Properties

Label 2156.1.bk.b.2027.1
Level 21562156
Weight 11
Character 2156.2027
Analytic conductor 1.0761.076
Analytic rank 00
Dimension 88
Projective image D10D_{10}
CM discriminant -7
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,1,Mod(471,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([15, 10, 18]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.471");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2156=227211 2156 = 2^{2} \cdot 7^{2} \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2156.bk (of order 3030, degree 88, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.075984167241.07598416724
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ15)\Q(\zeta_{15})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x7+x5x4+x3x+1 x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D10D_{10}
Projective field: Galois closure of 10.0.527027889439744.1

Embedding invariants

Embedding label 2027.1
Root 0.104528+0.994522i-0.104528 + 0.994522i of defining polynomial
Character χ\chi == 2156.2027
Dual form 2156.1.bk.b.2039.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.669131+0.743145i)q2+(0.1045280.994522i)q4+(0.809017+0.587785i)q8+(0.913545+0.406737i)q9+(0.9135450.406737i)q11+(0.978148+0.207912i)q16+(0.913545+0.406737i)q18+(0.309017+0.951057i)q22+(1.64728+0.951057i)q23+(0.978148+0.207912i)q25+(0.5000001.53884i)q29+(0.5000000.866025i)q32+(0.3090170.951057i)q36+(0.6045280.128496i)q371.17557iq43+(0.5000000.866025i)q44+(0.3954721.86055i)q46+(0.809017+0.587785i)q50+(0.169131+1.60917i)q53+(0.809017+1.40126i)q58+(0.309017+0.951057i)q64+(1.01807+0.587785i)q67+(0.690983+0.951057i)q71+(0.500000+0.866025i)q72+(0.309017+0.535233i)q74+(0.4781481.07394i)q79+(0.669131+0.743145i)q81+(0.873619+0.786610i)q86+(0.978148+0.207912i)q88+(1.11803+1.53884i)q92+1.00000q99+O(q100)q+(-0.669131 + 0.743145i) q^{2} +(-0.104528 - 0.994522i) q^{4} +(0.809017 + 0.587785i) q^{8} +(0.913545 + 0.406737i) q^{9} +(0.913545 - 0.406737i) q^{11} +(-0.978148 + 0.207912i) q^{16} +(-0.913545 + 0.406737i) q^{18} +(-0.309017 + 0.951057i) q^{22} +(-1.64728 + 0.951057i) q^{23} +(0.978148 + 0.207912i) q^{25} +(0.500000 - 1.53884i) q^{29} +(0.500000 - 0.866025i) q^{32} +(0.309017 - 0.951057i) q^{36} +(0.604528 - 0.128496i) q^{37} -1.17557i q^{43} +(-0.500000 - 0.866025i) q^{44} +(0.395472 - 1.86055i) q^{46} +(-0.809017 + 0.587785i) q^{50} +(0.169131 + 1.60917i) q^{53} +(0.809017 + 1.40126i) q^{58} +(0.309017 + 0.951057i) q^{64} +(1.01807 + 0.587785i) q^{67} +(-0.690983 + 0.951057i) q^{71} +(0.500000 + 0.866025i) q^{72} +(-0.309017 + 0.535233i) q^{74} +(0.478148 - 1.07394i) q^{79} +(0.669131 + 0.743145i) q^{81} +(0.873619 + 0.786610i) q^{86} +(0.978148 + 0.207912i) q^{88} +(1.11803 + 1.53884i) q^{92} +1.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8qq2+q4+2q8+q9+q11+q16q18+2q22q25+4q29+4q322q36+3q374q44+5q462q503q53+2q582q64++8q99+O(q100) 8 q - q^{2} + q^{4} + 2 q^{8} + q^{9} + q^{11} + q^{16} - q^{18} + 2 q^{22} - q^{25} + 4 q^{29} + 4 q^{32} - 2 q^{36} + 3 q^{37} - 4 q^{44} + 5 q^{46} - 2 q^{50} - 3 q^{53} + 2 q^{58} - 2 q^{64}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2156Z)×\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times.

nn 981981 10791079 12771277
χ(n)\chi(n) e(45)e\left(\frac{4}{5}\right) 1-1 e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.669131 + 0.743145i −0.669131 + 0.743145i
33 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
44 −0.104528 0.994522i −0.104528 0.994522i
55 0 0 −0.994522 0.104528i 0.966667π-0.966667\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
66 0 0
77 0 0
88 0.809017 + 0.587785i 0.809017 + 0.587785i
99 0.913545 + 0.406737i 0.913545 + 0.406737i
1010 0 0
1111 0.913545 0.406737i 0.913545 0.406737i
1212 0 0
1313 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
1414 0 0
1515 0 0
1616 −0.978148 + 0.207912i −0.978148 + 0.207912i
1717 0 0 −0.406737 0.913545i 0.633333π-0.633333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
1818 −0.913545 + 0.406737i −0.913545 + 0.406737i
1919 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
2020 0 0
2121 0 0
2222 −0.309017 + 0.951057i −0.309017 + 0.951057i
2323 −1.64728 + 0.951057i −1.64728 + 0.951057i −0.669131 + 0.743145i 0.733333π0.733333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
2424 0 0
2525 0.978148 + 0.207912i 0.978148 + 0.207912i
2626 0 0
2727 0 0
2828 0 0
2929 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
3030 0 0
3131 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
3232 0.500000 0.866025i 0.500000 0.866025i
3333 0 0
3434 0 0
3535 0 0
3636 0.309017 0.951057i 0.309017 0.951057i
3737 0.604528 0.128496i 0.604528 0.128496i 0.104528 0.994522i 0.466667π-0.466667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
4242 0 0
4343 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
4444 −0.500000 0.866025i −0.500000 0.866025i
4545 0 0
4646 0.395472 1.86055i 0.395472 1.86055i
4747 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
4848 0 0
4949 0 0
5050 −0.809017 + 0.587785i −0.809017 + 0.587785i
5151 0 0
5252 0 0
5353 0.169131 + 1.60917i 0.169131 + 1.60917i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0.809017 + 1.40126i 0.809017 + 1.40126i
5959 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
6060 0 0
6161 0 0 −0.994522 0.104528i 0.966667π-0.966667\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
6262 0 0
6363 0 0
6464 0.309017 + 0.951057i 0.309017 + 0.951057i
6565 0 0
6666 0 0
6767 1.01807 + 0.587785i 1.01807 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
6868 0 0
6969 0 0
7070 0 0
7171 −0.690983 + 0.951057i −0.690983 + 0.951057i 0.309017 + 0.951057i 0.400000π0.400000\pi
−1.00000 1.00000π1.00000\pi
7272 0.500000 + 0.866025i 0.500000 + 0.866025i
7373 0 0 0.743145 0.669131i 0.233333π-0.233333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
7474 −0.309017 + 0.535233i −0.309017 + 0.535233i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0.478148 1.07394i 0.478148 1.07394i −0.500000 0.866025i 0.666667π-0.666667\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
8080 0 0
8181 0.669131 + 0.743145i 0.669131 + 0.743145i
8282 0 0
8383 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
8484 0 0
8585 0 0
8686 0.873619 + 0.786610i 0.873619 + 0.786610i
8787 0 0
8888 0.978148 + 0.207912i 0.978148 + 0.207912i
8989 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
9090 0 0
9191 0 0
9292 1.11803 + 1.53884i 1.11803 + 1.53884i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
9898 0 0
9999 1.00000 1.00000
100100 0.104528 0.994522i 0.104528 0.994522i
101101 0 0 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
102102 0 0
103103 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
104104 0 0
105105 0 0
106106 −1.30902 0.951057i −1.30902 0.951057i
107107 1.41355 + 1.27276i 1.41355 + 1.27276i 0.913545 + 0.406737i 0.133333π0.133333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
108108 0 0
109109 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
114114 0 0
115115 0 0
116116 −1.58268 0.336408i −1.58268 0.336408i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0.669131 0.743145i 0.669131 0.743145i
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 −1.11803 + 1.53884i −1.11803 + 1.53884i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
128128 −0.913545 0.406737i −0.913545 0.406737i
129129 0 0
130130 0 0
131131 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
132132 0 0
133133 0 0
134134 −1.11803 + 0.363271i −1.11803 + 0.363271i
135135 0 0
136136 0 0
137137 −0.564602 + 0.251377i −0.564602 + 0.251377i −0.669131 0.743145i 0.733333π-0.733333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
138138 0 0
139139 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
140140 0 0
141141 0 0
142142 −0.244415 1.14988i −0.244415 1.14988i
143143 0 0
144144 −0.978148 0.207912i −0.978148 0.207912i
145145 0 0
146146 0 0
147147 0 0
148148 −0.190983 0.587785i −0.190983 0.587785i
149149 −0.209057 + 1.98904i −0.209057 + 1.98904i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
150150 0 0
151151 0.395472 1.86055i 0.395472 1.86055i −0.104528 0.994522i 0.533333π-0.533333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.207912 0.978148i 0.433333π-0.433333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
158158 0.478148 + 1.07394i 0.478148 + 1.07394i
159159 0 0
160160 0 0
161161 0 0
162162 −1.00000 −1.00000
163163 0.773659 1.73767i 0.773659 1.73767i 0.104528 0.994522i 0.466667π-0.466667\pi
0.669131 0.743145i 0.266667π-0.266667\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
168168 0 0
169169 −0.309017 + 0.951057i −0.309017 + 0.951057i
170170 0 0
171171 0 0
172172 −1.16913 + 0.122881i −1.16913 + 0.122881i
173173 0 0 −0.743145 0.669131i 0.766667π-0.766667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
174174 0 0
175175 0 0
176176 −0.809017 + 0.587785i −0.809017 + 0.587785i
177177 0 0
178178 0 0
179179 −0.395472 + 1.86055i −0.395472 + 1.86055i 0.104528 + 0.994522i 0.466667π0.466667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
180180 0 0
181181 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
182182 0 0
183183 0 0
184184 −1.89169 0.198825i −1.89169 0.198825i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −0.244415 1.14988i −0.244415 1.14988i −0.913545 0.406737i 0.866667π-0.866667\pi
0.669131 0.743145i 0.266667π-0.266667\pi
192192 0 0
193193 −1.47815 + 0.658114i −1.47815 + 0.658114i −0.978148 0.207912i 0.933333π-0.933333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 0 0
195195 0 0
196196 0 0
197197 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
198198 −0.669131 + 0.743145i −0.669131 + 0.743145i
199199 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 0.669131 + 0.743145i 0.669131 + 0.743145i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 −1.89169 + 0.198825i −1.89169 + 0.198825i
208208 0 0
209209 0 0
210210 0 0
211211 −1.11803 1.53884i −1.11803 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
212212 1.58268 0.336408i 1.58268 0.336408i
213213 0 0
214214 −1.89169 + 0.198825i −1.89169 + 0.198825i
215215 0 0
216216 0 0
217217 0 0
218218 0.190983 + 0.587785i 0.190983 + 0.587785i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
224224 0 0
225225 0.809017 + 0.587785i 0.809017 + 0.587785i
226226 1.47815 + 0.658114i 1.47815 + 0.658114i
227227 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
228228 0 0
229229 0 0 0.406737 0.913545i 0.366667π-0.366667\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
230230 0 0
231231 0 0
232232 1.30902 0.951057i 1.30902 0.951057i
233233 −1.82709 0.813473i −1.82709 0.813473i −0.913545 0.406737i 0.866667π-0.866667\pi
−0.913545 0.406737i 0.866667π-0.866667\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 1.11803 0.363271i 1.11803 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
240240 0 0
241241 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
242242 0.104528 + 0.994522i 0.104528 + 0.994522i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
252252 0 0
253253 −1.11803 + 1.53884i −1.11803 + 1.53884i
254254 −0.395472 1.86055i −0.395472 1.86055i
255255 0 0
256256 0.913545 0.406737i 0.913545 0.406737i
257257 0 0 −0.207912 0.978148i 0.566667π-0.566667\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
258258 0 0
259259 0 0
260260 0 0
261261 1.08268 1.20243i 1.08268 1.20243i
262262 0 0
263263 −1.01807 0.587785i −1.01807 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0.478148 1.07394i 0.478148 1.07394i
269269 0 0 −0.406737 0.913545i 0.633333π-0.633333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
270270 0 0
271271 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
272272 0 0
273273 0 0
274274 0.190983 0.587785i 0.190983 0.587785i
275275 0.978148 0.207912i 0.978148 0.207912i
276276 0 0
277277 −0.0646021 0.614648i −0.0646021 0.614648i −0.978148 0.207912i 0.933333π-0.933333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
278278 0 0
279279 0 0
280280 0 0
281281 −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
−1.00000 π\pi
282282 0 0
283283 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
284284 1.01807 + 0.587785i 1.01807 + 0.587785i
285285 0 0
286286 0 0
287287 0 0
288288 0.809017 0.587785i 0.809017 0.587785i
289289 −0.669131 + 0.743145i −0.669131 + 0.743145i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
294294 0 0
295295 0 0
296296 0.564602 + 0.251377i 0.564602 + 0.251377i
297297 0 0
298298 −1.33826 1.48629i −1.33826 1.48629i
299299 0 0
300300 0 0
301301 0 0
302302 1.11803 + 1.53884i 1.11803 + 1.53884i
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
312312 0 0
313313 0 0 −0.994522 0.104528i 0.966667π-0.966667\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
314314 0 0
315315 0 0
316316 −1.11803 0.363271i −1.11803 0.363271i
317317 −1.47815 0.658114i −1.47815 0.658114i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
318318 0 0
319319 −0.169131 1.60917i −0.169131 1.60917i
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0.669131 0.743145i 0.669131 0.743145i
325325 0 0
326326 0.773659 + 1.73767i 0.773659 + 1.73767i
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −1.64728 + 0.951057i −1.64728 + 0.951057i −0.669131 + 0.743145i 0.733333π0.733333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
332332 0 0
333333 0.604528 + 0.128496i 0.604528 + 0.128496i
334334 0 0
335335 0 0
336336 0 0
337337 −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i 0.200000π0.200000\pi
−1.00000 π\pi
338338 −0.500000 0.866025i −0.500000 0.866025i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0.690983 0.951057i 0.690983 0.951057i
345345 0 0
346346 0 0
347347 0.478148 + 1.07394i 0.478148 + 1.07394i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
350350 0 0
351351 0 0
352352 0.104528 0.994522i 0.104528 0.994522i
353353 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 −1.11803 1.53884i −1.11803 1.53884i
359359 0.395472 + 1.86055i 0.395472 + 1.86055i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
360360 0 0
361361 −0.104528 0.994522i −0.104528 0.994522i
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
368368 1.41355 1.27276i 1.41355 1.27276i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 1.11803 1.53884i 1.11803 1.53884i 0.309017 0.951057i 0.400000π-0.400000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
380380 0 0
381381 0 0
382382 1.01807 + 0.587785i 1.01807 + 0.587785i
383383 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
384384 0 0
385385 0 0
386386 0.500000 1.53884i 0.500000 1.53884i
387387 0.478148 1.07394i 0.478148 1.07394i
388388 0 0
389389 −0.413545 0.459289i −0.413545 0.459289i 0.500000 0.866025i 0.333333π-0.333333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 −0.413545 + 0.459289i −0.413545 + 0.459289i
395395 0 0
396396 −0.104528 0.994522i −0.104528 0.994522i
397397 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
398398 0 0
399399 0 0
400400 −1.00000 −1.00000
401401 0.0646021 0.614648i 0.0646021 0.614648i −0.913545 0.406737i 0.866667π-0.866667\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0.500000 0.363271i 0.500000 0.363271i
408408 0 0
409409 0 0 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 1.11803 1.53884i 1.11803 1.53884i
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
422422 1.89169 + 0.198825i 1.89169 + 0.198825i
423423 0 0
424424 −0.809017 + 1.40126i −0.809017 + 1.40126i
425425 0 0
426426 0 0
427427 0 0
428428 1.11803 1.53884i 1.11803 1.53884i
429429 0 0
430430 0 0
431431 −1.89169 + 0.198825i −1.89169 + 0.198825i −0.978148 0.207912i 0.933333π-0.933333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
432432 0 0
433433 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
434434 0 0
435435 0 0
436436 −0.564602 0.251377i −0.564602 0.251377i
437437 0 0
438438 0 0
439439 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
440440 0 0
441441 0 0
442442 0 0
443443 −0.873619 0.786610i −0.873619 0.786610i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
450450 −0.978148 + 0.207912i −0.978148 + 0.207912i
451451 0 0
452452 −1.47815 + 0.658114i −1.47815 + 0.658114i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −0.0646021 + 0.614648i −0.0646021 + 0.614648i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
464464 −0.169131 + 1.60917i −0.169131 + 1.60917i
465465 0 0
466466 1.82709 0.813473i 1.82709 0.813473i
467467 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 −0.478148 1.07394i −0.478148 1.07394i
474474 0 0
475475 0 0
476476 0 0
477477 −0.500000 + 1.53884i −0.500000 + 1.53884i
478478 −0.478148 + 1.07394i −0.478148 + 1.07394i
479479 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −0.809017 0.587785i −0.809017 0.587785i
485485 0 0
486486 0 0
487487 −0.244415 + 1.14988i −0.244415 + 1.14988i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −0.244415 1.14988i −0.244415 1.14988i −0.913545 0.406737i 0.866667π-0.866667\pi
0.669131 0.743145i 0.266667π-0.266667\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
504504 0 0
505505 0 0
506506 −0.395472 1.86055i −0.395472 1.86055i
507507 0 0
508508 1.64728 + 0.951057i 1.64728 + 0.951057i
509509 0 0 −0.743145 0.669131i 0.766667π-0.766667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
510510 0 0
511511 0 0
512512 −0.309017 + 0.951057i −0.309017 + 0.951057i
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 0.743145 0.669131i 0.233333π-0.233333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
522522 0.169131 + 1.60917i 0.169131 + 1.60917i
523523 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
524524 0 0
525525 0 0
526526 1.11803 0.363271i 1.11803 0.363271i
527527 0 0
528528 0 0
529529 1.30902 2.26728i 1.30902 2.26728i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0.478148 + 1.07394i 0.478148 + 1.07394i
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0.564602 + 0.251377i 0.564602 + 0.251377i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
548548 0.309017 + 0.535233i 0.309017 + 0.535233i
549549 0 0
550550 −0.500000 + 0.866025i −0.500000 + 0.866025i
551551 0 0
552552 0 0
553553 0 0
554554 0.500000 + 0.363271i 0.500000 + 0.363271i
555555 0 0
556556 0 0
557557 −1.08268 1.20243i −1.08268 1.20243i −0.978148 0.207912i 0.933333π-0.933333\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 1.58268 0.336408i 1.58268 0.336408i
563563 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 −1.11803 + 0.363271i −1.11803 + 0.363271i
569569 −1.33826 + 1.48629i −1.33826 + 1.48629i −0.669131 + 0.743145i 0.733333π0.733333\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
570570 0 0
571571 1.64728 + 0.951057i 1.64728 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
572572 0 0
573573 0 0
574574 0 0
575575 −1.80902 + 0.587785i −1.80902 + 0.587785i
576576 −0.104528 + 0.994522i −0.104528 + 0.994522i
577577 0 0 −0.406737 0.913545i 0.633333π-0.633333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
578578 −0.104528 0.994522i −0.104528 0.994522i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0.809017 + 1.40126i 0.809017 + 1.40126i
584584 0 0
585585 0 0
586586 0 0
587587 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 −0.564602 + 0.251377i −0.564602 + 0.251377i
593593 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
594594 0 0
595595 0 0
596596 2.00000 2.00000
597597 0 0
598598 0 0
599599 −0.773659 1.73767i −0.773659 1.73767i −0.669131 0.743145i 0.733333π-0.733333\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
600600 0 0
601601 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
602602 0 0
603603 0.690983 + 0.951057i 0.690983 + 0.951057i
604604 −1.89169 0.198825i −1.89169 0.198825i
605605 0 0
606606 0 0
607607 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −1.58268 0.336408i −1.58268 0.336408i −0.669131 0.743145i 0.733333π-0.733333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
618618 0 0
619619 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.913545 + 0.406737i 0.913545 + 0.406737i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 1.80902 + 0.587785i 1.80902 + 0.587785i 1.00000 00
0.809017 + 0.587785i 0.200000π0.200000\pi
632632 1.01807 0.587785i 1.01807 0.587785i
633633 0 0
634634 1.47815 0.658114i 1.47815 0.658114i
635635 0 0
636636 0 0
637637 0 0
638638 1.30902 + 0.951057i 1.30902 + 0.951057i
639639 −1.01807 + 0.587785i −1.01807 + 0.587785i
640640 0 0
641641 −1.58268 0.336408i −1.58268 0.336408i −0.669131 0.743145i 0.733333π-0.733333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
642642 0 0
643643 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
648648 0.104528 + 0.994522i 0.104528 + 0.994522i
649649 0 0
650650 0 0
651651 0 0
652652 −1.80902 0.587785i −1.80902 0.587785i
653653 0.604528 0.128496i 0.604528 0.128496i 0.104528 0.994522i 0.466667π-0.466667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
662662 0.395472 1.86055i 0.395472 1.86055i
663663 0 0
664664 0 0
665665 0 0
666666 −0.500000 + 0.363271i −0.500000 + 0.363271i
667667 0.639886 + 3.01043i 0.639886 + 3.01043i
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i 0.600000π0.600000\pi
−1.00000 π\pi
674674 −0.309017 0.535233i −0.309017 0.535233i
675675 0 0
676676 0.978148 + 0.207912i 0.978148 + 0.207912i
677677 0 0 −0.994522 0.104528i 0.966667π-0.966667\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 1.64728 + 0.951057i 1.64728 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0.244415 + 1.14988i 0.244415 + 1.14988i
689689 0 0
690690 0 0
691691 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
692692 0 0
693693 0 0
694694 −1.11803 0.363271i −1.11803 0.363271i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0.669131 + 0.743145i 0.669131 + 0.743145i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −0.169131 + 1.60917i −0.169131 + 1.60917i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
710710 0 0
711711 0.873619 0.786610i 0.873619 0.786610i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 1.89169 + 0.198825i 1.89169 + 0.198825i
717717 0 0
718718 −1.64728 0.951057i −1.64728 0.951057i
719719 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
720720 0 0
721721 0 0
722722 0.809017 + 0.587785i 0.809017 + 0.587785i
723723 0 0
724724 0 0
725725 0.809017 1.40126i 0.809017 1.40126i
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 0.309017 + 0.951057i 0.309017 + 0.951057i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 −0.207912 0.978148i 0.566667π-0.566667\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
734734 0 0
735735 0 0
736736 1.90211i 1.90211i
737737 1.16913 + 0.122881i 1.16913 + 0.122881i
738738 0 0
739739 −1.16913 + 0.122881i −1.16913 + 0.122881i −0.669131 0.743145i 0.733333π-0.733333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
740740 0 0
741741 0 0
742742 0 0
743743 −0.690983 + 0.951057i −0.690983 + 0.951057i 0.309017 + 0.951057i 0.400000π0.400000\pi
−1.00000 1.00000π1.00000\pi
744744 0 0
745745 0 0
746746 1.95630 + 0.415823i 1.95630 + 0.415823i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 −1.41355 1.27276i −1.41355 1.27276i −0.913545 0.406737i 0.866667π-0.866667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i 0.600000π0.600000\pi
−1.00000 π\pi
758758 0.395472 + 1.86055i 0.395472 + 1.86055i
759759 0 0
760760 0 0
761761 0 0 0.406737 0.913545i 0.366667π-0.366667\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
762762 0 0
763763 0 0
764764 −1.11803 + 0.363271i −1.11803 + 0.363271i
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
770770 0 0
771771 0 0
772772 0.809017 + 1.40126i 0.809017 + 1.40126i
773773 0 0 0.207912 0.978148i 0.433333π-0.433333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
774774 0.478148 + 1.07394i 0.478148 + 1.07394i
775775 0 0
776776 0 0
777777 0 0
778778 0.618034 0.618034
779779 0 0
780780 0 0
781781 −0.244415 + 1.14988i −0.244415 + 1.14988i
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
788788 −0.0646021 0.614648i −0.0646021 0.614648i
789789 0 0
790790 0 0
791791 0 0
792792 0.809017 + 0.587785i 0.809017 + 0.587785i
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
798798 0 0
799799 0 0
800800 0.669131 0.743145i 0.669131 0.743145i
801801 0 0
802802 0.413545 + 0.459289i 0.413545 + 0.459289i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0.564602 0.251377i 0.564602 0.251377i −0.104528 0.994522i 0.533333π-0.533333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
810810 0 0
811811 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
812812 0 0
813813 0 0
814814 −0.0646021 + 0.614648i −0.0646021 + 0.614648i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −1.95630 + 0.415823i −1.95630 + 0.415823i −0.978148 + 0.207912i 0.933333π0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
822822 0 0
823823 1.16913 0.122881i 1.16913 0.122881i 0.500000 0.866025i 0.333333π-0.333333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
828828 0.395472 + 1.86055i 0.395472 + 1.86055i
829829 0 0 0.743145 0.669131i 0.233333π-0.233333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
840840 0 0
841841 −1.30902 0.951057i −1.30902 0.951057i
842842 −0.564602 0.251377i −0.564602 0.251377i
843843 0 0
844844 −1.41355 + 1.27276i −1.41355 + 1.27276i
845845 0 0
846846 0 0
847847 0 0
848848 −0.500000 1.53884i −0.500000 1.53884i
849849 0 0
850850 0 0
851851 −0.873619 + 0.786610i −0.873619 + 0.786610i
852852 0 0
853853 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
854854 0 0
855855 0 0
856856 0.395472 + 1.86055i 0.395472 + 1.86055i
857857 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
858858 0 0
859859 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
860860 0 0
861861 0 0
862862 1.11803 1.53884i 1.11803 1.53884i
863863 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 1.17557i 1.17557i
870870 0 0
871871 0 0
872872 0.564602 0.251377i 0.564602 0.251377i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 1.08268 1.20243i 1.08268 1.20243i 0.104528 0.994522i 0.466667π-0.466667\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
884884 0 0
885885 0 0
886886 1.16913 0.122881i 1.16913 0.122881i
887887 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
888888 0 0
889889 0 0
890890 0 0
891891 0.913545 + 0.406737i 0.913545 + 0.406737i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0.0646021 0.614648i 0.0646021 0.614648i
899899 0 0
900900 0.500000 0.866025i 0.500000 0.866025i
901901 0 0
902902 0 0
903903 0 0
904904 0.500000 1.53884i 0.500000 1.53884i
905905 0 0
906906 0 0
907907 0.478148 + 1.07394i 0.478148 + 1.07394i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
912912 0 0
913913 0 0
914914 −0.413545 0.459289i −0.413545 0.459289i
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 −1.16913 0.122881i −1.16913 0.122881i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0.618034 0.618034
926926 −0.873619 0.786610i −0.873619 0.786610i
927927 0 0
928928 −1.08268 1.20243i −1.08268 1.20243i
929929 0 0 −0.994522 0.104528i 0.966667π-0.966667\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
930930 0 0
931931 0 0
932932 −0.618034 + 1.90211i −0.618034 + 1.90211i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 −0.406737 0.913545i 0.633333π-0.633333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 1.11803 + 0.363271i 1.11803 + 0.363271i
947947 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
954954 −0.809017 1.40126i −0.809017 1.40126i
955955 0 0
956956 −0.478148 1.07394i −0.478148 1.07394i
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −0.978148 + 0.207912i −0.978148 + 0.207912i
962962 0 0
963963 0.773659 + 1.73767i 0.773659 + 1.73767i
964964 0 0
965965 0 0
966966 0 0
967967 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
968968 0.978148 0.207912i 0.978148 0.207912i
969969 0 0
970970 0 0
971971 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
972972 0 0
973973 0 0
974974 −0.690983 0.951057i −0.690983 0.951057i
975975 0 0
976976 0 0
977977 0.0646021 + 0.614648i 0.0646021 + 0.614648i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
978978 0 0
979979 0 0
980980 0 0
981981 0.500000 0.363271i 0.500000 0.363271i
982982 0 0
983983 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 1.11803 + 1.93649i 1.11803 + 1.93649i
990990 0 0
991991 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 0.743145 0.669131i 0.233333π-0.233333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
998998 1.01807 + 0.587785i 1.01807 + 0.587785i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2156.1.bk.b.2027.1 8
4.3 odd 2 2156.1.bk.a.2027.1 8
7.2 even 3 inner 2156.1.bk.b.1059.1 8
7.3 odd 6 2156.1.v.a.883.1 4
7.4 even 3 2156.1.v.a.883.1 4
7.5 odd 6 inner 2156.1.bk.b.1059.1 8
7.6 odd 2 CM 2156.1.bk.b.2027.1 8
11.4 even 5 2156.1.bk.a.851.1 8
28.3 even 6 2156.1.v.b.883.1 yes 4
28.11 odd 6 2156.1.v.b.883.1 yes 4
28.19 even 6 2156.1.bk.a.1059.1 8
28.23 odd 6 2156.1.bk.a.1059.1 8
28.27 even 2 2156.1.bk.a.2027.1 8
44.15 odd 10 inner 2156.1.bk.b.851.1 8
77.4 even 15 2156.1.v.b.1863.1 yes 4
77.26 odd 30 2156.1.bk.a.2039.1 8
77.37 even 15 2156.1.bk.a.2039.1 8
77.48 odd 10 2156.1.bk.a.851.1 8
77.59 odd 30 2156.1.v.b.1863.1 yes 4
308.59 even 30 2156.1.v.a.1863.1 yes 4
308.103 even 30 inner 2156.1.bk.b.2039.1 8
308.191 odd 30 inner 2156.1.bk.b.2039.1 8
308.235 odd 30 2156.1.v.a.1863.1 yes 4
308.279 even 10 inner 2156.1.bk.b.851.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2156.1.v.a.883.1 4 7.3 odd 6
2156.1.v.a.883.1 4 7.4 even 3
2156.1.v.a.1863.1 yes 4 308.59 even 30
2156.1.v.a.1863.1 yes 4 308.235 odd 30
2156.1.v.b.883.1 yes 4 28.3 even 6
2156.1.v.b.883.1 yes 4 28.11 odd 6
2156.1.v.b.1863.1 yes 4 77.4 even 15
2156.1.v.b.1863.1 yes 4 77.59 odd 30
2156.1.bk.a.851.1 8 11.4 even 5
2156.1.bk.a.851.1 8 77.48 odd 10
2156.1.bk.a.1059.1 8 28.19 even 6
2156.1.bk.a.1059.1 8 28.23 odd 6
2156.1.bk.a.2027.1 8 4.3 odd 2
2156.1.bk.a.2027.1 8 28.27 even 2
2156.1.bk.a.2039.1 8 77.26 odd 30
2156.1.bk.a.2039.1 8 77.37 even 15
2156.1.bk.b.851.1 8 44.15 odd 10 inner
2156.1.bk.b.851.1 8 308.279 even 10 inner
2156.1.bk.b.1059.1 8 7.2 even 3 inner
2156.1.bk.b.1059.1 8 7.5 odd 6 inner
2156.1.bk.b.2027.1 8 1.1 even 1 trivial
2156.1.bk.b.2027.1 8 7.6 odd 2 CM
2156.1.bk.b.2039.1 8 308.103 even 30 inner
2156.1.bk.b.2039.1 8 308.191 odd 30 inner