Properties

Label 2106.2.e.bg.703.2
Level $2106$
Weight $2$
Character 2106.703
Analytic conductor $16.816$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2106,2,Mod(703,2106)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2106, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2106.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2106 = 2 \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2106.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8164946657\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 703.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2106.703
Dual form 2106.2.e.bg.1405.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(0.366025 + 0.633975i) q^{5} +(1.86603 - 3.23205i) q^{7} -1.00000 q^{8} +0.732051 q^{10} +(-1.86603 + 3.23205i) q^{11} +(0.500000 + 0.866025i) q^{13} +(-1.86603 - 3.23205i) q^{14} +(-0.500000 + 0.866025i) q^{16} +3.46410 q^{17} +6.46410 q^{19} +(0.366025 - 0.633975i) q^{20} +(1.86603 + 3.23205i) q^{22} +(2.09808 + 3.63397i) q^{23} +(2.23205 - 3.86603i) q^{25} +1.00000 q^{26} -3.73205 q^{28} +(1.23205 - 2.13397i) q^{29} +(2.73205 + 4.73205i) q^{31} +(0.500000 + 0.866025i) q^{32} +(1.73205 - 3.00000i) q^{34} +2.73205 q^{35} -9.46410 q^{37} +(3.23205 - 5.59808i) q^{38} +(-0.366025 - 0.633975i) q^{40} +(-3.63397 - 6.29423i) q^{41} +(4.46410 - 7.73205i) q^{43} +3.73205 q^{44} +4.19615 q^{46} +(-2.26795 + 3.92820i) q^{47} +(-3.46410 - 6.00000i) q^{49} +(-2.23205 - 3.86603i) q^{50} +(0.500000 - 0.866025i) q^{52} +12.4641 q^{53} -2.73205 q^{55} +(-1.86603 + 3.23205i) q^{56} +(-1.23205 - 2.13397i) q^{58} +(-2.86603 - 4.96410i) q^{59} +(0.598076 - 1.03590i) q^{61} +5.46410 q^{62} +1.00000 q^{64} +(-0.366025 + 0.633975i) q^{65} +(-7.19615 - 12.4641i) q^{67} +(-1.73205 - 3.00000i) q^{68} +(1.36603 - 2.36603i) q^{70} +8.46410 q^{71} +5.46410 q^{73} +(-4.73205 + 8.19615i) q^{74} +(-3.23205 - 5.59808i) q^{76} +(6.96410 + 12.0622i) q^{77} +(-2.09808 + 3.63397i) q^{79} -0.732051 q^{80} -7.26795 q^{82} +(0.866025 - 1.50000i) q^{83} +(1.26795 + 2.19615i) q^{85} +(-4.46410 - 7.73205i) q^{86} +(1.86603 - 3.23205i) q^{88} +8.19615 q^{89} +3.73205 q^{91} +(2.09808 - 3.63397i) q^{92} +(2.26795 + 3.92820i) q^{94} +(2.36603 + 4.09808i) q^{95} +(-3.36603 + 5.83013i) q^{97} -6.92820 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} + 4 q^{7} - 4 q^{8} - 4 q^{10} - 4 q^{11} + 2 q^{13} - 4 q^{14} - 2 q^{16} + 12 q^{19} - 2 q^{20} + 4 q^{22} - 2 q^{23} + 2 q^{25} + 4 q^{26} - 8 q^{28} - 2 q^{29} + 4 q^{31}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2106\mathbb{Z}\right)^\times\).

\(n\) \(1379\) \(1783\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.366025 + 0.633975i 0.163692 + 0.283522i 0.936190 0.351495i \(-0.114326\pi\)
−0.772498 + 0.635017i \(0.780993\pi\)
\(6\) 0 0
\(7\) 1.86603 3.23205i 0.705291 1.22160i −0.261295 0.965259i \(-0.584150\pi\)
0.966586 0.256341i \(-0.0825171\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0.732051 0.231495
\(11\) −1.86603 + 3.23205i −0.562628 + 0.974500i 0.434638 + 0.900605i \(0.356876\pi\)
−0.997266 + 0.0738948i \(0.976457\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i
\(14\) −1.86603 3.23205i −0.498716 0.863802i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.46410 0.840168 0.420084 0.907485i \(-0.362001\pi\)
0.420084 + 0.907485i \(0.362001\pi\)
\(18\) 0 0
\(19\) 6.46410 1.48297 0.741483 0.670971i \(-0.234123\pi\)
0.741483 + 0.670971i \(0.234123\pi\)
\(20\) 0.366025 0.633975i 0.0818458 0.141761i
\(21\) 0 0
\(22\) 1.86603 + 3.23205i 0.397838 + 0.689076i
\(23\) 2.09808 + 3.63397i 0.437479 + 0.757736i 0.997494 0.0707462i \(-0.0225381\pi\)
−0.560015 + 0.828482i \(0.689205\pi\)
\(24\) 0 0
\(25\) 2.23205 3.86603i 0.446410 0.773205i
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) −3.73205 −0.705291
\(29\) 1.23205 2.13397i 0.228786 0.396269i −0.728663 0.684873i \(-0.759858\pi\)
0.957449 + 0.288604i \(0.0931910\pi\)
\(30\) 0 0
\(31\) 2.73205 + 4.73205i 0.490691 + 0.849901i 0.999943 0.0107162i \(-0.00341113\pi\)
−0.509252 + 0.860618i \(0.670078\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 1.73205 3.00000i 0.297044 0.514496i
\(35\) 2.73205 0.461801
\(36\) 0 0
\(37\) −9.46410 −1.55589 −0.777944 0.628333i \(-0.783737\pi\)
−0.777944 + 0.628333i \(0.783737\pi\)
\(38\) 3.23205 5.59808i 0.524308 0.908128i
\(39\) 0 0
\(40\) −0.366025 0.633975i −0.0578737 0.100240i
\(41\) −3.63397 6.29423i −0.567531 0.982993i −0.996809 0.0798208i \(-0.974565\pi\)
0.429278 0.903173i \(-0.358768\pi\)
\(42\) 0 0
\(43\) 4.46410 7.73205i 0.680769 1.17913i −0.293977 0.955812i \(-0.594979\pi\)
0.974746 0.223314i \(-0.0716876\pi\)
\(44\) 3.73205 0.562628
\(45\) 0 0
\(46\) 4.19615 0.618689
\(47\) −2.26795 + 3.92820i −0.330814 + 0.572987i −0.982672 0.185354i \(-0.940657\pi\)
0.651857 + 0.758342i \(0.273990\pi\)
\(48\) 0 0
\(49\) −3.46410 6.00000i −0.494872 0.857143i
\(50\) −2.23205 3.86603i −0.315660 0.546739i
\(51\) 0 0
\(52\) 0.500000 0.866025i 0.0693375 0.120096i
\(53\) 12.4641 1.71208 0.856038 0.516913i \(-0.172919\pi\)
0.856038 + 0.516913i \(0.172919\pi\)
\(54\) 0 0
\(55\) −2.73205 −0.368390
\(56\) −1.86603 + 3.23205i −0.249358 + 0.431901i
\(57\) 0 0
\(58\) −1.23205 2.13397i −0.161776 0.280205i
\(59\) −2.86603 4.96410i −0.373125 0.646271i 0.616920 0.787026i \(-0.288380\pi\)
−0.990044 + 0.140755i \(0.955047\pi\)
\(60\) 0 0
\(61\) 0.598076 1.03590i 0.0765758 0.132633i −0.825195 0.564848i \(-0.808935\pi\)
0.901770 + 0.432215i \(0.142268\pi\)
\(62\) 5.46410 0.693942
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.366025 + 0.633975i −0.0453999 + 0.0786349i
\(66\) 0 0
\(67\) −7.19615 12.4641i −0.879150 1.52273i −0.852275 0.523094i \(-0.824778\pi\)
−0.0268747 0.999639i \(-0.508556\pi\)
\(68\) −1.73205 3.00000i −0.210042 0.363803i
\(69\) 0 0
\(70\) 1.36603 2.36603i 0.163271 0.282794i
\(71\) 8.46410 1.00450 0.502252 0.864721i \(-0.332505\pi\)
0.502252 + 0.864721i \(0.332505\pi\)
\(72\) 0 0
\(73\) 5.46410 0.639525 0.319762 0.947498i \(-0.396397\pi\)
0.319762 + 0.947498i \(0.396397\pi\)
\(74\) −4.73205 + 8.19615i −0.550090 + 0.952783i
\(75\) 0 0
\(76\) −3.23205 5.59808i −0.370742 0.642143i
\(77\) 6.96410 + 12.0622i 0.793633 + 1.37461i
\(78\) 0 0
\(79\) −2.09808 + 3.63397i −0.236052 + 0.408854i −0.959578 0.281443i \(-0.909187\pi\)
0.723526 + 0.690297i \(0.242520\pi\)
\(80\) −0.732051 −0.0818458
\(81\) 0 0
\(82\) −7.26795 −0.802611
\(83\) 0.866025 1.50000i 0.0950586 0.164646i −0.814574 0.580059i \(-0.803029\pi\)
0.909633 + 0.415413i \(0.136363\pi\)
\(84\) 0 0
\(85\) 1.26795 + 2.19615i 0.137528 + 0.238206i
\(86\) −4.46410 7.73205i −0.481376 0.833768i
\(87\) 0 0
\(88\) 1.86603 3.23205i 0.198919 0.344538i
\(89\) 8.19615 0.868790 0.434395 0.900722i \(-0.356962\pi\)
0.434395 + 0.900722i \(0.356962\pi\)
\(90\) 0 0
\(91\) 3.73205 0.391225
\(92\) 2.09808 3.63397i 0.218740 0.378868i
\(93\) 0 0
\(94\) 2.26795 + 3.92820i 0.233921 + 0.405163i
\(95\) 2.36603 + 4.09808i 0.242749 + 0.420454i
\(96\) 0 0
\(97\) −3.36603 + 5.83013i −0.341768 + 0.591960i −0.984761 0.173912i \(-0.944359\pi\)
0.642993 + 0.765872i \(0.277692\pi\)
\(98\) −6.92820 −0.699854
\(99\) 0 0
\(100\) −4.46410 −0.446410
\(101\) −7.23205 + 12.5263i −0.719616 + 1.24641i 0.241536 + 0.970392i \(0.422349\pi\)
−0.961152 + 0.276020i \(0.910985\pi\)
\(102\) 0 0
\(103\) −8.46410 14.6603i −0.833993 1.44452i −0.894848 0.446371i \(-0.852716\pi\)
0.0608552 0.998147i \(-0.480617\pi\)
\(104\) −0.500000 0.866025i −0.0490290 0.0849208i
\(105\) 0 0
\(106\) 6.23205 10.7942i 0.605310 1.04843i
\(107\) −13.6603 −1.32059 −0.660293 0.751008i \(-0.729568\pi\)
−0.660293 + 0.751008i \(0.729568\pi\)
\(108\) 0 0
\(109\) 6.19615 0.593484 0.296742 0.954958i \(-0.404100\pi\)
0.296742 + 0.954958i \(0.404100\pi\)
\(110\) −1.36603 + 2.36603i −0.130245 + 0.225592i
\(111\) 0 0
\(112\) 1.86603 + 3.23205i 0.176323 + 0.305400i
\(113\) 4.86603 + 8.42820i 0.457757 + 0.792859i 0.998842 0.0481093i \(-0.0153196\pi\)
−0.541085 + 0.840968i \(0.681986\pi\)
\(114\) 0 0
\(115\) −1.53590 + 2.66025i −0.143223 + 0.248070i
\(116\) −2.46410 −0.228786
\(117\) 0 0
\(118\) −5.73205 −0.527678
\(119\) 6.46410 11.1962i 0.592563 1.02635i
\(120\) 0 0
\(121\) −1.46410 2.53590i −0.133100 0.230536i
\(122\) −0.598076 1.03590i −0.0541473 0.0937858i
\(123\) 0 0
\(124\) 2.73205 4.73205i 0.245345 0.424951i
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) 16.9282 1.50214 0.751068 0.660225i \(-0.229539\pi\)
0.751068 + 0.660225i \(0.229539\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 0.366025 + 0.633975i 0.0321026 + 0.0556033i
\(131\) −8.46410 14.6603i −0.739512 1.28087i −0.952715 0.303864i \(-0.901723\pi\)
0.213203 0.977008i \(-0.431610\pi\)
\(132\) 0 0
\(133\) 12.0622 20.8923i 1.04592 1.81159i
\(134\) −14.3923 −1.24331
\(135\) 0 0
\(136\) −3.46410 −0.297044
\(137\) −8.66025 + 15.0000i −0.739895 + 1.28154i 0.212647 + 0.977129i \(0.431792\pi\)
−0.952542 + 0.304407i \(0.901542\pi\)
\(138\) 0 0
\(139\) −3.90192 6.75833i −0.330957 0.573234i 0.651743 0.758440i \(-0.274038\pi\)
−0.982700 + 0.185206i \(0.940705\pi\)
\(140\) −1.36603 2.36603i −0.115450 0.199966i
\(141\) 0 0
\(142\) 4.23205 7.33013i 0.355146 0.615131i
\(143\) −3.73205 −0.312090
\(144\) 0 0
\(145\) 1.80385 0.149801
\(146\) 2.73205 4.73205i 0.226106 0.391627i
\(147\) 0 0
\(148\) 4.73205 + 8.19615i 0.388972 + 0.673720i
\(149\) −0.169873 0.294229i −0.0139165 0.0241041i 0.858983 0.512004i \(-0.171097\pi\)
−0.872900 + 0.487900i \(0.837763\pi\)
\(150\) 0 0
\(151\) 4.79423 8.30385i 0.390149 0.675758i −0.602320 0.798255i \(-0.705757\pi\)
0.992469 + 0.122497i \(0.0390902\pi\)
\(152\) −6.46410 −0.524308
\(153\) 0 0
\(154\) 13.9282 1.12237
\(155\) −2.00000 + 3.46410i −0.160644 + 0.278243i
\(156\) 0 0
\(157\) 4.13397 + 7.16025i 0.329927 + 0.571450i 0.982497 0.186278i \(-0.0596425\pi\)
−0.652570 + 0.757728i \(0.726309\pi\)
\(158\) 2.09808 + 3.63397i 0.166914 + 0.289103i
\(159\) 0 0
\(160\) −0.366025 + 0.633975i −0.0289368 + 0.0501201i
\(161\) 15.6603 1.23420
\(162\) 0 0
\(163\) 13.3205 1.04334 0.521671 0.853147i \(-0.325309\pi\)
0.521671 + 0.853147i \(0.325309\pi\)
\(164\) −3.63397 + 6.29423i −0.283766 + 0.491497i
\(165\) 0 0
\(166\) −0.866025 1.50000i −0.0672166 0.116423i
\(167\) 3.69615 + 6.40192i 0.286017 + 0.495396i 0.972855 0.231414i \(-0.0743353\pi\)
−0.686838 + 0.726810i \(0.741002\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 2.53590 0.194495
\(171\) 0 0
\(172\) −8.92820 −0.680769
\(173\) 11.5000 19.9186i 0.874329 1.51438i 0.0168528 0.999858i \(-0.494635\pi\)
0.857476 0.514524i \(-0.172031\pi\)
\(174\) 0 0
\(175\) −8.33013 14.4282i −0.629698 1.09067i
\(176\) −1.86603 3.23205i −0.140657 0.243625i
\(177\) 0 0
\(178\) 4.09808 7.09808i 0.307164 0.532023i
\(179\) 6.92820 0.517838 0.258919 0.965899i \(-0.416634\pi\)
0.258919 + 0.965899i \(0.416634\pi\)
\(180\) 0 0
\(181\) −15.5885 −1.15868 −0.579340 0.815086i \(-0.696690\pi\)
−0.579340 + 0.815086i \(0.696690\pi\)
\(182\) 1.86603 3.23205i 0.138319 0.239576i
\(183\) 0 0
\(184\) −2.09808 3.63397i −0.154672 0.267900i
\(185\) −3.46410 6.00000i −0.254686 0.441129i
\(186\) 0 0
\(187\) −6.46410 + 11.1962i −0.472702 + 0.818744i
\(188\) 4.53590 0.330814
\(189\) 0 0
\(190\) 4.73205 0.343299
\(191\) 2.46410 4.26795i 0.178296 0.308818i −0.763001 0.646397i \(-0.776275\pi\)
0.941297 + 0.337579i \(0.109608\pi\)
\(192\) 0 0
\(193\) 0.0980762 + 0.169873i 0.00705968 + 0.0122277i 0.869534 0.493874i \(-0.164419\pi\)
−0.862474 + 0.506101i \(0.831086\pi\)
\(194\) 3.36603 + 5.83013i 0.241667 + 0.418579i
\(195\) 0 0
\(196\) −3.46410 + 6.00000i −0.247436 + 0.428571i
\(197\) −10.3923 −0.740421 −0.370211 0.928948i \(-0.620714\pi\)
−0.370211 + 0.928948i \(0.620714\pi\)
\(198\) 0 0
\(199\) 0.392305 0.0278098 0.0139049 0.999903i \(-0.495574\pi\)
0.0139049 + 0.999903i \(0.495574\pi\)
\(200\) −2.23205 + 3.86603i −0.157830 + 0.273369i
\(201\) 0 0
\(202\) 7.23205 + 12.5263i 0.508845 + 0.881346i
\(203\) −4.59808 7.96410i −0.322722 0.558970i
\(204\) 0 0
\(205\) 2.66025 4.60770i 0.185800 0.321815i
\(206\) −16.9282 −1.17944
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) −12.0622 + 20.8923i −0.834358 + 1.44515i
\(210\) 0 0
\(211\) −4.16987 7.22243i −0.287066 0.497213i 0.686042 0.727562i \(-0.259347\pi\)
−0.973108 + 0.230349i \(0.926013\pi\)
\(212\) −6.23205 10.7942i −0.428019 0.741351i
\(213\) 0 0
\(214\) −6.83013 + 11.8301i −0.466898 + 0.808691i
\(215\) 6.53590 0.445745
\(216\) 0 0
\(217\) 20.3923 1.38432
\(218\) 3.09808 5.36603i 0.209828 0.363433i
\(219\) 0 0
\(220\) 1.36603 + 2.36603i 0.0920974 + 0.159517i
\(221\) 1.73205 + 3.00000i 0.116510 + 0.201802i
\(222\) 0 0
\(223\) −8.59808 + 14.8923i −0.575770 + 0.997262i 0.420188 + 0.907437i \(0.361964\pi\)
−0.995958 + 0.0898253i \(0.971369\pi\)
\(224\) 3.73205 0.249358
\(225\) 0 0
\(226\) 9.73205 0.647366
\(227\) −4.33013 + 7.50000i −0.287401 + 0.497792i −0.973189 0.230009i \(-0.926124\pi\)
0.685788 + 0.727801i \(0.259458\pi\)
\(228\) 0 0
\(229\) 1.73205 + 3.00000i 0.114457 + 0.198246i 0.917563 0.397591i \(-0.130154\pi\)
−0.803105 + 0.595837i \(0.796820\pi\)
\(230\) 1.53590 + 2.66025i 0.101274 + 0.175412i
\(231\) 0 0
\(232\) −1.23205 + 2.13397i −0.0808881 + 0.140102i
\(233\) −4.80385 −0.314711 −0.157355 0.987542i \(-0.550297\pi\)
−0.157355 + 0.987542i \(0.550297\pi\)
\(234\) 0 0
\(235\) −3.32051 −0.216606
\(236\) −2.86603 + 4.96410i −0.186562 + 0.323135i
\(237\) 0 0
\(238\) −6.46410 11.1962i −0.419005 0.725739i
\(239\) 2.42820 + 4.20577i 0.157067 + 0.272049i 0.933810 0.357770i \(-0.116463\pi\)
−0.776742 + 0.629818i \(0.783129\pi\)
\(240\) 0 0
\(241\) 2.36603 4.09808i 0.152409 0.263980i −0.779704 0.626149i \(-0.784630\pi\)
0.932113 + 0.362169i \(0.117964\pi\)
\(242\) −2.92820 −0.188232
\(243\) 0 0
\(244\) −1.19615 −0.0765758
\(245\) 2.53590 4.39230i 0.162013 0.280614i
\(246\) 0 0
\(247\) 3.23205 + 5.59808i 0.205650 + 0.356197i
\(248\) −2.73205 4.73205i −0.173485 0.300486i
\(249\) 0 0
\(250\) 3.46410 6.00000i 0.219089 0.379473i
\(251\) 2.19615 0.138620 0.0693100 0.997595i \(-0.477920\pi\)
0.0693100 + 0.997595i \(0.477920\pi\)
\(252\) 0 0
\(253\) −15.6603 −0.984552
\(254\) 8.46410 14.6603i 0.531085 0.919866i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 14.2583 + 24.6962i 0.889410 + 1.54050i 0.840574 + 0.541697i \(0.182218\pi\)
0.0488363 + 0.998807i \(0.484449\pi\)
\(258\) 0 0
\(259\) −17.6603 + 30.5885i −1.09735 + 1.90067i
\(260\) 0.732051 0.0453999
\(261\) 0 0
\(262\) −16.9282 −1.04583
\(263\) −6.16987 + 10.6865i −0.380451 + 0.658960i −0.991127 0.132921i \(-0.957564\pi\)
0.610676 + 0.791881i \(0.290898\pi\)
\(264\) 0 0
\(265\) 4.56218 + 7.90192i 0.280252 + 0.485411i
\(266\) −12.0622 20.8923i −0.739580 1.28099i
\(267\) 0 0
\(268\) −7.19615 + 12.4641i −0.439575 + 0.761366i
\(269\) −21.4641 −1.30869 −0.654345 0.756196i \(-0.727055\pi\)
−0.654345 + 0.756196i \(0.727055\pi\)
\(270\) 0 0
\(271\) 15.1962 0.923101 0.461550 0.887114i \(-0.347293\pi\)
0.461550 + 0.887114i \(0.347293\pi\)
\(272\) −1.73205 + 3.00000i −0.105021 + 0.181902i
\(273\) 0 0
\(274\) 8.66025 + 15.0000i 0.523185 + 0.906183i
\(275\) 8.33013 + 14.4282i 0.502326 + 0.870053i
\(276\) 0 0
\(277\) 0.401924 0.696152i 0.0241493 0.0418277i −0.853698 0.520768i \(-0.825646\pi\)
0.877847 + 0.478940i \(0.158979\pi\)
\(278\) −7.80385 −0.468044
\(279\) 0 0
\(280\) −2.73205 −0.163271
\(281\) −9.19615 + 15.9282i −0.548596 + 0.950197i 0.449775 + 0.893142i \(0.351504\pi\)
−0.998371 + 0.0570548i \(0.981829\pi\)
\(282\) 0 0
\(283\) 1.92820 + 3.33975i 0.114620 + 0.198527i 0.917628 0.397441i \(-0.130102\pi\)
−0.803008 + 0.595968i \(0.796768\pi\)
\(284\) −4.23205 7.33013i −0.251126 0.434963i
\(285\) 0 0
\(286\) −1.86603 + 3.23205i −0.110340 + 0.191115i
\(287\) −27.1244 −1.60110
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) 0.901924 1.56218i 0.0529628 0.0917342i
\(291\) 0 0
\(292\) −2.73205 4.73205i −0.159881 0.276922i
\(293\) −14.3923 24.9282i −0.840807 1.45632i −0.889213 0.457493i \(-0.848747\pi\)
0.0484056 0.998828i \(-0.484586\pi\)
\(294\) 0 0
\(295\) 2.09808 3.63397i 0.122155 0.211578i
\(296\) 9.46410 0.550090
\(297\) 0 0
\(298\) −0.339746 −0.0196810
\(299\) −2.09808 + 3.63397i −0.121335 + 0.210158i
\(300\) 0 0
\(301\) −16.6603 28.8564i −0.960281 1.66326i
\(302\) −4.79423 8.30385i −0.275877 0.477833i
\(303\) 0 0
\(304\) −3.23205 + 5.59808i −0.185371 + 0.321072i
\(305\) 0.875644 0.0501392
\(306\) 0 0
\(307\) −25.7128 −1.46751 −0.733754 0.679415i \(-0.762233\pi\)
−0.733754 + 0.679415i \(0.762233\pi\)
\(308\) 6.96410 12.0622i 0.396817 0.687306i
\(309\) 0 0
\(310\) 2.00000 + 3.46410i 0.113592 + 0.196748i
\(311\) −12.1244 21.0000i −0.687509 1.19080i −0.972641 0.232313i \(-0.925371\pi\)
0.285132 0.958488i \(-0.407963\pi\)
\(312\) 0 0
\(313\) −9.89230 + 17.1340i −0.559146 + 0.968470i 0.438422 + 0.898769i \(0.355538\pi\)
−0.997568 + 0.0697002i \(0.977796\pi\)
\(314\) 8.26795 0.466587
\(315\) 0 0
\(316\) 4.19615 0.236052
\(317\) −11.0263 + 19.0981i −0.619298 + 1.07265i 0.370317 + 0.928906i \(0.379249\pi\)
−0.989614 + 0.143749i \(0.954084\pi\)
\(318\) 0 0
\(319\) 4.59808 + 7.96410i 0.257443 + 0.445904i
\(320\) 0.366025 + 0.633975i 0.0204614 + 0.0354403i
\(321\) 0 0
\(322\) 7.83013 13.5622i 0.436356 0.755791i
\(323\) 22.3923 1.24594
\(324\) 0 0
\(325\) 4.46410 0.247624
\(326\) 6.66025 11.5359i 0.368877 0.638914i
\(327\) 0 0
\(328\) 3.63397 + 6.29423i 0.200653 + 0.347541i
\(329\) 8.46410 + 14.6603i 0.466641 + 0.808246i
\(330\) 0 0
\(331\) −0.660254 + 1.14359i −0.0362908 + 0.0628576i −0.883600 0.468242i \(-0.844888\pi\)
0.847310 + 0.531099i \(0.178221\pi\)
\(332\) −1.73205 −0.0950586
\(333\) 0 0
\(334\) 7.39230 0.404489
\(335\) 5.26795 9.12436i 0.287819 0.498517i
\(336\) 0 0
\(337\) 5.46410 + 9.46410i 0.297649 + 0.515542i 0.975598 0.219567i \(-0.0704643\pi\)
−0.677949 + 0.735109i \(0.737131\pi\)
\(338\) 0.500000 + 0.866025i 0.0271964 + 0.0471056i
\(339\) 0 0
\(340\) 1.26795 2.19615i 0.0687642 0.119103i
\(341\) −20.3923 −1.10431
\(342\) 0 0
\(343\) 0.267949 0.0144679
\(344\) −4.46410 + 7.73205i −0.240688 + 0.416884i
\(345\) 0 0
\(346\) −11.5000 19.9186i −0.618244 1.07083i
\(347\) 9.63397 + 16.6865i 0.517179 + 0.895780i 0.999801 + 0.0199514i \(0.00635113\pi\)
−0.482622 + 0.875829i \(0.660316\pi\)
\(348\) 0 0
\(349\) 0.0717968 0.124356i 0.00384319 0.00665661i −0.864097 0.503325i \(-0.832110\pi\)
0.867941 + 0.496668i \(0.165443\pi\)
\(350\) −16.6603 −0.890528
\(351\) 0 0
\(352\) −3.73205 −0.198919
\(353\) −13.2942 + 23.0263i −0.707580 + 1.22557i 0.258172 + 0.966099i \(0.416880\pi\)
−0.965752 + 0.259466i \(0.916453\pi\)
\(354\) 0 0
\(355\) 3.09808 + 5.36603i 0.164429 + 0.284799i
\(356\) −4.09808 7.09808i −0.217198 0.376197i
\(357\) 0 0
\(358\) 3.46410 6.00000i 0.183083 0.317110i
\(359\) 31.8564 1.68132 0.840658 0.541566i \(-0.182168\pi\)
0.840658 + 0.541566i \(0.182168\pi\)
\(360\) 0 0
\(361\) 22.7846 1.19919
\(362\) −7.79423 + 13.5000i −0.409656 + 0.709544i
\(363\) 0 0
\(364\) −1.86603 3.23205i −0.0978063 0.169405i
\(365\) 2.00000 + 3.46410i 0.104685 + 0.181319i
\(366\) 0 0
\(367\) −13.2942 + 23.0263i −0.693953 + 1.20196i 0.276579 + 0.960991i \(0.410799\pi\)
−0.970532 + 0.240971i \(0.922534\pi\)
\(368\) −4.19615 −0.218740
\(369\) 0 0
\(370\) −6.92820 −0.360180
\(371\) 23.2583 40.2846i 1.20751 2.09147i
\(372\) 0 0
\(373\) 17.5263 + 30.3564i 0.907476 + 1.57180i 0.817558 + 0.575846i \(0.195327\pi\)
0.0899182 + 0.995949i \(0.471339\pi\)
\(374\) 6.46410 + 11.1962i 0.334251 + 0.578939i
\(375\) 0 0
\(376\) 2.26795 3.92820i 0.116961 0.202582i
\(377\) 2.46410 0.126908
\(378\) 0 0
\(379\) −29.2487 −1.50241 −0.751203 0.660072i \(-0.770526\pi\)
−0.751203 + 0.660072i \(0.770526\pi\)
\(380\) 2.36603 4.09808i 0.121375 0.210227i
\(381\) 0 0
\(382\) −2.46410 4.26795i −0.126074 0.218367i
\(383\) 6.69615 + 11.5981i 0.342157 + 0.592634i 0.984833 0.173504i \(-0.0555091\pi\)
−0.642676 + 0.766138i \(0.722176\pi\)
\(384\) 0 0
\(385\) −5.09808 + 8.83013i −0.259822 + 0.450025i
\(386\) 0.196152 0.00998390
\(387\) 0 0
\(388\) 6.73205 0.341768
\(389\) 9.92820 17.1962i 0.503380 0.871880i −0.496612 0.867972i \(-0.665423\pi\)
0.999992 0.00390716i \(-0.00124369\pi\)
\(390\) 0 0
\(391\) 7.26795 + 12.5885i 0.367556 + 0.636626i
\(392\) 3.46410 + 6.00000i 0.174964 + 0.303046i
\(393\) 0 0
\(394\) −5.19615 + 9.00000i −0.261778 + 0.453413i
\(395\) −3.07180 −0.154559
\(396\) 0 0
\(397\) 7.32051 0.367406 0.183703 0.982982i \(-0.441192\pi\)
0.183703 + 0.982982i \(0.441192\pi\)
\(398\) 0.196152 0.339746i 0.00983223 0.0170299i
\(399\) 0 0
\(400\) 2.23205 + 3.86603i 0.111603 + 0.193301i
\(401\) 14.4904 + 25.0981i 0.723615 + 1.25334i 0.959542 + 0.281567i \(0.0908542\pi\)
−0.235926 + 0.971771i \(0.575812\pi\)
\(402\) 0 0
\(403\) −2.73205 + 4.73205i −0.136093 + 0.235720i
\(404\) 14.4641 0.719616
\(405\) 0 0
\(406\) −9.19615 −0.456397
\(407\) 17.6603 30.5885i 0.875386 1.51621i
\(408\) 0 0
\(409\) 10.4641 + 18.1244i 0.517417 + 0.896192i 0.999795 + 0.0202290i \(0.00643953\pi\)
−0.482379 + 0.875963i \(0.660227\pi\)
\(410\) −2.66025 4.60770i −0.131381 0.227558i
\(411\) 0 0
\(412\) −8.46410 + 14.6603i −0.416996 + 0.722259i
\(413\) −21.3923 −1.05265
\(414\) 0 0
\(415\) 1.26795 0.0622412
\(416\) −0.500000 + 0.866025i −0.0245145 + 0.0424604i
\(417\) 0 0
\(418\) 12.0622 + 20.8923i 0.589980 + 1.02188i
\(419\) 4.43782 + 7.68653i 0.216802 + 0.375512i 0.953828 0.300352i \(-0.0971041\pi\)
−0.737027 + 0.675864i \(0.763771\pi\)
\(420\) 0 0
\(421\) −7.02628 + 12.1699i −0.342440 + 0.593123i −0.984885 0.173208i \(-0.944587\pi\)
0.642445 + 0.766332i \(0.277920\pi\)
\(422\) −8.33975 −0.405972
\(423\) 0 0
\(424\) −12.4641 −0.605310
\(425\) 7.73205 13.3923i 0.375060 0.649622i
\(426\) 0 0
\(427\) −2.23205 3.86603i −0.108017 0.187090i
\(428\) 6.83013 + 11.8301i 0.330147 + 0.571831i
\(429\) 0 0
\(430\) 3.26795 5.66025i 0.157595 0.272962i
\(431\) 33.2487 1.60153 0.800767 0.598976i \(-0.204425\pi\)
0.800767 + 0.598976i \(0.204425\pi\)
\(432\) 0 0
\(433\) 17.3923 0.835821 0.417910 0.908488i \(-0.362763\pi\)
0.417910 + 0.908488i \(0.362763\pi\)
\(434\) 10.1962 17.6603i 0.489431 0.847719i
\(435\) 0 0
\(436\) −3.09808 5.36603i −0.148371 0.256986i
\(437\) 13.5622 + 23.4904i 0.648767 + 1.12370i
\(438\) 0 0
\(439\) 4.19615 7.26795i 0.200271 0.346880i −0.748344 0.663310i \(-0.769151\pi\)
0.948616 + 0.316430i \(0.102484\pi\)
\(440\) 2.73205 0.130245
\(441\) 0 0
\(442\) 3.46410 0.164771
\(443\) −4.73205 + 8.19615i −0.224827 + 0.389411i −0.956267 0.292494i \(-0.905515\pi\)
0.731441 + 0.681905i \(0.238848\pi\)
\(444\) 0 0
\(445\) 3.00000 + 5.19615i 0.142214 + 0.246321i
\(446\) 8.59808 + 14.8923i 0.407131 + 0.705171i
\(447\) 0 0
\(448\) 1.86603 3.23205i 0.0881614 0.152700i
\(449\) −36.7846 −1.73597 −0.867987 0.496588i \(-0.834586\pi\)
−0.867987 + 0.496588i \(0.834586\pi\)
\(450\) 0 0
\(451\) 27.1244 1.27724
\(452\) 4.86603 8.42820i 0.228879 0.396429i
\(453\) 0 0
\(454\) 4.33013 + 7.50000i 0.203223 + 0.351992i
\(455\) 1.36603 + 2.36603i 0.0640403 + 0.110921i
\(456\) 0 0
\(457\) −7.02628 + 12.1699i −0.328675 + 0.569283i −0.982249 0.187580i \(-0.939936\pi\)
0.653574 + 0.756863i \(0.273269\pi\)
\(458\) 3.46410 0.161867
\(459\) 0 0
\(460\) 3.07180 0.143223
\(461\) −1.90192 + 3.29423i −0.0885814 + 0.153428i −0.906912 0.421321i \(-0.861567\pi\)
0.818330 + 0.574748i \(0.194900\pi\)
\(462\) 0 0
\(463\) 13.8660 + 24.0167i 0.644409 + 1.11615i 0.984438 + 0.175734i \(0.0562298\pi\)
−0.340029 + 0.940415i \(0.610437\pi\)
\(464\) 1.23205 + 2.13397i 0.0571965 + 0.0990673i
\(465\) 0 0
\(466\) −2.40192 + 4.16025i −0.111267 + 0.192720i
\(467\) −9.26795 −0.428870 −0.214435 0.976738i \(-0.568791\pi\)
−0.214435 + 0.976738i \(0.568791\pi\)
\(468\) 0 0
\(469\) −53.7128 −2.48023
\(470\) −1.66025 + 2.87564i −0.0765818 + 0.132644i
\(471\) 0 0
\(472\) 2.86603 + 4.96410i 0.131920 + 0.228491i
\(473\) 16.6603 + 28.8564i 0.766039 + 1.32682i
\(474\) 0 0
\(475\) 14.4282 24.9904i 0.662011 1.14664i
\(476\) −12.9282 −0.592563
\(477\) 0 0
\(478\) 4.85641 0.222127
\(479\) 4.16025 7.20577i 0.190087 0.329240i −0.755192 0.655504i \(-0.772456\pi\)
0.945279 + 0.326264i \(0.105790\pi\)
\(480\) 0 0
\(481\) −4.73205 8.19615i −0.215763 0.373712i
\(482\) −2.36603 4.09808i −0.107770 0.186662i
\(483\) 0 0
\(484\) −1.46410 + 2.53590i −0.0665501 + 0.115268i
\(485\) −4.92820 −0.223778
\(486\) 0 0
\(487\) −34.3731 −1.55759 −0.778796 0.627277i \(-0.784169\pi\)
−0.778796 + 0.627277i \(0.784169\pi\)
\(488\) −0.598076 + 1.03590i −0.0270736 + 0.0468929i
\(489\) 0 0
\(490\) −2.53590 4.39230i −0.114560 0.198424i
\(491\) −13.1244 22.7321i −0.592294 1.02588i −0.993923 0.110081i \(-0.964889\pi\)
0.401629 0.915803i \(-0.368444\pi\)
\(492\) 0 0
\(493\) 4.26795 7.39230i 0.192219 0.332933i
\(494\) 6.46410 0.290834
\(495\) 0 0
\(496\) −5.46410 −0.245345
\(497\) 15.7942 27.3564i 0.708468 1.22710i
\(498\) 0 0
\(499\) −12.5000 21.6506i −0.559577 0.969216i −0.997532 0.0702185i \(-0.977630\pi\)
0.437955 0.898997i \(-0.355703\pi\)
\(500\) −3.46410 6.00000i −0.154919 0.268328i
\(501\) 0 0
\(502\) 1.09808 1.90192i 0.0490095 0.0848870i
\(503\) −31.8038 −1.41806 −0.709032 0.705177i \(-0.750868\pi\)
−0.709032 + 0.705177i \(0.750868\pi\)
\(504\) 0 0
\(505\) −10.5885 −0.471180
\(506\) −7.83013 + 13.5622i −0.348092 + 0.602912i
\(507\) 0 0
\(508\) −8.46410 14.6603i −0.375534 0.650444i
\(509\) −6.53590 11.3205i −0.289699 0.501773i 0.684039 0.729445i \(-0.260222\pi\)
−0.973738 + 0.227673i \(0.926888\pi\)
\(510\) 0 0
\(511\) 10.1962 17.6603i 0.451051 0.781244i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 28.5167 1.25782
\(515\) 6.19615 10.7321i 0.273035 0.472911i
\(516\) 0 0
\(517\) −8.46410 14.6603i −0.372251 0.644757i
\(518\) 17.6603 + 30.5885i 0.775947 + 1.34398i
\(519\) 0 0
\(520\) 0.366025 0.633975i 0.0160513 0.0278016i
\(521\) −2.66025 −0.116548 −0.0582739 0.998301i \(-0.518560\pi\)
−0.0582739 + 0.998301i \(0.518560\pi\)
\(522\) 0 0
\(523\) 32.4449 1.41871 0.709357 0.704849i \(-0.248985\pi\)
0.709357 + 0.704849i \(0.248985\pi\)
\(524\) −8.46410 + 14.6603i −0.369756 + 0.640436i
\(525\) 0 0
\(526\) 6.16987 + 10.6865i 0.269019 + 0.465955i
\(527\) 9.46410 + 16.3923i 0.412263 + 0.714060i
\(528\) 0 0
\(529\) 2.69615 4.66987i 0.117224 0.203038i
\(530\) 9.12436 0.396337
\(531\) 0 0
\(532\) −24.1244 −1.04592
\(533\) 3.63397 6.29423i 0.157405 0.272633i
\(534\) 0 0
\(535\) −5.00000 8.66025i −0.216169 0.374415i
\(536\) 7.19615 + 12.4641i 0.310826 + 0.538367i
\(537\) 0 0
\(538\) −10.7321 + 18.5885i −0.462692 + 0.801405i
\(539\) 25.8564 1.11371
\(540\) 0 0
\(541\) −8.05256 −0.346207 −0.173103 0.984904i \(-0.555379\pi\)
−0.173103 + 0.984904i \(0.555379\pi\)
\(542\) 7.59808 13.1603i 0.326365 0.565281i
\(543\) 0 0
\(544\) 1.73205 + 3.00000i 0.0742611 + 0.128624i
\(545\) 2.26795 + 3.92820i 0.0971483 + 0.168266i
\(546\) 0 0
\(547\) −2.12436 + 3.67949i −0.0908309 + 0.157324i −0.907861 0.419271i \(-0.862286\pi\)
0.817030 + 0.576595i \(0.195619\pi\)
\(548\) 17.3205 0.739895
\(549\) 0 0
\(550\) 16.6603 0.710396
\(551\) 7.96410 13.7942i 0.339282 0.587654i
\(552\) 0 0
\(553\) 7.83013 + 13.5622i 0.332971 + 0.576722i
\(554\) −0.401924 0.696152i −0.0170761 0.0295767i
\(555\) 0 0
\(556\) −3.90192 + 6.75833i −0.165478 + 0.286617i
\(557\) 1.85641 0.0786585 0.0393292 0.999226i \(-0.487478\pi\)
0.0393292 + 0.999226i \(0.487478\pi\)
\(558\) 0 0
\(559\) 8.92820 0.377623
\(560\) −1.36603 + 2.36603i −0.0577251 + 0.0999828i
\(561\) 0 0
\(562\) 9.19615 + 15.9282i 0.387916 + 0.671891i
\(563\) −21.6865 37.5622i −0.913978 1.58306i −0.808390 0.588647i \(-0.799661\pi\)
−0.105588 0.994410i \(-0.533673\pi\)
\(564\) 0 0
\(565\) −3.56218 + 6.16987i −0.149862 + 0.259569i
\(566\) 3.85641 0.162097
\(567\) 0 0
\(568\) −8.46410 −0.355146
\(569\) 2.80385 4.85641i 0.117543 0.203591i −0.801250 0.598329i \(-0.795831\pi\)
0.918794 + 0.394738i \(0.129165\pi\)
\(570\) 0 0
\(571\) 5.83013 + 10.0981i 0.243983 + 0.422591i 0.961845 0.273594i \(-0.0882125\pi\)
−0.717862 + 0.696185i \(0.754879\pi\)
\(572\) 1.86603 + 3.23205i 0.0780224 + 0.135139i
\(573\) 0 0
\(574\) −13.5622 + 23.4904i −0.566074 + 0.980470i
\(575\) 18.7321 0.781181
\(576\) 0 0
\(577\) −42.9282 −1.78712 −0.893562 0.448939i \(-0.851802\pi\)
−0.893562 + 0.448939i \(0.851802\pi\)
\(578\) −2.50000 + 4.33013i −0.103986 + 0.180110i
\(579\) 0 0
\(580\) −0.901924 1.56218i −0.0374503 0.0648659i
\(581\) −3.23205 5.59808i −0.134088 0.232247i
\(582\) 0 0
\(583\) −23.2583 + 40.2846i −0.963262 + 1.66842i
\(584\) −5.46410 −0.226106
\(585\) 0 0
\(586\) −28.7846 −1.18908
\(587\) −2.80385 + 4.85641i −0.115727 + 0.200445i −0.918070 0.396418i \(-0.870253\pi\)
0.802343 + 0.596863i \(0.203586\pi\)
\(588\) 0 0
\(589\) 17.6603 + 30.5885i 0.727678 + 1.26038i
\(590\) −2.09808 3.63397i −0.0863764 0.149608i
\(591\) 0 0
\(592\) 4.73205 8.19615i 0.194486 0.336860i
\(593\) 13.1244 0.538953 0.269476 0.963007i \(-0.413149\pi\)
0.269476 + 0.963007i \(0.413149\pi\)
\(594\) 0 0
\(595\) 9.46410 0.387990
\(596\) −0.169873 + 0.294229i −0.00695827 + 0.0120521i
\(597\) 0 0
\(598\) 2.09808 + 3.63397i 0.0857967 + 0.148604i
\(599\) −19.7583 34.2224i −0.807303 1.39829i −0.914725 0.404077i \(-0.867593\pi\)
0.107421 0.994214i \(-0.465741\pi\)
\(600\) 0 0
\(601\) 0.303848 0.526279i 0.0123942 0.0214674i −0.859762 0.510695i \(-0.829388\pi\)
0.872156 + 0.489228i \(0.162721\pi\)
\(602\) −33.3205 −1.35804
\(603\) 0 0
\(604\) −9.58846 −0.390149
\(605\) 1.07180 1.85641i 0.0435747 0.0754737i
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) 3.23205 + 5.59808i 0.131077 + 0.227032i
\(609\) 0 0
\(610\) 0.437822 0.758330i 0.0177269 0.0307039i
\(611\) −4.53590 −0.183503
\(612\) 0 0
\(613\) 38.9282 1.57230 0.786148 0.618039i \(-0.212073\pi\)
0.786148 + 0.618039i \(0.212073\pi\)
\(614\) −12.8564 + 22.2679i −0.518842 + 0.898661i
\(615\) 0 0
\(616\) −6.96410 12.0622i −0.280592 0.485999i
\(617\) −21.3660 37.0070i −0.860164 1.48985i −0.871770 0.489915i \(-0.837028\pi\)
0.0116066 0.999933i \(-0.496305\pi\)
\(618\) 0 0
\(619\) 2.03590 3.52628i 0.0818297 0.141733i −0.822206 0.569190i \(-0.807257\pi\)
0.904036 + 0.427457i \(0.140590\pi\)
\(620\) 4.00000 0.160644
\(621\) 0 0
\(622\) −24.2487 −0.972285
\(623\) 15.2942 26.4904i 0.612750 1.06131i
\(624\) 0 0
\(625\) −8.62436 14.9378i −0.344974 0.597513i
\(626\) 9.89230 + 17.1340i 0.395376 + 0.684811i
\(627\) 0 0
\(628\) 4.13397 7.16025i 0.164964 0.285725i
\(629\) −32.7846 −1.30721
\(630\) 0 0
\(631\) −26.8038 −1.06704 −0.533522 0.845786i \(-0.679132\pi\)
−0.533522 + 0.845786i \(0.679132\pi\)
\(632\) 2.09808 3.63397i 0.0834570 0.144552i
\(633\) 0 0
\(634\) 11.0263 + 19.0981i 0.437909 + 0.758482i
\(635\) 6.19615 + 10.7321i 0.245887 + 0.425888i
\(636\) 0 0
\(637\) 3.46410 6.00000i 0.137253 0.237729i
\(638\) 9.19615 0.364079
\(639\) 0 0
\(640\) 0.732051 0.0289368
\(641\) −5.66987 + 9.82051i −0.223947 + 0.387887i −0.956003 0.293357i \(-0.905227\pi\)
0.732056 + 0.681244i \(0.238561\pi\)
\(642\) 0 0
\(643\) 1.42820 + 2.47372i 0.0563228 + 0.0975540i 0.892812 0.450429i \(-0.148729\pi\)
−0.836489 + 0.547983i \(0.815396\pi\)
\(644\) −7.83013 13.5622i −0.308550 0.534425i
\(645\) 0 0
\(646\) 11.1962 19.3923i 0.440507 0.762980i
\(647\) 16.4449 0.646514 0.323257 0.946311i \(-0.395222\pi\)
0.323257 + 0.946311i \(0.395222\pi\)
\(648\) 0 0
\(649\) 21.3923 0.839721
\(650\) 2.23205 3.86603i 0.0875482 0.151638i
\(651\) 0 0
\(652\) −6.66025 11.5359i −0.260836 0.451781i
\(653\) −12.9282 22.3923i −0.505920 0.876279i −0.999977 0.00684901i \(-0.997820\pi\)
0.494057 0.869430i \(-0.335513\pi\)
\(654\) 0 0
\(655\) 6.19615 10.7321i 0.242104 0.419336i
\(656\) 7.26795 0.283766
\(657\) 0 0
\(658\) 16.9282 0.659930
\(659\) 8.53590 14.7846i 0.332511 0.575927i −0.650492 0.759513i \(-0.725437\pi\)
0.983004 + 0.183586i \(0.0587707\pi\)
\(660\) 0 0
\(661\) −12.5359 21.7128i −0.487590 0.844531i 0.512308 0.858802i \(-0.328791\pi\)
−0.999898 + 0.0142711i \(0.995457\pi\)
\(662\) 0.660254 + 1.14359i 0.0256615 + 0.0444470i
\(663\) 0 0
\(664\) −0.866025 + 1.50000i −0.0336083 + 0.0582113i
\(665\) 17.6603 0.684835
\(666\) 0 0
\(667\) 10.3397 0.400357
\(668\) 3.69615 6.40192i 0.143008 0.247698i
\(669\) 0 0
\(670\) −5.26795 9.12436i −0.203519 0.352505i
\(671\) 2.23205 + 3.86603i 0.0861674 + 0.149246i
\(672\) 0 0
\(673\) −15.1603 + 26.2583i −0.584385 + 1.01218i 0.410567 + 0.911830i \(0.365331\pi\)
−0.994952 + 0.100354i \(0.968003\pi\)
\(674\) 10.9282 0.420939
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −13.6244 + 23.5981i −0.523627 + 0.906948i 0.475995 + 0.879448i \(0.342088\pi\)
−0.999622 + 0.0274999i \(0.991245\pi\)
\(678\) 0 0
\(679\) 12.5622 + 21.7583i 0.482092 + 0.835008i
\(680\) −1.26795 2.19615i −0.0486236 0.0842186i
\(681\) 0 0
\(682\) −10.1962 + 17.6603i −0.390431 + 0.676246i
\(683\) −33.3205 −1.27497 −0.637487 0.770461i \(-0.720026\pi\)
−0.637487 + 0.770461i \(0.720026\pi\)
\(684\) 0 0
\(685\) −12.6795 −0.484458
\(686\) 0.133975 0.232051i 0.00511517 0.00885974i
\(687\) 0 0
\(688\) 4.46410 + 7.73205i 0.170192 + 0.294782i
\(689\) 6.23205 + 10.7942i 0.237422 + 0.411227i
\(690\) 0 0
\(691\) −20.6962 + 35.8468i −0.787319 + 1.36368i 0.140285 + 0.990111i \(0.455198\pi\)
−0.927604 + 0.373565i \(0.878135\pi\)
\(692\) −23.0000 −0.874329
\(693\) 0 0
\(694\) 19.2679 0.731401
\(695\) 2.85641 4.94744i 0.108350 0.187667i
\(696\) 0 0
\(697\) −12.5885 21.8038i −0.476822 0.825880i
\(698\) −0.0717968 0.124356i −0.00271755 0.00470693i
\(699\) 0 0
\(700\) −8.33013 + 14.4282i −0.314849 + 0.545335i
\(701\) 27.9282 1.05483 0.527417 0.849607i \(-0.323161\pi\)
0.527417 + 0.849607i \(0.323161\pi\)
\(702\) 0 0
\(703\) −61.1769 −2.30733
\(704\) −1.86603 + 3.23205i −0.0703285 + 0.121812i
\(705\) 0 0
\(706\) 13.2942 + 23.0263i 0.500335 + 0.866605i
\(707\) 26.9904 + 46.7487i 1.01508 + 1.75817i
\(708\) 0 0
\(709\) 20.9282 36.2487i 0.785975 1.36135i −0.142440 0.989803i \(-0.545495\pi\)
0.928415 0.371545i \(-0.121172\pi\)
\(710\) 6.19615 0.232537
\(711\) 0 0
\(712\) −8.19615 −0.307164
\(713\) −11.4641 + 19.8564i −0.429334 + 0.743628i
\(714\) 0 0
\(715\) −1.36603 2.36603i −0.0510865 0.0884843i
\(716\) −3.46410 6.00000i −0.129460 0.224231i
\(717\) 0 0
\(718\) 15.9282 27.5885i 0.594435 1.02959i
\(719\) 2.05256 0.0765475 0.0382738 0.999267i \(-0.487814\pi\)
0.0382738 + 0.999267i \(0.487814\pi\)
\(720\) 0 0
\(721\) −63.1769 −2.35283
\(722\) 11.3923 19.7321i 0.423978 0.734351i
\(723\) 0 0
\(724\) 7.79423 + 13.5000i 0.289670 + 0.501724i
\(725\) −5.50000 9.52628i −0.204265 0.353797i
\(726\) 0 0
\(727\) 5.85641 10.1436i 0.217202 0.376205i −0.736749 0.676166i \(-0.763640\pi\)
0.953952 + 0.299961i \(0.0969736\pi\)
\(728\) −3.73205 −0.138319
\(729\) 0 0
\(730\) 4.00000 0.148047
\(731\) 15.4641 26.7846i 0.571960 0.990665i
\(732\) 0 0
\(733\) 13.0263 + 22.5622i 0.481137 + 0.833353i 0.999766 0.0216463i \(-0.00689077\pi\)
−0.518629 + 0.854999i \(0.673557\pi\)
\(734\) 13.2942 + 23.0263i 0.490699 + 0.849915i
\(735\) 0 0
\(736\) −2.09808 + 3.63397i −0.0773361 + 0.133950i
\(737\) 53.7128 1.97854
\(738\) 0 0
\(739\) 12.4641 0.458499 0.229250 0.973368i \(-0.426373\pi\)
0.229250 + 0.973368i \(0.426373\pi\)
\(740\) −3.46410 + 6.00000i −0.127343 + 0.220564i
\(741\) 0 0
\(742\) −23.2583 40.2846i −0.853840 1.47889i
\(743\) −20.1603 34.9186i −0.739608 1.28104i −0.952672 0.304000i \(-0.901678\pi\)
0.213064 0.977038i \(-0.431656\pi\)
\(744\) 0 0
\(745\) 0.124356 0.215390i 0.00455604 0.00789129i
\(746\) 35.0526 1.28337
\(747\) 0 0
\(748\) 12.9282 0.472702
\(749\) −25.4904 + 44.1506i −0.931398 + 1.61323i
\(750\) 0 0
\(751\) −5.19615 9.00000i −0.189610 0.328415i 0.755510 0.655137i \(-0.227389\pi\)
−0.945120 + 0.326722i \(0.894056\pi\)
\(752\) −2.26795 3.92820i −0.0827036 0.143247i
\(753\) 0 0
\(754\) 1.23205 2.13397i 0.0448686 0.0777148i
\(755\) 7.01924 0.255456
\(756\) 0 0
\(757\) −34.2679 −1.24549 −0.622745 0.782425i \(-0.713983\pi\)
−0.622745 + 0.782425i \(0.713983\pi\)
\(758\) −14.6244 + 25.3301i −0.531181 + 0.920032i
\(759\) 0 0
\(760\) −2.36603 4.09808i −0.0858248 0.148653i
\(761\) 24.0000 + 41.5692i 0.869999 + 1.50688i 0.861996 + 0.506915i \(0.169214\pi\)
0.00800331 + 0.999968i \(0.497452\pi\)
\(762\) 0 0
\(763\) 11.5622 20.0263i 0.418579 0.725000i
\(764\) −4.92820 −0.178296
\(765\) 0 0
\(766\) 13.3923 0.483884
\(767\) 2.86603 4.96410i 0.103486 0.179243i
\(768\) 0 0
\(769\) 22.0526 + 38.1962i 0.795236 + 1.37739i 0.922689 + 0.385544i \(0.125986\pi\)
−0.127454 + 0.991845i \(0.540680\pi\)
\(770\) 5.09808 + 8.83013i 0.183722 + 0.318216i
\(771\) 0 0
\(772\) 0.0980762 0.169873i 0.00352984 0.00611386i
\(773\) −40.1051 −1.44248 −0.721240 0.692685i \(-0.756428\pi\)
−0.721240 + 0.692685i \(0.756428\pi\)
\(774\) 0 0
\(775\) 24.3923 0.876197
\(776\) 3.36603 5.83013i 0.120833 0.209289i
\(777\) 0 0
\(778\) −9.92820 17.1962i −0.355943 0.616512i
\(779\) −23.4904 40.6865i −0.841630 1.45775i
\(780\) 0 0
\(781\) −15.7942 + 27.3564i −0.565162 + 0.978889i
\(782\) 14.5359 0.519803
\(783\) 0 0
\(784\) 6.92820 0.247436
\(785\) −3.02628 + 5.24167i −0.108013 + 0.187083i
\(786\) 0 0
\(787\) 10.3038 + 17.8468i 0.367292 + 0.636169i 0.989141 0.146968i \(-0.0469515\pi\)
−0.621849 + 0.783137i \(0.713618\pi\)
\(788\) 5.19615 + 9.00000i 0.185105 + 0.320612i
\(789\) 0 0
\(790\) −1.53590 + 2.66025i −0.0546448 + 0.0946476i
\(791\) 36.3205 1.29141
\(792\) 0 0
\(793\) 1.19615 0.0424766
\(794\) 3.66025 6.33975i 0.129898 0.224989i
\(795\) 0 0
\(796\) −0.196152 0.339746i −0.00695244 0.0120420i
\(797\) 13.5000 + 23.3827i 0.478195 + 0.828257i 0.999687 0.0249984i \(-0.00795805\pi\)
−0.521493 + 0.853256i \(0.674625\pi\)
\(798\) 0 0
\(799\) −7.85641 + 13.6077i −0.277940 + 0.481406i
\(800\) 4.46410 0.157830
\(801\) 0 0
\(802\) 28.9808 1.02335
\(803\) −10.1962 + 17.6603i −0.359814 + 0.623217i
\(804\) 0 0
\(805\) 5.73205 + 9.92820i 0.202028 + 0.349923i
\(806\) 2.73205 + 4.73205i 0.0962324 + 0.166679i
\(807\) 0 0
\(808\) 7.23205 12.5263i 0.254423 0.440673i
\(809\) −25.9808 −0.913435 −0.456717 0.889612i \(-0.650975\pi\)
−0.456717 + 0.889612i \(0.650975\pi\)
\(810\) 0 0
\(811\) 48.8564 1.71558 0.857790 0.514000i \(-0.171837\pi\)
0.857790 + 0.514000i \(0.171837\pi\)
\(812\) −4.59808 + 7.96410i −0.161361 + 0.279485i
\(813\) 0 0
\(814\) −17.6603 30.5885i −0.618992 1.07212i
\(815\) 4.87564 + 8.44486i 0.170786 + 0.295811i
\(816\) 0 0
\(817\) 28.8564 49.9808i 1.00956 1.74861i
\(818\) 20.9282 0.731737
\(819\) 0 0
\(820\) −5.32051 −0.185800
\(821\) −14.0000 + 24.2487i −0.488603 + 0.846286i −0.999914 0.0131101i \(-0.995827\pi\)
0.511311 + 0.859396i \(0.329160\pi\)
\(822\) 0 0
\(823\) 8.66025 + 15.0000i 0.301877 + 0.522867i 0.976561 0.215240i \(-0.0690533\pi\)
−0.674684 + 0.738107i \(0.735720\pi\)
\(824\) 8.46410 + 14.6603i 0.294861 + 0.510714i
\(825\) 0 0
\(826\) −10.6962 + 18.5263i −0.372167 + 0.644612i
\(827\) −53.5692 −1.86278 −0.931392 0.364017i \(-0.881405\pi\)
−0.931392 + 0.364017i \(0.881405\pi\)
\(828\) 0 0
\(829\) 24.9090 0.865124 0.432562 0.901604i \(-0.357610\pi\)
0.432562 + 0.901604i \(0.357610\pi\)
\(830\) 0.633975 1.09808i 0.0220056 0.0381148i
\(831\) 0 0
\(832\) 0.500000 + 0.866025i 0.0173344 + 0.0300240i
\(833\) −12.0000 20.7846i −0.415775 0.720144i
\(834\) 0 0
\(835\) −2.70577 + 4.68653i −0.0936371 + 0.162184i
\(836\) 24.1244 0.834358
\(837\) 0 0
\(838\) 8.87564 0.306604
\(839\) 7.58846 13.1436i 0.261983 0.453767i −0.704786 0.709420i \(-0.748957\pi\)
0.966769 + 0.255653i \(0.0822903\pi\)
\(840\) 0 0
\(841\) 11.4641 + 19.8564i 0.395314 + 0.684704i
\(842\) 7.02628 + 12.1699i 0.242142 + 0.419402i
\(843\) 0 0
\(844\) −4.16987 + 7.22243i −0.143533 + 0.248606i
\(845\) −0.732051 −0.0251833
\(846\) 0 0
\(847\) −10.9282 −0.375498
\(848\) −6.23205 + 10.7942i −0.214010 + 0.370675i
\(849\) 0 0
\(850\) −7.73205 13.3923i −0.265207 0.459352i
\(851\) −19.8564 34.3923i −0.680669 1.17895i
\(852\) 0 0
\(853\) 13.1699 22.8109i 0.450928 0.781030i −0.547516 0.836795i \(-0.684426\pi\)
0.998444 + 0.0557652i \(0.0177598\pi\)
\(854\) −4.46410 −0.152758
\(855\) 0 0
\(856\) 13.6603 0.466898
\(857\) −5.79423 + 10.0359i −0.197927 + 0.342820i −0.947856 0.318698i \(-0.896754\pi\)
0.749929 + 0.661518i \(0.230088\pi\)
\(858\) 0 0
\(859\) −9.02628 15.6340i −0.307973 0.533424i 0.669946 0.742410i \(-0.266317\pi\)
−0.977919 + 0.208985i \(0.932984\pi\)
\(860\) −3.26795 5.66025i −0.111436 0.193013i
\(861\) 0 0
\(862\) 16.6244 28.7942i 0.566228 0.980735i
\(863\) −16.7128 −0.568911 −0.284455 0.958689i \(-0.591813\pi\)
−0.284455 + 0.958689i \(0.591813\pi\)
\(864\) 0 0
\(865\) 16.8372 0.572481
\(866\) 8.69615 15.0622i 0.295507 0.511834i
\(867\) 0 0
\(868\) −10.1962 17.6603i −0.346080 0.599428i
\(869\) −7.83013 13.5622i −0.265619 0.460065i
\(870\) 0 0
\(871\) 7.19615 12.4641i 0.243832 0.422330i
\(872\) −6.19615 −0.209828
\(873\) 0 0
\(874\) 27.1244 0.917495
\(875\) 12.9282 22.3923i 0.437053 0.756998i
\(876\) 0 0
\(877\) −16.6865 28.9019i −0.563464 0.975949i −0.997191 0.0749041i \(-0.976135\pi\)
0.433727 0.901045i \(-0.357198\pi\)
\(878\) −4.19615 7.26795i −0.141613 0.245281i
\(879\) 0 0
\(880\) 1.36603 2.36603i 0.0460487 0.0797587i
\(881\) −43.8564 −1.47756 −0.738780 0.673947i \(-0.764598\pi\)
−0.738780 + 0.673947i \(0.764598\pi\)
\(882\) 0 0
\(883\) 44.9808 1.51372 0.756862 0.653575i \(-0.226732\pi\)
0.756862 + 0.653575i \(0.226732\pi\)
\(884\) 1.73205 3.00000i 0.0582552 0.100901i
\(885\) 0 0
\(886\) 4.73205 + 8.19615i 0.158976 + 0.275355i
\(887\) −24.4904 42.4186i −0.822307 1.42428i −0.903961 0.427616i \(-0.859354\pi\)
0.0816540 0.996661i \(-0.473980\pi\)
\(888\) 0 0
\(889\) 31.5885 54.7128i 1.05944 1.83501i
\(890\) 6.00000 0.201120
\(891\) 0 0
\(892\) 17.1962 0.575770
\(893\) −14.6603 + 25.3923i −0.490587 + 0.849721i
\(894\) 0 0
\(895\) 2.53590 + 4.39230i 0.0847657 + 0.146819i
\(896\) −1.86603 3.23205i −0.0623395 0.107975i
\(897\) 0 0
\(898\) −18.3923 + 31.8564i −0.613759 + 1.06306i
\(899\) 13.4641 0.449053
\(900\) 0 0
\(901\) 43.1769 1.43843
\(902\) 13.5622 23.4904i 0.451571 0.782144i
\(903\) 0 0
\(904\) −4.86603 8.42820i −0.161842 0.280318i
\(905\) −5.70577 9.88269i −0.189666 0.328512i
\(906\) 0 0
\(907\) 20.3205 35.1962i 0.674731 1.16867i −0.301816 0.953366i \(-0.597593\pi\)
0.976547 0.215303i \(-0.0690739\pi\)
\(908\) 8.66025 0.287401
\(909\) 0 0
\(910\) 2.73205 0.0905666
\(911\) −2.87564 + 4.98076i −0.0952743 + 0.165020i −0.909723 0.415216i \(-0.863706\pi\)
0.814449 + 0.580236i \(0.197040\pi\)
\(912\) 0 0
\(913\) 3.23205 + 5.59808i 0.106965 + 0.185269i
\(914\) 7.02628 + 12.1699i 0.232409 + 0.402544i
\(915\) 0 0
\(916\) 1.73205 3.00000i 0.0572286 0.0991228i
\(917\) −63.1769 −2.08629
\(918\) 0 0
\(919\) 22.6410 0.746858 0.373429 0.927659i \(-0.378182\pi\)
0.373429 + 0.927659i \(0.378182\pi\)
\(920\) 1.53590 2.66025i 0.0506371 0.0877060i
\(921\) 0 0
\(922\) 1.90192 + 3.29423i 0.0626365 + 0.108490i
\(923\) 4.23205 + 7.33013i 0.139300 + 0.241274i
\(924\) 0 0
\(925\) −21.1244 + 36.5885i −0.694565 + 1.20302i
\(926\) 27.7321 0.911332
\(927\) 0 0
\(928\) 2.46410 0.0808881
\(929\) −4.26795 + 7.39230i −0.140027 + 0.242534i −0.927507 0.373807i \(-0.878052\pi\)
0.787480 + 0.616341i \(0.211386\pi\)
\(930\) 0 0
\(931\) −22.3923 38.7846i −0.733878 1.27111i
\(932\) 2.40192 + 4.16025i 0.0786776 + 0.136274i
\(933\) 0 0
\(934\) −4.63397 + 8.02628i −0.151628 + 0.262628i
\(935\) −9.46410 −0.309509
\(936\) 0 0
\(937\) −45.9615 −1.50150 −0.750749 0.660588i \(-0.770307\pi\)
−0.750749 + 0.660588i \(0.770307\pi\)
\(938\) −26.8564 + 46.5167i −0.876893 + 1.51882i
\(939\) 0 0
\(940\) 1.66025 + 2.87564i 0.0541515 + 0.0937932i
\(941\) −17.7321 30.7128i −0.578048 1.00121i −0.995703 0.0926033i \(-0.970481\pi\)
0.417655 0.908606i \(-0.362852\pi\)
\(942\) 0 0
\(943\) 15.2487 26.4115i 0.496566 0.860078i
\(944\) 5.73205 0.186562
\(945\) 0 0
\(946\) 33.3205 1.08334
\(947\) 3.80385 6.58846i 0.123608 0.214096i −0.797580 0.603214i \(-0.793887\pi\)
0.921188 + 0.389117i \(0.127220\pi\)
\(948\) 0 0
\(949\) 2.73205 + 4.73205i 0.0886861 + 0.153609i
\(950\) −14.4282 24.9904i −0.468113 0.810795i
\(951\) 0 0
\(952\) −6.46410 + 11.1962i −0.209503 + 0.362869i
\(953\) −11.7128 −0.379415 −0.189708 0.981841i \(-0.560754\pi\)
−0.189708 + 0.981841i \(0.560754\pi\)
\(954\) 0 0
\(955\) 3.60770 0.116742
\(956\) 2.42820 4.20577i 0.0785337 0.136024i
\(957\) 0 0
\(958\) −4.16025 7.20577i −0.134412 0.232808i
\(959\) 32.3205 + 55.9808i 1.04368 + 1.80771i
\(960\) 0 0
\(961\) 0.571797 0.990381i 0.0184451 0.0319478i
\(962\) −9.46410 −0.305135
\(963\) 0 0
\(964\) −4.73205 −0.152409
\(965\) −0.0717968 + 0.124356i −0.00231122 + 0.00400315i
\(966\) 0 0
\(967\) −24.3827 42.2321i −0.784094 1.35809i −0.929539 0.368725i \(-0.879794\pi\)
0.145444 0.989366i \(-0.453539\pi\)
\(968\) 1.46410 + 2.53590i 0.0470580 + 0.0815069i
\(969\) 0 0
\(970\) −2.46410 + 4.26795i −0.0791175 + 0.137036i
\(971\) −46.3013 −1.48588 −0.742939 0.669359i \(-0.766569\pi\)
−0.742939 + 0.669359i \(0.766569\pi\)
\(972\) 0 0
\(973\) −29.1244 −0.933684
\(974\) −17.1865 + 29.7679i −0.550692 + 0.953827i
\(975\) 0 0
\(976\) 0.598076 + 1.03590i 0.0191440 + 0.0331583i
\(977\) −4.22243 7.31347i −0.135088 0.233979i 0.790543 0.612406i \(-0.209798\pi\)
−0.925631 + 0.378428i \(0.876465\pi\)
\(978\) 0 0
\(979\) −15.2942 + 26.4904i −0.488806 + 0.846636i
\(980\) −5.07180 −0.162013
\(981\) 0 0
\(982\) −26.2487 −0.837630
\(983\) 18.3038 31.7032i 0.583802 1.01117i −0.411222 0.911535i \(-0.634898\pi\)
0.995024 0.0996394i \(-0.0317689\pi\)
\(984\) 0 0
\(985\) −3.80385 6.58846i −0.121201 0.209926i
\(986\) −4.26795 7.39230i −0.135919 0.235419i
\(987\) 0 0
\(988\) 3.23205 5.59808i 0.102825 0.178099i
\(989\) 37.4641 1.19129
\(990\) 0 0
\(991\) 9.80385 0.311429 0.155715 0.987802i \(-0.450232\pi\)
0.155715 + 0.987802i \(0.450232\pi\)
\(992\) −2.73205 + 4.73205i −0.0867427 + 0.150243i
\(993\) 0 0
\(994\) −15.7942 27.3564i −0.500963 0.867693i
\(995\) 0.143594 + 0.248711i 0.00455222 + 0.00788468i
\(996\) 0 0
\(997\) 19.7224 34.1603i 0.624616 1.08187i −0.363999 0.931399i \(-0.618589\pi\)
0.988615 0.150467i \(-0.0480777\pi\)
\(998\) −25.0000 −0.791361
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2106.2.e.bg.703.2 4
3.2 odd 2 2106.2.e.be.703.1 4
9.2 odd 6 2106.2.a.l.1.2 yes 2
9.4 even 3 inner 2106.2.e.bg.1405.2 4
9.5 odd 6 2106.2.e.be.1405.1 4
9.7 even 3 2106.2.a.j.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2106.2.a.j.1.1 2 9.7 even 3
2106.2.a.l.1.2 yes 2 9.2 odd 6
2106.2.e.be.703.1 4 3.2 odd 2
2106.2.e.be.1405.1 4 9.5 odd 6
2106.2.e.bg.703.2 4 1.1 even 1 trivial
2106.2.e.bg.1405.2 4 9.4 even 3 inner