Properties

Label 212.1.i.a
Level $212$
Weight $1$
Character orbit 212.i
Analytic conductor $0.106$
Analytic rank $0$
Dimension $12$
Projective image $D_{13}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [212,1,Mod(15,212)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(212, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([13, 6]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("212.15");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 212 = 2^{2} \cdot 53 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 212.i (of order \(26\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.105801782678\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{26})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{13}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{13} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{26}^{6} q^{2} + \zeta_{26}^{12} q^{4} + (\zeta_{26}^{10} + \zeta_{26}^{8}) q^{5} - \zeta_{26}^{5} q^{8} - \zeta_{26}^{9} q^{9} + ( - \zeta_{26}^{3} - \zeta_{26}) q^{10} + ( - \zeta_{26}^{11} + \zeta_{26}^{4}) q^{13} + \cdots - \zeta_{26}^{5} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} - q^{4} - 2 q^{5} - q^{8} - q^{9} - 2 q^{10} - 2 q^{13} - q^{16} - 2 q^{17} - q^{18} - 2 q^{20} - 3 q^{25} - 2 q^{26} - 2 q^{29} - q^{32} - 2 q^{34} - q^{36} - 2 q^{37} + 11 q^{40}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/212\mathbb{Z}\right)^\times\).

\(n\) \(107\) \(161\)
\(\chi(n)\) \(-1\) \(\zeta_{26}^{12}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
15.1
−0.120537 + 0.992709i
−0.568065 0.822984i
−0.885456 0.464723i
0.748511 0.663123i
−0.120537 0.992709i
0.970942 + 0.239316i
0.970942 0.239316i
−0.885456 + 0.464723i
0.748511 + 0.663123i
0.354605 + 0.935016i
0.354605 0.935016i
−0.568065 + 0.822984i
−0.748511 0.663123i 0 0.120537 + 0.992709i 0.213460 0.112032i 0 0 0.568065 0.822984i 0.885456 0.464723i −0.234068 0.0576926i
47.1 0.885456 0.464723i 0 0.568065 0.822984i −0.850405 + 0.753393i 0 0 0.120537 0.992709i −0.748511 + 0.663123i −0.402877 + 1.06230i
63.1 −0.970942 + 0.239316i 0 0.885456 0.464723i −0.627974 1.65583i 0 0 −0.748511 + 0.663123i −0.354605 0.935016i 1.00599 + 1.45743i
95.1 −0.354605 + 0.935016i 0 −0.748511 0.663123i 1.45352 0.358261i 0 0 0.885456 0.464723i −0.970942 + 0.239316i −0.180446 + 1.48611i
99.1 −0.748511 + 0.663123i 0 0.120537 0.992709i 0.213460 + 0.112032i 0 0 0.568065 + 0.822984i 0.885456 + 0.464723i −0.234068 + 0.0576926i
119.1 0.120537 + 0.992709i 0 −0.970942 + 0.239316i −1.10312 + 1.59814i 0 0 −0.354605 0.935016i 0.568065 0.822984i −1.71945 0.902438i
155.1 0.120537 0.992709i 0 −0.970942 0.239316i −1.10312 1.59814i 0 0 −0.354605 + 0.935016i 0.568065 + 0.822984i −1.71945 + 0.902438i
175.1 −0.970942 0.239316i 0 0.885456 + 0.464723i −0.627974 + 1.65583i 0 0 −0.748511 0.663123i −0.354605 + 0.935016i 1.00599 1.45743i
183.1 −0.354605 0.935016i 0 −0.748511 + 0.663123i 1.45352 + 0.358261i 0 0 0.885456 + 0.464723i −0.970942 0.239316i −0.180446 1.48611i
187.1 0.568065 + 0.822984i 0 −0.354605 + 0.935016i −0.0854858 0.704039i 0 0 −0.970942 + 0.239316i 0.120537 + 0.992709i 0.530851 0.470293i
195.1 0.568065 0.822984i 0 −0.354605 0.935016i −0.0854858 + 0.704039i 0 0 −0.970942 0.239316i 0.120537 0.992709i 0.530851 + 0.470293i
203.1 0.885456 + 0.464723i 0 0.568065 + 0.822984i −0.850405 0.753393i 0 0 0.120537 + 0.992709i −0.748511 0.663123i −0.402877 1.06230i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 15.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
53.d even 13 1 inner
212.i odd 26 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 212.1.i.a 12
3.b odd 2 1 1908.1.bb.a 12
4.b odd 2 1 CM 212.1.i.a 12
8.b even 2 1 3392.1.bp.a 12
8.d odd 2 1 3392.1.bp.a 12
12.b even 2 1 1908.1.bb.a 12
53.d even 13 1 inner 212.1.i.a 12
159.j odd 26 1 1908.1.bb.a 12
212.i odd 26 1 inner 212.1.i.a 12
424.o odd 26 1 3392.1.bp.a 12
424.t even 26 1 3392.1.bp.a 12
636.s even 26 1 1908.1.bb.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
212.1.i.a 12 1.a even 1 1 trivial
212.1.i.a 12 4.b odd 2 1 CM
212.1.i.a 12 53.d even 13 1 inner
212.1.i.a 12 212.i odd 26 1 inner
1908.1.bb.a 12 3.b odd 2 1
1908.1.bb.a 12 12.b even 2 1
1908.1.bb.a 12 159.j odd 26 1
1908.1.bb.a 12 636.s even 26 1
3392.1.bp.a 12 8.b even 2 1
3392.1.bp.a 12 8.d odd 2 1
3392.1.bp.a 12 424.o odd 26 1
3392.1.bp.a 12 424.t even 26 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(212, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} + T^{11} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{12} \) Copy content Toggle raw display
$11$ \( T^{12} \) Copy content Toggle raw display
$13$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{12} \) Copy content Toggle raw display
$23$ \( T^{12} \) Copy content Toggle raw display
$29$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{12} \) Copy content Toggle raw display
$37$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{12} \) Copy content Toggle raw display
$47$ \( T^{12} \) Copy content Toggle raw display
$53$ \( T^{12} + T^{11} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{12} \) Copy content Toggle raw display
$61$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{12} \) Copy content Toggle raw display
$71$ \( T^{12} \) Copy content Toggle raw display
$73$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{12} \) Copy content Toggle raw display
$83$ \( T^{12} \) Copy content Toggle raw display
$89$ \( T^{12} - 11 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{12} - 11 T^{11} + \cdots + 1 \) Copy content Toggle raw display
show more
show less