i \(-0.443204\pi\)
0.177486 + 0.984123i \(0.443204\pi\)
\(150\) 0 0
\(151\) −77.9861 −0.0420293 −0.0210146 0.999779i \(-0.506690\pi\)
−0.0210146 + 0.999779i \(0.506690\pi\)
\(152\) 0 0
\(153\) 95.0045i 0.0502004i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1387.31i 0.705218i 0.935771 + 0.352609i \(0.114706\pi\)
−0.935771 + 0.352609i \(0.885294\pi\)
\(158\) 0 0
\(159\) −504.981 −0.251872
\(160\) 0 0
\(161\) −1038.31 −0.508263
\(162\) 0 0
\(163\) − 722.085i − 0.346982i −0.984835 0.173491i \(-0.944495\pi\)
0.984835 0.173491i \(-0.0555047\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1211.47i 0.561356i 0.959802 + 0.280678i \(0.0905592\pi\)
−0.959802 + 0.280678i \(0.909441\pi\)
\(168\) 0 0
\(169\) 860.654 0.391741
\(170\) 0 0
\(171\) −725.931 −0.324639
\(172\) 0 0
\(173\) 883.783i 0.388398i 0.980962 + 0.194199i \(0.0622107\pi\)
−0.980962 + 0.194199i \(0.937789\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1812.88i 0.769853i
\(178\) 0 0
\(179\) 2933.72 1.22501 0.612504 0.790468i \(-0.290162\pi\)
0.612504 + 0.790468i \(0.290162\pi\)
\(180\) 0 0
\(181\) 1729.22 0.710122 0.355061 0.934843i \(-0.384460\pi\)
0.355061 + 0.934843i \(0.384460\pi\)
\(182\) 0 0
\(183\) − 1087.71i − 0.439376i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 211.089i − 0.0825473i
\(188\) 0 0
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) 2069.63 0.784048 0.392024 0.919955i \(-0.371775\pi\)
0.392024 + 0.919955i \(0.371775\pi\)
\(192\) 0 0
\(193\) − 4587.33i − 1.71090i −0.517887 0.855449i \(-0.673281\pi\)
0.517887 0.855449i \(-0.326719\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3100.30i 1.12126i 0.828068 + 0.560628i \(0.189440\pi\)
−0.828068 + 0.560628i \(0.810560\pi\)
\(198\) 0 0
\(199\) 4885.27 1.74024 0.870120 0.492840i \(-0.164041\pi\)
0.870120 + 0.492840i \(0.164041\pi\)
\(200\) 0 0
\(201\) −134.567 −0.0472219
\(202\) 0 0
\(203\) − 1139.44i − 0.393956i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 1334.97i − 0.448246i
\(208\) 0 0
\(209\) 1612.93 0.533822
\(210\) 0 0
\(211\) 5327.41 1.73817 0.869085 0.494664i \(-0.164709\pi\)
0.869085 + 0.494664i \(0.164709\pi\)
\(212\) 0 0
\(213\) 2801.82i 0.901304i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 322.720i − 0.100957i
\(218\) 0 0
\(219\) −814.778 −0.251405
\(220\) 0 0
\(221\) −385.888 −0.117455
\(222\) 0 0
\(223\) − 2788.84i − 0.837466i −0.908109 0.418733i \(-0.862474\pi\)
0.908109 0.418733i \(-0.137526\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4200.49i 1.22818i 0.789236 + 0.614089i \(0.210477\pi\)
−0.789236 + 0.614089i \(0.789523\pi\)
\(228\) 0 0
\(229\) 2719.69 0.784814 0.392407 0.919792i \(-0.371643\pi\)
0.392407 + 0.919792i \(0.371643\pi\)
\(230\) 0 0
\(231\) 419.936 0.119609
\(232\) 0 0
\(233\) − 3695.17i − 1.03897i −0.854481 0.519483i \(-0.826125\pi\)
0.854481 0.519483i \(-0.173875\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 1072.64i − 0.293989i
\(238\) 0 0
\(239\) 2166.80 0.586437 0.293219 0.956045i \(-0.405274\pi\)
0.293219 + 0.956045i \(0.405274\pi\)
\(240\) 0 0
\(241\) −186.228 −0.0497761 −0.0248880 0.999690i \(-0.507923\pi\)
−0.0248880 + 0.999690i \(0.507923\pi\)
\(242\) 0 0
\(243\) − 243.000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 2948.57i − 0.759568i
\(248\) 0 0
\(249\) 1471.69 0.374557
\(250\) 0 0
\(251\) −1211.86 −0.304748 −0.152374 0.988323i \(-0.548692\pi\)
−0.152374 + 0.988323i \(0.548692\pi\)
\(252\) 0 0
\(253\) 2966.15i 0.737076i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1716.96i 0.416735i 0.978051 + 0.208368i \(0.0668151\pi\)
−0.978051 + 0.208368i \(0.933185\pi\)
\(258\) 0 0
\(259\) −2684.73 −0.644097
\(260\) 0 0
\(261\) 1465.00 0.347436
\(262\) 0 0
\(263\) 4564.91i 1.07028i 0.844762 + 0.535142i \(0.179742\pi\)
−0.844762 + 0.535142i \(0.820258\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 2579.92i − 0.591343i
\(268\) 0 0
\(269\) −2567.99 −0.582055 −0.291028 0.956715i \(-0.593997\pi\)
−0.291028 + 0.956715i \(0.593997\pi\)
\(270\) 0 0
\(271\) 2870.51 0.643435 0.321718 0.946836i \(-0.395740\pi\)
0.321718 + 0.946836i \(0.395740\pi\)
\(272\) 0 0
\(273\) − 767.677i − 0.170190i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6162.16i 1.33664i 0.743875 + 0.668319i \(0.232986\pi\)
−0.743875 + 0.668319i \(0.767014\pi\)
\(278\) 0 0
\(279\) 414.926 0.0890358
\(280\) 0 0
\(281\) −2231.84 −0.473810 −0.236905 0.971533i \(-0.576133\pi\)
−0.236905 + 0.971533i \(0.576133\pi\)
\(282\) 0 0
\(283\) − 856.119i − 0.179827i −0.995950 0.0899134i \(-0.971341\pi\)
0.995950 0.0899134i \(-0.0286590\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2417.95i 0.497306i
\(288\) 0 0
\(289\) 4801.57 0.977319
\(290\) 0 0
\(291\) −547.207 −0.110233
\(292\) 0 0
\(293\) − 5027.35i − 1.00239i −0.865334 0.501196i \(-0.832894\pi\)
0.865334 0.501196i \(-0.167106\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 539.917i 0.105485i
\(298\) 0 0
\(299\) 5422.37 1.04877
\(300\) 0 0
\(301\) 971.398 0.186015
\(302\) 0 0
\(303\) − 3617.74i − 0.685919i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8468.94i 1.57442i 0.616683 + 0.787212i \(0.288476\pi\)
−0.616683 + 0.787212i \(0.711524\pi\)
\(308\) 0 0
\(309\) 4118.96 0.758315
\(310\) 0 0
\(311\) 3578.29 0.652432 0.326216 0.945295i \(-0.394226\pi\)
0.326216 + 0.945295i \(0.394226\pi\)
\(312\) 0 0
\(313\) − 9131.00i − 1.64893i −0.565914 0.824464i \(-0.691476\pi\)
0.565914 0.824464i \(-0.308524\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2093.09i 0.370850i 0.982658 + 0.185425i \(0.0593662\pi\)
−0.982658 + 0.185425i \(0.940634\pi\)
\(318\) 0 0
\(319\) −3255.05 −0.571309
\(320\) 0 0
\(321\) 551.530 0.0958984
\(322\) 0 0
\(323\) − 851.441i − 0.146673i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1532.80i 0.259217i
\(328\) 0 0
\(329\) 396.699 0.0664763
\(330\) 0 0
\(331\) 7327.60 1.21680 0.608401 0.793630i \(-0.291811\pi\)
0.608401 + 0.793630i \(0.291811\pi\)
\(332\) 0 0
\(333\) − 3451.80i − 0.568040i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 3093.40i − 0.500024i −0.968243 0.250012i \(-0.919565\pi\)
0.968243 0.250012i \(-0.0804345\pi\)
\(338\) 0 0
\(339\) 1900.58 0.304499
\(340\) 0 0
\(341\) −921.917 −0.146406
\(342\) 0 0
\(343\) − 343.000i − 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1643.49i 0.254257i 0.991886 + 0.127129i \(0.0405761\pi\)
−0.991886 + 0.127129i \(0.959424\pi\)
\(348\) 0 0
\(349\) 4989.76 0.765317 0.382659 0.923890i \(-0.375009\pi\)
0.382659 + 0.923890i \(0.375009\pi\)
\(350\) 0 0
\(351\) 987.014 0.150094
\(352\) 0 0
\(353\) 8085.60i 1.21913i 0.792736 + 0.609565i \(0.208656\pi\)
−0.792736 + 0.609565i \(0.791344\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 221.677i − 0.0328639i
\(358\) 0 0
\(359\) 5666.37 0.833035 0.416518 0.909128i \(-0.363250\pi\)
0.416518 + 0.909128i \(0.363250\pi\)
\(360\) 0 0
\(361\) −353.130 −0.0514841
\(362\) 0 0
\(363\) 2793.37i 0.403895i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 8341.18i − 1.18639i −0.805058 0.593196i \(-0.797866\pi\)
0.805058 0.593196i \(-0.202134\pi\)
\(368\) 0 0
\(369\) −3108.79 −0.438583
\(370\) 0 0
\(371\) 1178.29 0.164889
\(372\) 0 0
\(373\) 692.645i 0.0961495i 0.998844 + 0.0480748i \(0.0153086\pi\)
−0.998844 + 0.0480748i \(0.984691\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5950.49i 0.812907i
\(378\) 0 0
\(379\) 3371.55 0.456952 0.228476 0.973550i \(-0.426626\pi\)
0.228476 + 0.973550i \(0.426626\pi\)
\(380\) 0 0
\(381\) 8198.85 1.10247
\(382\) 0 0
\(383\) − 2578.69i − 0.344034i −0.985094 0.172017i \(-0.944972\pi\)
0.985094 0.172017i \(-0.0550283\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1248.94i 0.164050i
\(388\) 0 0
\(389\) 8996.49 1.17260 0.586298 0.810095i \(-0.300585\pi\)
0.586298 + 0.810095i \(0.300585\pi\)
\(390\) 0 0
\(391\) 1565.78 0.202519
\(392\) 0 0
\(393\) − 4484.71i − 0.575633i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9233.08i 1.16724i 0.812026 + 0.583621i \(0.198365\pi\)
−0.812026 + 0.583621i \(0.801635\pi\)
\(398\) 0 0
\(399\) 1693.84 0.212526
\(400\) 0 0
\(401\) −5543.70 −0.690372 −0.345186 0.938534i \(-0.612184\pi\)
−0.345186 + 0.938534i \(0.612184\pi\)
\(402\) 0 0
\(403\) 1685.34i 0.208320i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7669.48i 0.934059i
\(408\) 0 0
\(409\) 3948.78 0.477395 0.238697 0.971094i \(-0.423280\pi\)
0.238697 + 0.971094i \(0.423280\pi\)
\(410\) 0 0
\(411\) 3796.19 0.455602
\(412\) 0 0
\(413\) − 4230.04i − 0.503987i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 6589.62i 0.773849i
\(418\) 0 0
\(419\) 7348.44 0.856790 0.428395 0.903592i \(-0.359079\pi\)
0.428395 + 0.903592i \(0.359079\pi\)
\(420\) 0 0
\(421\) −6555.05 −0.758844 −0.379422 0.925224i \(-0.623877\pi\)
−0.379422 + 0.925224i \(0.623877\pi\)
\(422\) 0 0
\(423\) 510.041i 0.0586266i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2537.99i 0.287639i
\(428\) 0 0
\(429\) −2193.03 −0.246807
\(430\) 0 0
\(431\) 1239.26 0.138498 0.0692492 0.997599i \(-0.477940\pi\)
0.0692492 + 0.997599i \(0.477940\pi\)
\(432\) 0 0
\(433\) 2158.52i 0.239565i 0.992800 + 0.119783i \(0.0382198\pi\)
−0.992800 + 0.119783i \(0.961780\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11964.2i 1.30966i
\(438\) 0 0
\(439\) −684.773 −0.0744475 −0.0372237 0.999307i \(-0.511851\pi\)
−0.0372237 + 0.999307i \(0.511851\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 7350.87i 0.788376i 0.919030 + 0.394188i \(0.128974\pi\)
−0.919030 + 0.394188i \(0.871026\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 1936.84i − 0.204943i
\(448\) 0 0
\(449\) −12893.8 −1.35522 −0.677612 0.735419i \(-0.736985\pi\)
−0.677612 + 0.735419i \(0.736985\pi\)
\(450\) 0 0
\(451\) 6907.36 0.721186
\(452\) 0 0
\(453\) 233.958i 0.0242656i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4235.78i 0.433569i 0.976219 + 0.216785i \(0.0695570\pi\)
−0.976219 + 0.216785i \(0.930443\pi\)
\(458\) 0 0
\(459\) 285.014 0.0289832
\(460\) 0 0
\(461\) −15353.1 −1.55112 −0.775561 0.631273i \(-0.782533\pi\)
−0.775561 + 0.631273i \(0.782533\pi\)
\(462\) 0 0
\(463\) − 13021.3i − 1.30703i −0.756916 0.653513i \(-0.773295\pi\)
0.756916 0.653513i \(-0.226705\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 2072.38i − 0.205350i −0.994715 0.102675i \(-0.967260\pi\)
0.994715 0.102675i \(-0.0327401\pi\)
\(468\) 0 0
\(469\) 313.989 0.0309140
\(470\) 0 0
\(471\) 4161.93 0.407158
\(472\) 0 0
\(473\) − 2775.00i − 0.269756i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1514.94i 0.145418i
\(478\) 0 0
\(479\) 10459.0 0.997675 0.498837 0.866696i \(-0.333761\pi\)
0.498837 + 0.866696i \(0.333761\pi\)
\(480\) 0 0
\(481\) 14020.5 1.32906
\(482\) 0 0
\(483\) 3114.93i 0.293446i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 7065.60i − 0.657439i −0.944428 0.328720i \(-0.893383\pi\)
0.944428 0.328720i \(-0.106617\pi\)
\(488\) 0 0
\(489\) −2166.25 −0.200330
\(490\) 0 0
\(491\) 1904.09 0.175011 0.0875057 0.996164i \(-0.472110\pi\)
0.0875057 + 0.996164i \(0.472110\pi\)
\(492\) 0 0
\(493\) 1718.29i 0.156973i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 6537.59i − 0.590042i
\(498\) 0 0
\(499\) 9795.02 0.878728 0.439364 0.898309i \(-0.355204\pi\)
0.439364 + 0.898309i \(0.355204\pi\)
\(500\) 0 0
\(501\) 3634.41 0.324099
\(502\) 0 0
\(503\) − 8554.22i − 0.758278i −0.925340 0.379139i \(-0.876220\pi\)
0.925340 0.379139i \(-0.123780\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 2581.96i − 0.226172i
\(508\) 0 0
\(509\) −10200.4 −0.888257 −0.444129 0.895963i \(-0.646487\pi\)
−0.444129 + 0.895963i \(0.646487\pi\)
\(510\) 0 0
\(511\) 1901.15 0.164583
\(512\) 0 0
\(513\) 2177.79i 0.187431i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 1133.25i − 0.0964030i
\(518\) 0 0
\(519\) 2651.35 0.224241
\(520\) 0 0
\(521\) −13236.4 −1.11304 −0.556522 0.830833i \(-0.687865\pi\)
−0.556522 + 0.830833i \(0.687865\pi\)
\(522\) 0 0
\(523\) 6256.94i 0.523130i 0.965186 + 0.261565i \(0.0842385\pi\)
−0.965186 + 0.261565i \(0.915761\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 486.665i 0.0402267i
\(528\) 0 0
\(529\) −9834.86 −0.808322
\(530\) 0 0
\(531\) 5438.63 0.444475
\(532\) 0 0
\(533\) − 12627.2i − 1.02616i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 8801.15i − 0.707258i
\(538\) 0 0
\(539\) −979.850 −0.0783026
\(540\) 0 0
\(541\) −5225.05 −0.415236 −0.207618 0.978210i \(-0.566571\pi\)
−0.207618 + 0.978210i \(0.566571\pi\)
\(542\) 0 0
\(543\) − 5187.66i − 0.409989i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13863.0i 1.08362i 0.840501 + 0.541810i \(0.182261\pi\)
−0.840501 + 0.541810i \(0.817739\pi\)
\(548\) 0 0
\(549\) −3263.13 −0.253674
\(550\) 0 0
\(551\) −13129.4 −1.01512
\(552\) 0 0
\(553\) 2502.83i 0.192461i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14624.8i 1.11252i 0.831008 + 0.556260i \(0.187764\pi\)
−0.831008 + 0.556260i \(0.812236\pi\)
\(558\) 0 0
\(559\) −5072.92 −0.383832
\(560\) 0 0
\(561\) −633.266 −0.0476587
\(562\) 0 0
\(563\) 13971.3i 1.04586i 0.852375 + 0.522931i \(0.175162\pi\)
−0.852375 + 0.522931i \(0.824838\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 567.000i 0.0419961i
\(568\) 0 0
\(569\) 18720.5 1.37927 0.689633 0.724159i \(-0.257772\pi\)
0.689633 + 0.724159i \(0.257772\pi\)
\(570\) 0 0
\(571\) 6065.05 0.444509 0.222254 0.974989i \(-0.428658\pi\)
0.222254 + 0.974989i \(0.428658\pi\)
\(572\) 0 0
\(573\) − 6208.89i − 0.452670i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 5144.33i − 0.371163i −0.982629 0.185582i \(-0.940583\pi\)
0.982629 0.185582i \(-0.0594169\pi\)
\(578\) 0 0
\(579\) −13762.0 −0.987787
\(580\) 0 0
\(581\) −3433.95 −0.245205
\(582\) 0 0
\(583\) − 3366.03i − 0.239119i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 12292.2i − 0.864313i −0.901799 0.432156i \(-0.857753\pi\)
0.901799 0.432156i \(-0.142247\pi\)
\(588\) 0 0
\(589\) −3718.61 −0.260141
\(590\) 0 0
\(591\) 9300.91 0.647358
\(592\) 0 0
\(593\) 28477.2i 1.97204i 0.166633 + 0.986019i \(0.446711\pi\)
−0.166633 + 0.986019i \(0.553289\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 14655.8i − 1.00473i
\(598\) 0 0
\(599\) −21061.1 −1.43662 −0.718308 0.695725i \(-0.755083\pi\)
−0.718308 + 0.695725i \(0.755083\pi\)
\(600\) 0 0
\(601\) 3865.61 0.262365 0.131183 0.991358i \(-0.458123\pi\)
0.131183 + 0.991358i \(0.458123\pi\)
\(602\) 0 0
\(603\) 403.700i 0.0272636i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 15750.3i 1.05319i 0.850117 + 0.526594i \(0.176531\pi\)
−0.850117 + 0.526594i \(0.823469\pi\)
\(608\) 0 0
\(609\) −3418.32 −0.227451
\(610\) 0 0
\(611\) −2071.68 −0.137170
\(612\) 0 0
\(613\) 2431.42i 0.160202i 0.996787 + 0.0801012i \(0.0255244\pi\)
−0.996787 + 0.0801012i \(0.974476\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12650.1i 0.825402i 0.910867 + 0.412701i \(0.135415\pi\)
−0.910867 + 0.412701i \(0.864585\pi\)
\(618\) 0 0
\(619\) −8081.54 −0.524757 −0.262379 0.964965i \(-0.584507\pi\)
−0.262379 + 0.964965i \(0.584507\pi\)
\(620\) 0 0
\(621\) −4004.92 −0.258795
\(622\) 0 0
\(623\) 6019.82i 0.387125i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 4838.80i − 0.308202i
\(628\) 0 0
\(629\) 4048.60 0.256643
\(630\) 0 0
\(631\) −6549.12 −0.413180 −0.206590 0.978428i \(-0.566237\pi\)
−0.206590 + 0.978428i \(0.566237\pi\)
\(632\) 0 0
\(633\) − 15982.2i − 1.00353i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1791.25i 0.111416i
\(638\) 0 0
\(639\) 8405.47 0.520368
\(640\) 0 0
\(641\) 12606.6 0.776804 0.388402 0.921490i \(-0.373027\pi\)
0.388402 + 0.921490i \(0.373027\pi\)
\(642\) 0 0
\(643\) 1350.32i 0.0828169i 0.999142 + 0.0414085i \(0.0131845\pi\)
−0.999142 + 0.0414085i \(0.986816\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8112.68i 0.492956i 0.969148 + 0.246478i \(0.0792732\pi\)
−0.969148 + 0.246478i \(0.920727\pi\)
\(648\) 0 0
\(649\) −12084.0 −0.730875
\(650\) 0 0
\(651\) −968.161 −0.0582876
\(652\) 0 0
\(653\) 22135.9i 1.32656i 0.748369 + 0.663282i \(0.230837\pi\)
−0.748369 + 0.663282i \(0.769163\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2444.33i 0.145149i
\(658\) 0 0
\(659\) −5810.81 −0.343486 −0.171743 0.985142i \(-0.554940\pi\)
−0.171743 + 0.985142i \(0.554940\pi\)
\(660\) 0 0
\(661\) 28036.4 1.64976 0.824878 0.565311i \(-0.191244\pi\)
0.824878 + 0.565311i \(0.191244\pi\)
\(662\) 0 0
\(663\) 1157.66i 0.0678129i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 24144.8i − 1.40163i
\(668\) 0 0
\(669\) −8366.53 −0.483511
\(670\) 0 0
\(671\) 7250.28 0.417130
\(672\) 0 0
\(673\) − 26742.4i − 1.53171i −0.643012 0.765856i \(-0.722316\pi\)
0.643012 0.765856i \(-0.277684\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6808.36i 0.386509i 0.981149 + 0.193254i \(0.0619043\pi\)
−0.981149 + 0.193254i \(0.938096\pi\)
\(678\) 0 0
\(679\) 1276.82 0.0721645
\(680\) 0 0
\(681\) 12601.5 0.709089
\(682\) 0 0
\(683\) 11679.6i 0.654333i 0.944967 + 0.327166i \(0.106094\pi\)
−0.944967 + 0.327166i \(0.893906\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 8159.08i − 0.453112i
\(688\) 0 0
\(689\) −6153.38 −0.340240
\(690\) 0 0
\(691\) 4375.33 0.240876 0.120438 0.992721i \(-0.461570\pi\)
0.120438 + 0.992721i \(0.461570\pi\)
\(692\) 0 0
\(693\) − 1259.81i − 0.0690564i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 3646.28i − 0.198153i
\(698\) 0 0
\(699\) −11085.5 −0.599847
\(700\) 0 0
\(701\) −19397.6 −1.04513 −0.522566 0.852599i \(-0.675025\pi\)
−0.522566 + 0.852599i \(0.675025\pi\)
\(702\) 0 0
\(703\) 30935.4i 1.65967i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8441.39i 0.449040i
\(708\) 0 0
\(709\) −24658.1 −1.30614 −0.653072 0.757296i \(-0.726520\pi\)
−0.653072 + 0.757296i \(0.726520\pi\)
\(710\) 0 0
\(711\) −3217.92 −0.169735
\(712\) 0 0
\(713\) − 6838.46i − 0.359190i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 6500.40i − 0.338580i
\(718\) 0 0
\(719\) 24003.3 1.24502 0.622512 0.782610i \(-0.286112\pi\)
0.622512 + 0.782610i \(0.286112\pi\)
\(720\) 0 0
\(721\) −9610.90 −0.496434
\(722\) 0 0
\(723\) 558.685i 0.0287382i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 31621.4i − 1.61317i −0.591121 0.806583i \(-0.701314\pi\)
0.591121 0.806583i \(-0.298686\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −1464.88 −0.0741182
\(732\) 0 0
\(733\) − 6032.39i − 0.303972i −0.988383 0.151986i \(-0.951433\pi\)
0.988383 0.151986i \(-0.0485668\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 896.974i − 0.0448310i
\(738\) 0 0
\(739\) −6739.75 −0.335488 −0.167744 0.985831i \(-0.553648\pi\)
−0.167744 + 0.985831i \(0.553648\pi\)
\(740\) 0 0
\(741\) −8845.72 −0.438537
\(742\) 0 0
\(743\) 27295.0i 1.34772i 0.738860 + 0.673859i \(0.235365\pi\)
−0.738860 + 0.673859i \(0.764635\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 4415.07i − 0.216250i
\(748\) 0 0
\(749\) −1286.90 −0.0627803
\(750\) 0 0
\(751\) 1444.72 0.0701980 0.0350990 0.999384i \(-0.488825\pi\)
0.0350990 + 0.999384i \(0.488825\pi\)
\(752\) 0 0
\(753\) 3635.58i 0.175947i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 35256.0i − 1.69273i −0.532600 0.846367i \(-0.678785\pi\)
0.532600 0.846367i \(-0.321215\pi\)
\(758\) 0 0
\(759\) 8898.45 0.425551
\(760\) 0 0
\(761\) −25120.4 −1.19660 −0.598300 0.801272i \(-0.704157\pi\)
−0.598300 + 0.801272i \(0.704157\pi\)
\(762\) 0 0
\(763\) − 3576.54i − 0.169698i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22090.5i 1.03995i
\(768\) 0 0
\(769\) 10086.4 0.472984 0.236492 0.971633i \(-0.424002\pi\)
0.236492 + 0.971633i \(0.424002\pi\)
\(770\) 0 0
\(771\) 5150.88 0.240602
\(772\) 0 0
\(773\) 15884.5i 0.739102i 0.929210 + 0.369551i \(0.120489\pi\)
−0.929210 + 0.369551i \(0.879511\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 8054.19i 0.371869i
\(778\) 0 0
\(779\) 27861.3 1.28143
\(780\) 0 0
\(781\) −18676.0 −0.855670
\(782\) 0 0
\(783\) − 4394.99i − 0.200593i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 12518.9i − 0.567026i −0.958968 0.283513i \(-0.908500\pi\)
0.958968 0.283513i \(-0.0914999\pi\)
\(788\) 0 0
\(789\) 13694.7 0.617929
\(790\) 0 0
\(791\) −4434.68 −0.199341
\(792\) 0 0
\(793\) − 13254.1i − 0.593528i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20432.7i 0.908109i 0.890974 + 0.454054i \(0.150023\pi\)
−0.890974 + 0.454054i \(0.849977\pi\)
\(798\) 0 0
\(799\) −598.225 −0.0264877
\(800\) 0 0
\(801\) −7739.76 −0.341412
\(802\) 0 0
\(803\) − 5431.02i − 0.238676i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 7703.96i 0.336050i
\(808\) 0 0
\(809\) −21835.3 −0.948933 −0.474467 0.880273i \(-0.657359\pi\)
−0.474467 + 0.880273i \(0.657359\pi\)
\(810\) 0 0
\(811\) 3246.73 0.140577 0.0702885 0.997527i \(-0.477608\pi\)
0.0702885 + 0.997527i \(0.477608\pi\)
\(812\) 0 0
\(813\) − 8611.53i − 0.371488i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 11193.1i − 0.479312i
\(818\) 0 0
\(819\) −2303.03 −0.0982594
\(820\) 0 0
\(821\) −30160.9 −1.28212 −0.641061 0.767490i \(-0.721506\pi\)
−0.641061 + 0.767490i \(0.721506\pi\)
\(822\) 0 0
\(823\) − 4496.24i − 0.190436i −0.995456 0.0952181i \(-0.969645\pi\)
0.995456 0.0952181i \(-0.0303548\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 31187.2i − 1.31135i −0.755044 0.655674i \(-0.772384\pi\)
0.755044 0.655674i \(-0.227616\pi\)
\(828\) 0 0
\(829\) −19563.4 −0.819622 −0.409811 0.912171i \(-0.634405\pi\)
−0.409811 + 0.912171i \(0.634405\pi\)
\(830\) 0 0
\(831\) 18486.5 0.771708
\(832\) 0 0
\(833\) 517.247i 0.0215145i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 1244.78i − 0.0514048i
\(838\) 0 0
\(839\) 1162.00 0.0478151 0.0239075 0.999714i \(-0.492389\pi\)
0.0239075 + 0.999714i \(0.492389\pi\)
\(840\) 0 0
\(841\) 2107.43 0.0864090
\(842\) 0 0
\(843\) 6695.53i 0.273554i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 6517.86i − 0.264411i
\(848\) 0 0
\(849\) −2568.36 −0.103823
\(850\) 0 0
\(851\) −56889.5 −2.29160
\(852\) 0 0
\(853\) − 37961.5i − 1.52377i −0.647712 0.761885i \(-0.724274\pi\)
0.647712 0.761885i \(-0.275726\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 26046.8i − 1.03820i −0.854712 0.519102i \(-0.826266\pi\)
0.854712 0.519102i \(-0.173734\pi\)
\(858\) 0 0
\(859\) −8914.15 −0.354071 −0.177035 0.984204i \(-0.556651\pi\)
−0.177035 + 0.984204i \(0.556651\pi\)
\(860\) 0 0
\(861\) 7253.84 0.287120
\(862\) 0 0
\(863\) − 20101.9i − 0.792904i −0.918055 0.396452i \(-0.870241\pi\)
0.918055 0.396452i \(-0.129759\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 14404.7i − 0.564256i
\(868\) 0 0
\(869\) 7149.84 0.279104
\(870\) 0 0
\(871\) −1639.74 −0.0637894
\(872\) 0 0
\(873\) 1641.62i 0.0636431i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 7566.36i − 0.291332i −0.989334 0.145666i \(-0.953468\pi\)
0.989334 0.145666i \(-0.0465324\pi\)
\(878\) 0 0
\(879\) −15082.0 −0.578731
\(880\) 0 0
\(881\) −39005.3 −1.49163 −0.745813 0.666155i \(-0.767939\pi\)
−0.745813 + 0.666155i \(0.767939\pi\)
\(882\) 0 0
\(883\) 3484.16i 0.132787i 0.997794 + 0.0663937i \(0.0211493\pi\)
−0.997794 + 0.0663937i \(0.978851\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7471.48i 0.282827i 0.989951 + 0.141414i \(0.0451648\pi\)
−0.989951 + 0.141414i \(0.954835\pi\)
\(888\) 0 0
\(889\) −19130.7 −0.721734
\(890\) 0 0
\(891\) 1619.75 0.0609020
\(892\) 0 0
\(893\) − 4571.05i − 0.171292i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 16267.1i − 0.605510i
\(898\) 0 0
\(899\) 7504.50 0.278409
\(900\) 0 0
\(901\) −1776.87 −0.0657005
\(902\) 0 0
\(903\) − 2914.19i − 0.107396i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 37334.6i − 1.36679i −0.730050 0.683394i \(-0.760503\pi\)
0.730050 0.683394i \(-0.239497\pi\)
\(908\) 0 0
\(909\) −10853.2 −0.396016
\(910\) 0 0
\(911\) −18545.6 −0.674473 −0.337236 0.941420i \(-0.609492\pi\)
−0.337236 + 0.941420i \(0.609492\pi\)
\(912\) 0 0
\(913\) 9809.77i 0.355592i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10464.3i 0.376840i
\(918\) 0 0
\(919\) 14692.9 0.527392 0.263696 0.964606i \(-0.415058\pi\)
0.263696 + 0.964606i \(0.415058\pi\)
\(920\) 0 0
\(921\) 25406.8 0.908994
\(922\) 0 0
\(923\) 34141.2i 1.21752i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 12356.9i − 0.437813i
\(928\) 0 0
\(929\) −37775.8 −1.33410 −0.667052 0.745011i \(-0.732444\pi\)
−0.667052 + 0.745011i \(0.732444\pi\)
\(930\) 0 0
\(931\) −3952.29 −0.139131
\(932\) 0 0
\(933\) − 10734.9i − 0.376682i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 7701.47i − 0.268512i −0.990947 0.134256i \(-0.957135\pi\)
0.990947 0.134256i \(-0.0428645\pi\)
\(938\) 0 0
\(939\) −27393.0 −0.952010
\(940\) 0 0
\(941\) 3370.73 0.116772 0.0583861 0.998294i \(-0.481405\pi\)
0.0583861 + 0.998294i \(0.481405\pi\)
\(942\) 0 0
\(943\) 51236.4i 1.76934i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 37917.4i − 1.30111i −0.759459 0.650555i \(-0.774536\pi\)
0.759459 0.650555i \(-0.225464\pi\)
\(948\) 0 0
\(949\) −9928.36 −0.339608
\(950\) 0 0
\(951\) 6279.26 0.214111
\(952\) 0 0
\(953\) 39134.6i 1.33021i 0.746748 + 0.665107i \(0.231614\pi\)
−0.746748 + 0.665107i \(0.768386\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 9765.14i 0.329845i
\(958\) 0 0
\(959\) −8857.78 −0.298261
\(960\) 0 0
\(961\) −27665.5 −0.928654
\(962\) 0 0
\(963\) − 1654.59i − 0.0553670i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 3073.70i − 0.102217i −0.998693 0.0511084i \(-0.983725\pi\)
0.998693 0.0511084i \(-0.0162754\pi\)
\(968\) 0 0
\(969\) −2554.32 −0.0846818
\(970\) 0 0
\(971\) 4162.99 0.137587 0.0687934 0.997631i \(-0.478085\pi\)
0.0687934 + 0.997631i \(0.478085\pi\)
\(972\) 0 0
\(973\) − 15375.8i − 0.506603i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 20800.0i − 0.681116i −0.940224 0.340558i \(-0.889384\pi\)
0.940224 0.340558i \(-0.110616\pi\)
\(978\) 0 0
\(979\) 17196.8 0.561403
\(980\) 0 0
\(981\) 4598.40 0.149659
\(982\) 0 0
\(983\) 60972.1i 1.97834i 0.146777 + 0.989170i \(0.453110\pi\)
−0.146777 + 0.989170i \(0.546890\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 1190.10i − 0.0383801i
\(988\) 0 0
\(989\) 20583.9 0.661811
\(990\) 0 0
\(991\) 37755.6 1.21024 0.605119 0.796135i \(-0.293126\pi\)
0.605119 + 0.796135i \(0.293126\pi\)
\(992\) 0 0
\(993\) − 21982.8i − 0.702520i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 32529.9i 1.03333i 0.856187 + 0.516666i \(0.172827\pi\)
−0.856187 + 0.516666i \(0.827173\pi\)
\(998\) 0 0
\(999\) −10355.4 −0.327958
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.4.k.q.1849.2 6
5.2 odd 4 2100.4.a.w.1.2 3
5.3 odd 4 2100.4.a.ba.1.2 yes 3
5.4 even 2 inner 2100.4.k.q.1849.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2100.4.a.w.1.2 3 5.2 odd 4
2100.4.a.ba.1.2 yes 3 5.3 odd 4
2100.4.k.q.1849.2 6 1.1 even 1 trivial
2100.4.k.q.1849.5 6 5.4 even 2 inner